
Appendix 1

A. Implementation Details
This work was implemented in Python 3.10 and the machine learning functionality used PyTorch. The
code and a list of required libraries is available at https://github.com/JAEarly/MIL-Multires-EO. The
majority of model training was carried out on a remote GPU service using a Volta V100 Enterprise
Compute GPU with 16GB of VRAM, which utilised CUDA v11.0 to enable GPU support (IRIDIS 5,
University of Southampton). Training each model took a maximum of four hours. Trained models can
be found in the code repository. Fixed seeds were used to ensure consistency of dataset splits between
training and testing; these are included in the scripts that are used to run the experiments. We used
Weights and Biases (Biewald, 2020) to track our experiments, along with Optuna for hyperparameter
optimisation (Akiba et al., 2019). During hyperparameter optimisation, we ran 40 trials with pruning
using the Tree-structured Parzen Estimator sampler (Bergstra et al., 2011).

B. Datasets
In this section, we give further details on the DeepGlobe (Section B.1) and FloodNet (Section B.2)
datasets used in this work.

B.1. DeepGlobe
The DeepGlobe-LCC dataset is openly available and can be acquired from Kaggle. Below we give
further details on the dataset, which are adapted from the Kaggle page.1

Data
The DeepGlobe-LCC dataset consists of 803 satellite images with 3 channels: red, green, and blue
(RGB). Each image is 2448 x 2448 pixels with 50cm pixel resolution. All images were sourced from
the WorldView3 satellite, covering regions in Thailand, Indonesia, and India. The Kaggle challenge
also has validation and test datasets with 171 and 172 images respectively, but as these datasets do not
include segmentation masks, they were not used in this work.

Labels
Each satellite image is paired with a mask image for land cover annotation. Each mask is an image with
7 classes of labels, using colour-coding (RGB) described below. We also give an overview of the class
distribution in Figure A1.

0. Urban land (0, 255, 255) — Man-made, built-up areas with human artefacts (ignoring roads
which are hard to label).

1. Agriculture land (255, 255, 0) — Farms, any planned (i.e., regular) plantation, cropland,
orchards, vineyards, nurseries, and ornamental horticultural areas.

2. Rangeland (255, 0, 255) — Any non-forest, non-farm, green land, grass.
3. Forest land (0, 255, 0) — Any land with x% tree crown density plus clearcuts.
4. Water (0, 0, 255) — Rivers, oceans, lakes, wetland, ponds.
5. Barren land (255, 255, 255) — Mountain, land, rock, desert, beach, no vegetation.
6. Unknown (0, 0, 0) — Clouds and others.

Figure A1. DeepGlobe Class Distribution. We compute the class coverage for each image in the
dataset, then plot a log histogram with 25 bins.

1https://www.kaggle.com/datasets/balraj98/deepglobe-land-cover-classification-dataset

https://github.com/JAEarly/MIL-Multires-EO
https://www.kaggle.com/datasets/balraj98/deepglobe-land-cover-classification-dataset


2 Early et al.

Terms and Conditions
The DeepGlobe Land Cover Classification Challenge and dataset are governed by DeepGlobe Rules,
DigitalGlobe’s Internal Use License Agreement, and Annotation License Agreement.

Further Details
While the DeepGlobe-LCC dataset provides pixel-level annotations, these segmentation labels are only
used to generate the regression targets for training and for the evaluation of derived patch segmentation,
i.e., they are not used during training. However, we would like to stress that these segmentation labels
are not strictly required for our approach, i.e., the scene-level regression targets can be created without
having to perform segmentation.

We used 5-fold cross-validation rather than the standard 10-fold due to the limited size of the datasets
(only 803 images). With this configuration, each fold had an 80/10/10 split for train/validation/test. We
normalised the images by the dataset mean (0.4082, 0.3791, 0.2816) and standard deviation (0.06722,
0.04668, 0.04768). No other data augmentation was used.

B.2. FloodNet
The FloodNet dataset was originally used as a competition dataset as part of EARTHVISION 2021.
It was created by Bina Lab (a computer vision and remote sensing laboratory at the University of
Maryland, Baltimore County). This work used the openly available data provided on GitHub.2 Below
we give further details on the dataset specifics.

Data
FloodNet consists of 2343 high-resolution (4000 x 3000 px) RGB images of Ford Bend County in
Texas, captured between August 30th to September 4th 2017 after Hurricane Harvey. Images were taken
with DJI Mavic Pro quadcopters at 200 feet above ground level (flown by emergency responders during
the disaster response phase). The aim is to capture the post-disaster effects, notably flooding.

Labels
Each aerial image is paired with a mask image. Each mask is a single-channel image with 10 classes of
labels, where the pixel values indicate the pixel classes (described below). We also give an overview of
the class distribution in Figure A2.

0. Background — Regions that do not fall into any of the other classes.
1. Building Flooded — Man-made structures where at least one side is touching flood water.
2. Building Non-flooded — Man-made structures where no sides are touching flood water.
3. Road Flooded — Roads covered by flood water.
4. Road Non-flooded — Roads not covered by flood water.
5. Water — Natural water bodies (e.g., rivers and lakes); considered distinct from flood water.
6. Tree — Vegetation including trees and bushes.
7. Vehicle — Car, lorries, trucks, etc.
8. Pool — Man-made swimming pools, typically behind houses.
9. Grass — Areas covered with grass.

Terms and Conditions
Any research using FloodNet should cite Rahnemoonfar et al. (2021).

Further Details
Similar to the DeepGlobe dataset, FloodNet provides pixel-level annotations, but these segmenta-
tion labels are only used to generate the regression targets for our training and for the evaluation

2https://github.com/BinaLab/FloodNet-Supervised_v1.0

https://github.com/BinaLab/FloodNet-Supervised_v1.0


Appendix 3

Figure A2. FloodNet Class Distribution. We compute the class coverage for each image in the dataset,
then plot a log histogram with 25 bins.

of derived patch segmentation, i.e., they are not used during training. The dataset provides fixed
train/validation/test splits, so we used these in our work (i.e., no cross-validation; instead five repeats
on the same dataset splits). With this configuration, there were 1445/450/448 images (2343 total;
∼ 61.7/19.2/19.1) for train/validation/test. We normalised the images by the dataset mean (0.4111,
0.4483, 0.3415) and standard deviation (0.1260, 0.1185, 0.1177). No other data augmentation was used.

C. Models and Training
In this section, we provide further details on our model configurations (Section C.1), training procedure
(C.2), and architectures (C.3).

C.1. Model Configurations
We use 14 different model configurations in this work: one ResNet18 fully supervised approach, two
U-Net models, and 11 different configurations of our Scene-to-Patch (S2P) approach (nine single-
resolution and two multi-resolution). Further details are given below, along with summaries in Tables
A1 and A2 for DeepGlobe and FloodNet respectively.

ResNet18. For the ResNet18 model, we treat our regression problem in a fully supervised manner,
i.e., without using a MIL approach. Instead, the entire image is resized to 224 x 224 px (the size
that ResNet18 expects), and the model makes (only) a scene-level prediction. Conceptually, this is
equivalent to using a grid size of one and a patch size of 224 x 224 px (see Tables A1 and A2). We
used a pre-trained ResNet18 model, with weights sourced from TorchVision.3 We replaced the final
classifier layer of the network with a new linear layer of the correct size (7 for DeepGlobe and 10 for
FloodNet), and then re-trained the entire network, i.e., no weights were frozen during re-training.

U-Net Models. We used two different U-Net configurations — one using entire image inputs resized to
224 x 224 px, and the other 448 x 448 px. The model makes scene-level predictions using global average
pooling over 𝐹 (the output of the U-Net’s final convolutional layer) followed by a single classification
layer 𝐿. Using class activation maps, it is possible to recover pixel-level segmentation outputs: 𝑀𝑐 =

𝑊𝑐𝐹 + 𝐵𝑐, where 𝑀𝑐 is the class activation map for class 𝑐, 𝑊𝑐 are the weights in 𝐿 for class 𝑐, and
𝐵𝑐 is the bias for class 𝑐 in 𝐿. Note, for the U-Net upsampling process, we experimented with fixed
bilinear or learnt convolutional upsampling; the latter increases the number of model parameters. This
was included as a hyperparameter during tuning on the DeepGlobe dataset, and it was found that fixed
upsampling was best for the U-Net 224 architecture, but learnt upsampling was best for U-Net 448
architecture, leading to an increase in the number of parameters for the U-Net 448 model.

Single Resolution S2P Models. We tested nine different configurations of our single resolution S2P
models. Two parameters were changed: the grid size and the patch size. The grid size determines the
number of cells extracted from the original image. The patch size is the dimension that each extracted
cell is resized to before being input to the model and also determines the model architecture that is

3https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet18.html#torchvision.models.resnet18

https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet18.html#torchvision.models.resnet18


4 Early et al.

used, i.e., we used three different patch sizes and thus designed three different model architectures.
This means models with different grid sizes but the same patch size used the same architecture, e.g.,
the S2P Large 8, S2P Large 16, and S2P Large 32 models all used the same model architecture (hence
having the same number of model parameters in Tables A1 and A2).

Multi-Resolution S2P Models. We used two different configurations of the multi-resolution models, see
Section 3.3. These models use the large single-resolution architecture as their backbone (as this was
found to be most effective for single resolutions, see Section 5.3). Both multi-resolution models make
predictions at the same resolution as the grid size = 32 single-resolution models (𝑠 = 𝑚), and the
MRMO model also makes independent predictions at grid sizes 8, 16, and 32.

Table A1. DeepGlobe Configurations. The grid size determines the number of cells and the size of each
cell. Each cell is then resized (patch size), leading to a reduction in the overall image size (effective
resolution and scale). # Params is the number of parameters in each model. Note, when using a grid size
of 32, a patch size of 102 x 102 px is greater than the maximum possible cell size (i.e., the extracted cells
would need to be upsampled and the effective resolution would be greater than 100%). Therefore, for grid
size 32, we use a patch size of 76 x 76 px for the large model configurations.

Configuration Grid Size Cell Size Patch Size Eff. Resolution Scale # Params

ResNet18 1 x 1 2448 x 2448 px 224 x 224 px 224 x 224 px 0.8% 11.18M
U-Net 224 1 x 1 2448 x 2448 px 224 x 224 px 224 x 224 px 0.8% 4.31M
U-Net 448 1 x 1 2448 x 2448 px 448 x 448 px 448 x 448 px 3.3% 7.76M

S2P SR Small 8 8 x 8 306 x 306 px 28 x 28 px 224 x 224 px 0.8% 707K
S2P SR Medium 8 8 x 8 306 x 306 px 56 x 56 px 448 x 448 px 3.3% 3.63M
S2P SR Large 8 8 x 8 306 x 306 px 102 x 102 px 816 x 816 px 11.1% 2.98M

S2P SR Small 16 16 x 16 153 x 153 px 28 x 28 px 448 x 448 px 3.3% 707K
S2P SR Medium 16 16 x 16 153 x 153 px 56 x 56 px 896 x 896 px 13.4% 3.63M
S2P SR Large 16 16 x 16 153 x 153 px 102 x 102 px 1632 x 1632 px 44.4% 2.98M

S2P SR Small 32 32 x 32 76 x 76 px 28 x 28 px 896 x 896 px 13.4% 707K
S2P SR Medium 32 32 x 32 76 x 76 px 56 x 56 px 1792 x 1792 px 53.6% 3.63M
S2P SR Large 32 32 x 32 76 x 76 px 76 x 76 px 2432 x 2432 px 98.7% 1.52M

𝑠 = 0 8 x 8 306 x 306 px 76 x 76 px 608 x 608 px 6.2%
S2P MRSO 𝑠 = 1 16 x 16 153 x 153 px 76 x 76 px 1216 x 1216 px 24.7% 4.56M

𝑠 = 2 32 x 32 76 x 76 px 76 x 76 px 2432 x 2432 px 98.7%

𝑠 = 0 8 x 8 306 x 306 px 76 x 76 px 608 x 608 px 6.2%
S2P MRMO 𝑠 = 1 16 x 16 153 x 153 px 76 x 76 px 1216 x 1216 px 24.7% 4.59M

𝑠 = 2 32 x 32 76 x 76 px 76 x 76 px 2432 x 2432 px 98.7%

Despite using larger patches, the S2P Large architectures have fewer parameters than the S2P Medium
architectures as they use an additional convolutional and pooling layer, leading to smaller embedding
sizes and thus fewer parameters in the fully connected layers (see Appendix C.3 for further details on
the model architectures). Furthermore, while the DeepGlobe multi-resolution MIL models are larger
(more parameters) than the DeepGlobe single-resolution MIL models, the DeepGlobe multi-resolution
models have fewer parameters than the total number of parameters for the equivalent single-resolution
models (a total of 7.48M parameters). This is because the DeepGlobe multi-resolution models use a
patch size of 76 x 76 px rather than 102 x 102 px. For the FloodNet multi-resolution models, as the
patch size is the same as the single-resolution models, the number of parameters is only slightly higher
than the equivalent total for the single-resolution models (a total of 8.94M parameters). The implication
of having fewer parameters (in the case of DeepGlobe), or only slightly more (in the case of FloodNet)
is that using a single MRMO model is mostly equivalent to training three separate single-resolution
models, with the added benefit of improved performance and faster training.



Appendix 5

Table A2. FloodNet Configurations.

Configuration Grid Size Cell Size Patch Size Eff. Resolution Scale # Params

ResNet18 1 x 1 4000 x 3000 px 224 x 224 px 224 x 224 px 0.4% 11.18M
U-Net 224 1 x 1 4000 x 3000 px 224 x 224 px 224 x 224 px 0.4% 4.31M
U-Net 448 1 x 1 4000 x 3000 px 448 x 448 px 448 x 448 px 1.7% 7.76M

S2P SR Small 8 8 x 6 500 x 500 px 28 x 28 px 224 x 168 px 0.3% 707K
S2P SR Medium 8 8 x 6 500 x 500 px 56 x 56 px 448 x 336 px 1.3% 3.63M
S2P SR Large 8 8 x 6 500 x 500 px 102 x 102 px 816 x 612 px 4.2% 2.98M

S2P SR Small 16 16 x 12 250 x 250 px 28 x 28 px 448 x 336 px 1.3% 707K
S2P SR Medium 16 16 x 12 250 x 250 px 56 x 56 px 896 x 672 px 5.0% 3.63M
S2P SR Large 16 16 x 12 250 x 250 px 102 x 102 px 1632 x 1224 px 16.6% 2.98M

S2P SR Small 32 32 x 24 125 x 125 px 28 x 28 px 896 x 672 px 5.0% 707K
S2P SR Medium 32 32 x 24 125 x 125 px 56 x 56 px 1792 x 1344 px 20.1% 3.63M
S2P SR Large 32 32 x 24 125 x 125 px 102 x 102 px 3264 x 2448 px 66.6% 2.98M

𝑠 = 0 8 x 6 500 x 500 px 102 x 102 px 816 x 612 px 4.2%
S2P MRSO 𝑠 = 1 16 x 12 250 x 250 px 102 x 102 px 1632 x 1224 px 16.6% 8.95M

𝑠 = 2 32 x 24 125 x 125 px 102 x 102 px 3264 x 2448 px 66.6%

𝑠 = 0 8 x 6 500 x 500 px 102 x 102 px 816 x 612 px 4.2%
S2P MRMO 𝑠 = 1 16 x 12 250 x 250 px 102 x 102 px 1632 x 1224 px 16.6% 8.98M

𝑠 = 2 32 x 24 125 x 125 px 102 x 102 px 3264 x 2448 px 66.6%

C.2. Training Procedure
Models were trained to minimise scene-level RMSE using the Adam optimiser. Hyperparameter details
are given in Table A3. We utilised early stopping based on validation performance — if the validation
RMSE had not decreased for 5 epochs (or the epoch limit was reached, which very rarely happened), we
terminated the training procedure and reset the model to the point at which it caused the last decrease
in validation loss. Hyperparameter tuning was only carried out on the DeepGlobe dataset, i.e., the same
hyperparameters were used for the FloodNet models. This demonstrates that the hyperparameters found
through tuning are robust, which is also supported by consistent values across the S2P models.

Table A3. Model training hyperparameters.

Configuration Max Epochs Learning Rate Weight Decay Dropout

ResNet18 30 0.05 0.10 N/A
U-Net 224 30 5 × 10−4 1 × 10−5 0.25
U-Net 448 30 5 × 10−4 1 × 10−6 0.2

S2P SR Small 8 30 1 × 10−4 1 × 10−6 0.05
S2P SR Medium 8 30 1 × 10−4 1 × 10−5 0.35
S2P SR Large 8 30 1 × 10−4 1 × 10−5 0.25

S2P SR Small 16 30 5 × 10−4 1 × 10−6 0.10
S2P SR Medium 16 30 1 × 10−4 1 × 10−6 0.05
S2P SR Large 16 30 1 × 10−4 1 × 10−5 0.35

S2P SR Small 32 30 1 × 10−4 1 × 10−6 0.25
S2P SR Medium 32 30 1 × 10−4 1 × 10−4 0.00
S2P SR Large 32 30 1 × 10−4 1 × 10−6 0.40

S2P MRSO 40 1 × 10−4 1 × 10−6 0.20
S2P MRMO 40 1 × 10−4 1 × 10−6 0.10



6 Early et al.

C.3. Model Architectures
The single-resolution S2P models all use a consistent architecture: a feature extractor (convolutional
and pooling layers), followed by a patch classifier (fully connected layers), and finally, a MIL mean
aggregator. The output of the classifier is a 𝑐-dimensional vector, which represents the prediction for
the 𝑐 classes (𝑐 = 7 for DeepGlobe and 𝑐 = 10 for FloodNet). Each patch is passed independently
through the feature extractor + patch classifier to produce a prediction for each patch, and then MIL
mean aggregation is used to produce a scene-level prediction. For the multi-resolution models, there
are three feature extractors, one for each input resolution, and a combined patch classifier that utilises
embeddings from each input resolution (see Section 3.3). The MRMO model also has independent
patch classifiers for each input resolution. Both datasets use the same model architectures for each
configuration. Below, in Tables A4 to A11, we give the exact architectures used.

Table A4. S2P Single-Resolution Small Architecture; patch size 28. For the Conv2d and MaxPool2d
layers, the numbers in the brackets are the kernel size, stride, and padding. 𝑏 is the bag size (number of
patches), and 𝑐 is the number of classes. The final three rows represent the aggregation and classification;
the other rows are for the feature extractor.

Layer Type Input Output

Conv1 Conv2d(4, 1, 0) + ReLu 𝑏 x 3 x 28 x 28 𝑏 x 36 x 25 x 25
MaxPool2d(2, 2, 0) 𝑏 x 36 x 25 x 25 𝑏 x 36 x 12 x 12

Conv2 Conv2d(3, 1, 0) + ReLu 𝑏 x 36 x 12 x 12 𝑏 x 48 x 10 x 10
MaxPool2d(2, 2, 0) 𝑏 x 48 x 10 x 10 𝑏 x 48 x 5 x 5
Flatten 𝑏 x 48 x 5 x 5 1 x 𝑏 x 1200

FC1 FC + ReLU + Dropout 1 x 𝑏 x 1200 1 x 𝑏 x 512
FC2 FC 1 x 𝑏 x 512 1 x 𝑏 x 128

FC3 FC + ReLU + Dropout 1 x 𝑏 x 128 1 x 𝑏 x 64
FC4 FC 1 x 𝑏 x 64 1 x 𝑏 x 𝑐

- MIL Mean Pooling 1 x 𝑏 x 𝑐 1 x 1 x 𝑐

Table A5. S2P Single-Resolution Medium Architecture; patch size 56.

Layer Type Input Output

Conv1 Conv2d(4, 1, 0) + ReLu 𝑏 x 3 x 56 x 56 𝑏 x 36 x 53 x 53
MaxPool2d(2, 2, 0) 𝑏 x 36 x 53 x 53 𝑏 x 36 x 26 x 26

Conv2 Conv2d(3, 1, 0) + ReLu 𝑏 x 36 x 26 x 26 𝑏 x 48 x 24 x 24
MaxPool2d(2, 2, 0) 𝑏 x 48 x 24 x 24 𝑏 x 48 x 12 x 12
Flatten 𝑏 x 48 x 12 x 12 1 x 𝑏 x 6912

FC1 FC + ReLU + Dropout 1 x 𝑏 x 6912 1 x 𝑏 x 512
FC2 FC 1 x 𝑏 x 512 1 x 𝑏 x 128

FC3 FC + ReLU + Dropout 1 x 𝑏 x 128 1 x 𝑏 x 64
FC4 FC 1 x 𝑏 x 64 1 x 𝑏 x 𝑐

- MIL Mean Pooling 1 x 𝑏 x 𝑐 1 x 1 x 𝑐



Appendix 7

Table A6. S2P Single-Resolution Large Architecture; patch size 76. Visualised in Figure 2.

Layer Type Input Output

Conv1 Conv2d(4, 1, 0) + ReLu 𝑏 x 3 x 76 x 76 𝑏 x 36 x 73 x 73
MaxPool2d(2, 2, 0) 𝑏 x 36 x 73 x 73 𝑏 x 36 x 36 x 36

Conv2 Conv2d(3, 1, 0) + ReLu 𝑏 x 36 x 36 x 36 𝑏 x 48 x 34 x 34
MaxPool2d(2, 2, 0) 𝑏 x 48 x 34 x 34 𝑏 x 48 x 17 x 17

Conv3 Conv2d(3, 1, 0) + ReLu 𝑏 x 48 x 17 x 17 𝑏 x 56 x 14 x 14
MaxPool2d(2, 2, 0) 𝑏 x 56 x 14 x 14 𝑏 x 56 x 7 x 7
Flatten 𝑏 x 56 x 7 x 7 1 x 𝑏 x 2744

FC1 FC + ReLU + Dropout 1 x 𝑏 x 2744 1 x 𝑏 x 512
FC2 FC 1 x 𝑏 x 512 1 x 𝑏 x 128

FC3 FC + ReLU + Dropout 1 x 𝑏 x 128 1 x 𝑏 x 64
FC4 FC 1 x 𝑏 x 64 1 x 𝑏 x 𝑐

- MIL Mean Pooling 1 x 𝑏 x 𝑐 1 x 1 x 𝑐

Table A7. S2P Single-Resolution Large Architecture; patch size 102.

Layer Type Input Output

Conv1 Conv2d(4, 1, 0) + ReLu 𝑏 x 3 x 102 x 102 𝑏 x 36 x 99 x 99
MaxPool2d(2, 2, 0) 𝑏 x 36 x 99 x 99 𝑏 x 36 x 49 x 49

Conv2 Conv2d(3, 1, 0) + ReLu 𝑏 x 36 x 49 x 49 𝑏 x 48 x 47 x 47
MaxPool2d(2, 2, 0) 𝑏 x 48 x 47 x 47 𝑏 x 48 x 23 x 23

Conv3 Conv2d(3, 1, 0) + ReLu 𝑏 x 48 x 23 x 23 𝑏 x 56 x 21 x 21
MaxPool2d(2, 2, 0) 𝑏 x 56 x 21 x 21 𝑏 x 56 x 10 x 10
Flatten 𝑏 x 56 x 10 x 10 1 x 𝑏 x 5600

FC1 FC + ReLU + Dropout 1 x 𝑏 x 5600 1 x 𝑏 x 512
FC2 FC 1 x 𝑏 x 512 1 x 𝑏 x 128

FC3 FC + ReLU + Dropout 1 x 𝑏 x 128 1 x 𝑏 x 64
FC4 FC 1 x 𝑏 x 64 1 x 𝑏 x 𝑐

- MIL Mean Pooling 1 x 𝑏 x 𝑐 1 x 1 x 𝑐

Table A8. S2P Multi-Resolution Single Out Architecture; patch size 76. This architecture utilises the
feature extractor from the single-resolution large architecture (Table A6; layers Conv1 to FC2) to create
embeddings at each input resolution. The embeddings are then concatenated (see Section 3.4), and finally
classified using the same classifier and MIL pooling approach as in the other models. Note, the patch
predictions of size 1 x 𝑏 x 𝑐 are still produced by this model but are omitted from the table for simplicity.
Visualised in Figure 3.

Layer Input Output

𝑠 = 0 Feature Extractor 𝑏 x 3 x 76 x 76 1 x 𝑏 x 128
𝑠 = 1 Feature Extractor 4𝑏 x 3 x 76 x 76 1 x 4𝑏 x 128
𝑠 = 2 Feature Extractor 16𝑏 x 3 x 76 x 76 1 x 16𝑏 x 128

Multi-resolution Concatenation 1 x {𝑏, 4𝑏, 16𝑏} x 128 1 x 16𝑏 x 384
𝑠 = 𝑚 Classifier 1 x 16𝑏 x 384 1 x 1 x 𝑐



8 Early et al.

Table A9. S2P Multi-Resolution Single Out Architecture; patch size 102. This architecture utilises the
feature extractor from the single-resolution large architecture (Table A7; layers Conv1 to FC2).

Layer Input Output

𝑠 = 0 Feature Extractor 𝑏 x 3 x 102 x 102 1 x 𝑏 x 128
𝑠 = 1 Feature Extractor 4𝑏 x 3 x 102 x 102 1 x 4𝑏 x 128
𝑠 = 2 Feature Extractor 16𝑏 x 3 x 102 x 102 1 x 16𝑏 x 128

Multi-resolution Concatenation 1 x {𝑏, 4𝑏, 16𝑏} x 128 1 x 16𝑏 x 384
𝑠 = 𝑚 Classifier 1 x 16𝑏 x 384 1 x 1 x 𝑐

Table A10. S2P Multi-Resolution Multi-Out Architecture; patch size 76. This architecture utilises the
feature extractor from the single-resolution large architecture (Table A6; layers Conv1 to FC2) to create
embeddings at each input resolution. The embeddings are then concatenated (see Section 3.4), and finally
classified using the same classifier and MIL pooling approach as in the other models. In addition, each
set of embeddings is also independently classified. Patch predictions are produced for each independent
resolution as well as the combined resolution, but are omitted from the table for simplicity. Visualised in
Figure 3.

Layer Input Output

𝑠 = 0 Feature Extractor 𝑏 x 3 x 76 x 76 1 x 𝑏 x 128
𝑠 = 1 Feature Extractor 4𝑏 x 3 x 76 x 76 1 x 4𝑏 x 128
𝑠 = 2 Feature Extractor 16𝑏 x 3 x 76 x 76 1 x 16𝑏 x 128

𝑠 = 0 Classifier 1 x 𝑏 x 128 1 x 1 x 𝑐

𝑠 = 1 Classifier 1 x 4𝑏 x 128 1 x 1 x 𝑐

𝑠 = 2 Classifier 1 x 16𝑏 x 128 1 x 1 x 𝑐

Multi-resolution Concatenation 1 x {𝑏, 4𝑏, 16𝑏} x 128 1 x 16𝑏 x 384
𝑠 = 𝑚 Classifier 1 x 16𝑏 x 384 1 x 1 x 𝑐

Table A11. S2P Multi-Resolution Multi-Out Architecture; patch size 102. This architecture utilises the
feature extractor from the single-resolution large architecture (Table A7; layers Conv1 to FC2).

Layer Input Output

𝑠 = 0 Feature Extractor 𝑏 x 3 x 102 x 102 1 x 𝑏 x 128
𝑠 = 1 Feature Extractor 4𝑏 x 3 x 102 x 102 1 x 4𝑏 x 128
𝑠 = 2 Feature Extractor 16𝑏 x 3 x 102 x 102 1 x 16𝑏 x 128

𝑠 = 0 Classifier 1 x 𝑏 x 128 1 x 1 x 𝑐

𝑠 = 1 Classifier 1 x 4𝑏 x 128 1 x 1 x 𝑐

𝑠 = 2 Classifier 1 x 16𝑏 x 128 1 x 1 x 𝑐

Multi-resolution Concatenation 1 x {𝑏, 4𝑏, 16𝑏} x 128 1 x 16𝑏 x 384
𝑠 = 𝑚 Classifier 1 x 16𝑏 x 384 1 x 1 x 𝑐



References 9

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hyper-

parameter optimization framework. Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. https : / / doi . org /10 .1145 /3292500 .
3330701

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization.
Advances in Neural Information Processing Systems, 24.

Biewald, L. (2020). Experiment tracking with Weights and Biases [Software available from
wandb.com]. https://www.wandb.com/

Rahnemoonfar, M., Chowdhury, T., Sarkar, A., Varshney, D., Yari, M., & Murphy, R. R. (2021). Flood-
Net: A high resolution aerial imagery dataset for post flood scene understanding. IEEE Access,
9, 89644–89654. https://doi.org/10.1109/access.2021.3090981

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://www.wandb.com/
https://doi.org/10.1109/access.2021.3090981

	Implementation Details
	Datasets
	DeepGlobe
	FloodNet

	Models and Training
	Model Configurations
	Training Procedure
	Model Architectures


