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A. Data considerations

In this section we provide details on the data sources, preprocessing, and normalisation.

A.1. Data sources

The daily-averaged temperature reanalysis data was obtained from ERA5 (Hersbach et al., 2020).
The land mask and elevation field was obtained from the BedMachine dataset (Morlighem, 2020).
Antarctic temperature locations from staffed and automatic weather stations were downloaded from
ftp.bas.ac.uk/src/.

A.2. Data preprocessing

The temperature anomaly data and land/elevation auxiliary data were regridded from lat/lon to a South-
ern Hemisphere Equal Area Scalable Earth 2 (EASE2) grid at 25 km resolution and cropping to a size
of 280 × 280. This centres the data on the South Pole.

Temperature anomalies were computed from the absolute temperature values by first computing the
daily-average climatology across 1950-2013 (i.e. averaging the absolute temperature over time for each
day of year, returning a 366 × 280 × 280 tensor). Then, for each day of year, the climatological average
was subtracted from the absolute temperature values, returning anomaly values.

A.3. Data normalisation

To aid the training process, we normalised the data before passing it to the ConvGNP and GP models.
The temperature data was normalised from Celsius to a mean of 0 and standard deviation of 1. The
elevation field was normalised from metres to values in [0, 1]. The land mask already took appropriate
normalised values in {0, 1}. The input coordinates were normalised from metres to take values in
[−1, 1].

B. The ConvGNP model

Here we provide details on the ConvGNP training procedure and architecture. A high-level schematic
of the ConvGNP forward-pass is shown in Figure 1. We refer the reader to Markou et al. 2022 for
further model details.

B.1. Generation of Dτ for the training, validation, and test datasets

Each daily-average training dataset Dτ was generated by first drawing the integer number of sim-
ulated temperature anomaly context points Nc ∼ Unif{5, 6, . . . 500} and target points Nt ∼
Unif{3000, 3001, . . . 4000}. Allowing for randomness in Nc encourages the model to learn to deal with
both data-sparse and data-rich scenarios. Using a fairly large number of target points ensures there is
sufficient signal for learning the covariance structure of the data while not incurring the computational
cost of a very large Nt. Next, given the randomly sampled Nc and Nt, the 280 × 280 ERA5 grid cells
were sampled uniformly at random to generate the ERA5 context and target locations, X (c)

τ and X (t)
τ .

For the training dates, the random seed used for generating Dτ is changed every epoch, allowing for
an infinitely growing training dataset. In contrast, for the validation and test dates, fixed random seeds
are used so that the Dτ are deterministically random. This ensures the validation and test metrics are
deterministic during and after training.
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For the test results given in Table E1, we loop over Nc ∈ {0, 25, 50, . . . 500} and fix Nt to a value of
2,000. For each setting of Nc, we generate test tasks Dτ by looping twice over each day in 2018-2019,
resulting in 1,458 test tasks per Nc.

B.2. Antarctic surface temperature anomaly ConvGNP training procedure

The model was trained on data from 1950-2013. An Adam optimiser was used with a learning rate of
8 × 10−5 and an NLL loss function. Gradients with respect to the loss were averaged over batches of
two datasets. Validation tasks from 2014-2017 were used for checkpointing the model weights based
on the mean NLL over the validation tasks. In total, the ConvGNP was trained for 170 epochs. Training
took 11.5 days on a Tesla V100 GPU with a simple implementation of the training pipeline. This could
be improved with better computational practices, such as using TensorFlow’s graph mode rather than
eager mode, which was not supported by the ConvGNP implementation at the time of the experiments.

B.3. ConvGNP architecture

For the ConvGNP model we use the same architecture as described in Markou et al. 2022, except for
a few modifications. The U-Net component of the encoder uses 5x5 convolutional kernels with the
following sequence of channel numbers (d.s. = 2x2 downsample layer, u.s. = 2x2 upsample layer):

128
d.s.−−→ 128

d.s.−−→ 128
d.s.−−→ 128

u.s.−−→ 128
u.s.−−→ 128

u.s.−−→ 128.

We use 128 basis functions for the covariance-parameterising neural network, g. Using 128 channels for
each layer in the U-Net means there are no dimensionality bottlenecks that could reduce the actual rank
of the output lowrank covariance matrix. We use bilinear resize operators for the upsampling layers to
fix checkerboard artifacts that we encountered when using standard zero-padding upsampling (Odena
et al., 2016). For the internal discretisation density of the model, we used 150 points-per-unit (i.e., a
1×1 square of input space contains 150×150 internal discretisation points). We chose 150 points-per-
unit to be close to the density of the ERA5 data in normalised coordinates, which is 140×140 in a 1×1
square of input space.5

The hyperparameter settings above construct a ConvGNP with 4.16 million learnable parameters. In
addition, the choices for the U-Net filter size and internal discretisation density results in a receptive
field of over 1500 km. In other words, context observations can influence target predictions in the
Gaussian predictive distribution up to roughly 750 km in either direction of the x1- or x2-dimensions.

B.4. ConvGNP input data

The ConvGNP receives two context sets as input. The first contains observations of the simulated
ERA5 daily-average temperature anomaly. The second contains a set of 6 gridded auxiliary and meta-
data variables. These are: elevation, land mask, cos(day of year), sin(day of year), x1, and x2. The
cos(day of year) and sin(day of year) inputs, where the day of year is normalised between 0 and 2π,
together define a circular variable that rotates once per year. This informs the model at what time of
year Dτ corresponds to, helping with learning seasonal variations in the data. The x1 and x2 gridded
fields inform the model where in input space the data corresponds to. The gridded auxiliary fields that
vary over input space are crucial for allowing the ConvGNP to model spatial non-stationarity. This
is because they break the U-Net’s translation equivariance property. Future work could explore using
learnable input auxiliary channels, as in Addison et al. 2022, which could lead to richer non-stationarity
at the cost of a greater spatial overfitting risk.

B.5. The SetConv encoder enables fusing data sources with multiple modalities and missing values

The SetConv encoder (Gordon et al., 2020), which fuses the context sets into a single gridded tensor,
enables the ConvGNP to model 1) missing data, 2) multiple data streams, and 3) both gridded and off-
grid data modalities. This is achieved, in part, through the use of a ‘density channel’ for each context

5Note, finer resolution context data would motivate the use of higher internal discretisation densities.
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Figure B1. Example output of the ConvGNP’s SetConv encoder. The SetConv was passed a context set
with ERA5 temperature anomaly at Antarctic station locations.

set (Gordon et al., 2020). The density channel measures the density of context points by placing a small
Gaussian basis function of unit amplitude at each observation location, such that the density channel
takes values close to zero away from observations. Output y-values of context points are encoded in a
similar fashion, but the amplitude of the Gaussian basis function is weighted by the value of y. These
intermediate functional representations are then discretised onto the model’s internal grid to yield the
density channels and (N -dimensional) ‘data channels’ in the gridded encoding. This set-up allows the
model to distinguish between the case where an observation is made with a y-value of 0 (data channel
is zero but density channel is non-zero), and the case where there is no observation available (both the
data and density channels are zero).

Figure B1 shows the channels of a gridded encoding, which are splayed out to highlight the two
input context sets provided to the ConvGNP in this study. The density channel for the first context set
pinpoints the scattered, point-based temperature anomaly observation locations. The second density
channel pertains to the gridded auxiliary context set and thus takes a constant value within the region of
data. While in this setting the second gridded context set contained auxiliary variables with no missing
data, the SetConv can represent missing data with gridded variables as well as non-gridded variables.
For example, missing satellite observations due to cloud cover would be captured by patterns of zeros
in the density channel. The density channel can thus be seen as a kind of missing data channel, where
missing data (e.g. due to sensor malfunction, clouds, or the absence of sensing equipment) is captured
with density values close to zero. Therefore, the SetConv encoder equips geospatial deep learning
models with an ability to handle missing data, which is an important problem in many application
areas (Mitra et al., 2023). However, the degree to which the model can learn to respond to missing data
appropriately depends on a training scheme with sufficient examples of missing data, as discussed in
Section 4.
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C. Gaussian Process benchmarks

Here we provide details on the GP baseline kernels and hyperparameter fitting procedure. All GPs were
implemented using the Python package stheno (https://github.com/wesselb/stheno) and optimised
using the Python package varz (https://github.com/wesselb/varz).

C.1. Gibbs GP

The Gibbs kernel (Gibbs, 1997) is a non-stationary generalisation of the EQ kernel. In the x ∈ R2 case,
the covariance function is given by:

kGibbs(x,x
′) = σ2

2∏
i=1

(
2li(x)li(x

′)

li(x)2 + li(x′)2

)1/2

exp

(
−

2∑
i=1

(xi − x′
i)

2

li(x)2 + li(x′)2

)
, (C.1)

where σ2 is the variance, and length scale functions l1(x) and l2(x) dictate the length scales in the x1-
and x2-directions. We parameterise the length scale functions li(x) as a weighted sum of M regularly
placed Gaussian basis functions,

li(x) =

M∑
m=1

θi,m exp

(
− (x− x

(µ)
m )T (x− x

(µ)
m )

2λ2

)
, (C.2)

where the θi,m are the constrained-positive weights of basis function m for input dimension i, and the
basis functions are placed with the x(µ)

m on a 100×100 grid spanning the input space. The basis function
length scale λ is kept fixed and equal to the spacing between basis functions. We note that the basis
function spacing controls how quickly the length scale functions can vary, and is a fixed (untrainable)
hyperparameter. Too many basis functions can lead to overfitting, while too few can lead to underfitting.
We tried different settings and chose a 100×100 grid as the most performant.

We train the parameters {θ1,θ2, σ}, along with the other hyperparameters, using gradient descent on
the negative log marginal likelihood (NLML) using an Adam optimiser with learning rate of 5× 10−3

and a batch size of 10. We used 1950-2013 as a training period, subsampling the dates by a factor of 3,
and sampling 500 random context locations for each of the training tasks Appendix B.1. Training was
halted after the NLL on validation data spanning 2014–2017 did not improve for 5 epochs.

Figure C1 shows the trained length scale functions l1(x) and l2(x), revealing interesting detail such
as very low correlation length scales perpendicular to the coastline.
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Figure C1. Learned Gibbs GP length scale functions, l1(x) and l2(x).
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C.2. Exponentiated quadratic and rational quadratic GPs

We also include more simplistic GP baselines using non-isotropic exponentiated quadratic (EQ) and
rational quadratic (RQ) kernels, which are both stationary prior covariance functions (unlike the Gibbs
kernel). The non-isotropic EQ kernel is:

kEQ(x,x
′) = σ2 exp

(
− (x1 − x′

1)
2

2ℓ21
− (x2 − x′

2)
2

2ℓ22

)
, (C.3)

where σ2 is the variance, and ℓ1 and ℓ2 are the length scales in each input dimension. The non-isotropic
RQ kernel is:

kRQ(x,x
′) = σ2

(
1 +

(x1 − x′
1)

2

2αℓ21
+

(x2 − x′
2)

2

2αℓ22

)−α

, (C.4)

where α is the shape parameter, controlling the smoothness of the kernel. The RQ kernel can be seen
as an infinite sum of EQ kernels with different length scales (Rasmussen, 2004).

We fit the EQ and RQ GP hyperparameters using the L-BFGS-B algorithm on a batch of 730 dates
sampled randomly from 1950-2013. The EQ and RQ GPs are thus exposed to fewer training tasks.
However, these models only have a few parameters each. We found that increasing the training set size
did not yield improved performance.
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D. Non-stationarity in the ConvGNP

The ConvGNP learns richer spatial covariance structure than the GP baselines (Figure D1). Further,
while our implementation of the ConvGNP only models correlations over 2D space (i.e. modelling
time independently), the model can leverage the day of year auxiliary inputs to learn seasonal non-
stationarity in the data (Figure D2). We note that the main changes in the ConvGNP’s covariance
from summer to winter are caused by changes in the magnitudes of the marginal variances (temper-
ature anomalies take more extreme values in winter). However, the spatial correlations also change
(Figure D3). For example, the Ross Ice Shelf site becomes less correlated with the Southern Ocean
(Figure D3a), the South Pole becomes more correlated with the surrounding region (Figure D3b), and
the East Antarctica site becomes more correlated with the Southern Ocean (Figure D3c).
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Figure D1. The ConvGNP learns spatially-varying covariance structure. Heatmaps showing the prior
covariance function, k(x1,x2), with x1 fixed at the white plus location and x2 varying over the grid.
Plots are shown for three different x1-locations (the Ross Ice Shelf, the South Pole, and East Antarctica)
and the three models (ConvGNP, Gibbs GP, and EQ GP). The ConvGNP’s day of year input was the
1st of June.
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Figure D2. The ConvGNP learns seasonally-varying covariance. Heatmaps showing the ConvGNP’s
prior covariance function k(x1,x2), as in Figure 3a-c, but for two times of the year: midsummer (Jan
22nd) and midwinter (June 21st). This shows that the ConvGNP has learned a prior covariance function
with non-stationarity over day of year.
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Figure D3. The ConvGNP learns seasonal changes in spatial correlations. Change in prior cor-
relation from the ConvGNP from the Austral Midsummer (Jan 22nd) to Midwinter (Jun 21st). The
correlation ρ was computed from the covariance using ρ = k(x1,x2)/

√
k(x1,x1)k(x2,x2), with x1

fixed at the black plus location and x2 varying over the grid. Plot shows summer minus winter.

E. Additional test set results

In this section we provide further details on the models’ test set performance.

E.1. Overall performance metrics

Table E1 shows the test set results averaged over Nc ∈ {0, 25, 50, . . . 500}. The ConvGNP outperforms
the three GP baselines with statistical significance across all three metrics (the normalised joint NLL,
the marginal NLL, and the RMSE).
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Table E1. Performance on test tasks from the period 2018–2019, using Nc ∈ {0, 25, 50, . . . 500}. Errors
indicate standard errors. For each metric, lower is better. Significantly best results in bold.

METRIC CONVGNP GIBBS GP RQ GP EQ GP

NORMALISED JOINT NLL −0.61±0.00 −0.42±0.00 −0.23±0.00 0.00±0.00

MARGINAL NLL −0.19±0.01 0.30±0.01 0.47±0.01 0.54±0.01

RMSE (◦C) 1.54±0.01 1.84±0.01 1.63±0.01 1.72±0.01

E.2. Marginal calibration and sharpness

The calibration and sharpness of probabilistic prediction systems are key performance indicators
(Gneiting et al., 2007). To assess these two quantities, we generated test tasks by subsampling the test
dates (2018–2019) by a factor of 30 to obtain 25 dates. We then followed the same procedure to gener-
ate test tasks as in Appendix B.1–looping over Nc ∈ {0, 25, 50, . . . 500} with Nt = 2000, resulting in
50,000 marginal predictions per Nc for each model.

The calibration of a model’s marginal distributions can be assessed using the probability integral
transform (PIT). The PIT is defined as the cumulative distribution function (CDF) of the model’s
marginal distribution evaluated at the true observed value of a particular target point. If a model has per-
fect calibration, the histogram of PIT values is uniform (Gneiting et al., 2007). When aggregating across
all test tasks (with varying Nc values), the ConvGNP’s marginal distributions are much better calibrated
than the GP baselines, coming closer to the ideal uniform distribution of PIT values (Figure E1).

The sharpness (i.e. degree of certainty) of probabilistic predictions must also be considered alongside
calibration; a key goal for probabilistic prediction systems is to maximise sharpness subject to good
calibration (Gneiting et al., 2007). We assess marginal distribution sharpness by plotting the standard
deviation of the univariate Gaussian marginals against Nc. The ConvGNP makes substantially more
confident predictions than the GP baselines across all values of Nc Figure E2. The GP baselines tend to
make uninformative predictions with large uncertainty, explaining why their PIT values cluster around
0.5 (Figure E1b–c).
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Figure E1. The ConvGNP produces the most well-calibrated marginal predictions. Probability inte-
gral transform (PIT) histograms evaluated on 25 dates from the test years (2018–2019). The PIT is
defined as the cumulative distribution function (CDF) of the model’s marginal distribution evaluated at
the true y-values. A black dashed line shows the ideal uniform distribution (corresponding to perfect
calibration).
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Figure E2. The ConvGNP produces the sharpest marginal predictions. Mean standard deviation of
the models’ marginal Gaussian distributions versus number of context points, Nc. 50,000 standard
deviation values were used per Nc, derived from 25 dates in the test years (2018–2019). Error bars are
standard errors.

F. Sensor placement acquisition functions

Here we expand upon and mathematically define each acquisition function used for sensor placement.

F.1. Model-based uncertainty reduction acquisition functions

JointMI: Expected reduction in joint entropy over targets after appending the query sensor to the
context set C.

α(x(s)
i , τ) = H(y(t)

τ |Cτ )− E
π(y(s)

τ,i)

[
H(y(t)

τ |Cτ ,x
(s)
i , y(s)

τ,i)

]
(F.1)

= H(y(t)
τ |Cτ )−

∫
π(y(s)

τ,i;Cτ )H(y(t)
τ |Cτ ,x

(s)
i , y(s)

τ,i) dy
(s)
τ,i (F.2)

(a)
≈ H(y(t)

τ |Cτ )−H(y(t)
τ |Cτ ,x

(s)
i , ȳ(s)

τ,i) (F.3)
(b)
≈ cτ −H(y(t)

τ |Cτ ,x
(s)
i , ȳ(s)

τ,i), (F.4)

≈ cτ − 1

2
log((2πe)2|K|), (F.5)

≈ cτ − 1

2
log |K|, (F.6)

where cτ is a constant and K is the model’s covariance matrix at the target locations after conditioning
on the imputed query sensor observation, (x(s)

i , ȳ(s)
τ,i). In (a) we approximate the intractable expectation

integral over the entropy term H(y(t)
τ |Cτ ,x

(s)
i , y(s)

τ,i) with a simple substitution of the model’s mean
prediction ȳ(s)

τ,i at query location x(s)
i . In (b) we use the fact that H(y(t)

τ |Cτ ) depends only on τ and not
x(s)
i . Thus, this placement criterion is equivalent to minimising the entropy over y(t)

τ |Cτ ,x
(s)
i , ȳ(s)

τ,i by
minimising the determinant of the covariance matrix K.

This placement criterion may be hindered by approximating the expectation over the query obser-
vation y(s)

τ,i by imputing with the model’s mean prediction ȳ(s)
τ,i in Equation F.3. Instead, a better scheme
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would draw samples from the model’s marginal distribution over y(s)
τ,i to estimate the expectation using

Monte Carlo sampling, which may better predict the actual reduction in entropy upon conditioning on
the true observation. However, Monte Carlo sampling linearly increases the cost of evaluating the acqui-
sition function. Future work should quantify the performance boost from switching to this sampling
procedure.
MarginalMI: Expected reduction in marginal entropy over targets upon conditioning on the query
sensor. Equivalent to that of Equation F.6, but setting the off-diagonal covariances in the model’s out-
put Gaussian distribution to zero when evaluating the entropy term H(y(t)

τ |Cτ ,x
(s)
i , y(s)

τ,i). Using the
resulting independence of the individual marginal distributions after step (b) in Equation A.5 leads to:

α(x(s)
i , τ) ≈ cτ −

Nt∑
j=1

H(y(t)
j,τ |Cτ ,x

(s)
i , ȳ(s)

τ,i), (F.7)

≈ cτ −
Nt∑
j=1

1

2
log(2πeσ2

τ,j), (F.8)

≈ cτ −
Nt∑
j=1

log(σ2
τ,j), (F.9)

where σ2
τ,j is the variance of the model’s marginal Gaussian distribution of target point j at time τ

after conditioning on the imputed query sensor observation, (x(s)
i , ȳ(s)

τ,i). In other words, the acquisition
function is the negative sum of the marginal Gaussian entropies at each target location after adding the
query sensor to the context set. After this acquisition function is averaged over time steps in Equation 2,
the placement criterion amounts to minimising the mean log-variance over time and target locations.
DeltaVar: Expected reduction in mean marginal variance over targets upon conditioning on the query
sensor. Following the same expectation approximation as JointMI and MarginalMI we arrive at:

α(x(s)
i , τ) ≈ cτ − 1

Nt

Nt∑
j=1

σ2
τ,j . (F.10)

The main difference with the MarginalMI acquisition function is that DeltaVar minimises the
absolute marginal variances rather than the log marginal variances.

F.1.1. Model-based uncertainty reduction acquisition functions from the sensor placement experiment

Figure F1 plots heatmaps of the three model-based acquisition functions (JointMI, MarginalMI,
and DeltaVar) at the first greedy iteration for the ConvGNP, Gibbs GP, and EQ GP. Also shown are
the K = 10 proposed sensor placements with the criterion of maximising these acquisition functions.



Environmental Data Science 11

Co
nv

GN
P

a

JointMI

Placements x * Context x(c)

b

MarginalMI

c

DeltaVar
Gi

bb
s G

P

d e f

EQ
 G

P

g h i

Figure F1. Acquisition functions and sensor placements for all three models. Maps of acquisition
function values α(x(s)

i ) for the initial k = 1 greedy iteration. The initial context set X(c) is derived from
real Antarctic station locations (indicated by black crosses). Running the sensor placement algorithm
for K = 10 sensor placements results in the proposed sensor placements X∗ (indicated by pluses).

F.2. Baseline acquisition functions

ContextDist: Euclidean distance from the closest context point,

α(x(s)
i , τ) = min{||x(s)

i − x(c)
τ,1||2, ..., ||x

(s)
i − x(c)

τ,Nc
||2}, (F.11)

Random: Uniform at random in [0, 1],

α(x(s)
i , τ) = uτ,i where uτ,i ∼ Unif(0, 1). (F.12)

Maximising this random acquisition function results in placements that are sampled uniformly from the
search points X (s).

F.3. Oracle acquisition functions

Let a performance metric γ take in the probability distribution over targets output by prediction map π
and the true target values y(t)

τ . Considering only the 1D context set corresponding to observations of the
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target variable for notational simplicity, the oracle acquisition functions are:

αoracle(x
(s)
i , τ) = γ(π(y(t)

τ ;X (c)
τ ,y(c)

τ ,X (t)
τ ),y(t)

τ )− γ(π(y(t)
τ ; {X (c)

τ ,x(s)
i }, {y(c)

τ , y(s)
τ,i},X

(t)
τ ),y(t)

τ ),

(F.13)

= cτ − γ(π(y(t)
τ ; {X (c)

τ ,x(s)
i }, {y(c)

τ , y(s)
τ,i},X

(t)
τ ),y(t)

τ ), (F.14)

which is the decrease in performance metric (assuming lower is better) induced by concatenating the
true observation (x(s)

i , y(s)
τ,i) to the context set. αoracle(x

(s)
i , τ) is then averaged over τ as in Equation (2)

to obtain αoracle(x
(s)
i ).

F.4. Comment on the dependence on context observations in the acquisition functions

The posterior covariance function of a vanilla GP depends only on the input locations X (c) of the con-
text set, not the observed values y(c). Consequently, the JointMI, MarginalMI, and DeltaVar
placement methods will depend only on the input locations. This behaviour is noted by MacKay
1992 for a Bayesian linear regression model with a Gaussian prior, which is a special case of a GP
(Rasmussen, 2004). This could be seen as an inflexible limitation of GPs; they cannot augment their
posterior correlation structure based on the y-values observed at the x-locations. For example, if an
extreme y-value is observed in the context set, a GP posterior cannot become more uncertain, which
may be a desirable characteristic. By construction, the ConvGNP is a non-linear map from context sets
to GPs, which means that the whole GP, including the covariance, can depend on every aspect of the
context set, including the y-values. The ConvGNP’s y-dependence necessitates the expectation integral
over the unobserved query y-value in Equation F.1, as well as the averaging over multiple time steps
for the uncertainty-based acquisition functions in Equation 2. Neither of these steps are necessary for
the GP baselines since their covariance is independent of the y-values.
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G. Oracle sensor placement results

Here we provide more detailed plots from the oracle acquisition function experiment described
in Section 3.2.1. Heatmaps of the temporally-averaged α(x(s)

i ) acquisition functions for the non-
oracle and oracle acquisition functions for the ConvGNP, Gibbs GP, and EQ GP are shown in
Figure G2, Figure G3, and Figure G4, respectively. Figure G5, Figure G6, and Figure G7 show scatter
plots of non-oracle acquisition functions against OracleJointNLL, OracleMarginalNLL, and
OracleRMSE, respectively.

We repeat the Pearson correlation analysis of Figure 6 but using a correlation coefficient specifically
suited to rankings, the Kendall rank correlation coefficient:

κ =
1

Npairs

∑
i<j

sgn(αi − αj)sgn(αoracle,i − αoracle,j), (G.1)

where Npairs = S(S − 1)/2 is the total number of pairs, αi = α(x
(s)
i ), and sgn is the sign function

which is +1 if the argument is positive and −1 if the argument is negative.. This loops over all pairs of
(αi, αoracle,i) and (αj , αoracle,j), checking whether the α values are ranked in the same order as the αoracle
values. If so, the pair is ‘concordant’ and contributes a +1 to the sum in Equation (G.1). Otherwise, it is
‘discordant’ and contributes a −1. Defining the total number of concordant pairs as Ncon, Equation G.1
can be rewritten as:

κ =
1

Npairs

(
Ncon − (Npairs −Ncon)

)
, (G.2)

= 2× Ncon

Npairs
− 1, (G.3)

which we see as the fraction of pairs that are concordant, Ncon/Npairs, normalised to lie in (−1, 1).
Identical rankings yield κ = 1, exactly opposite rankings yield κ = −1, and if the two

rankings are independent the expected value of κ is zero. We computed κ in Python using the
scipy.stats.kendalltau function. The results are shown in Figure G1.
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Figure G1. The ConvGNP can reliably rank the value of new observations. Kendall rank correlation
coefficient κ between model-based and oracle acquisition functions. Error bars indicate the 95% per-
centile interval over 5000 bootstrapped correlation values by resampling the 1365 pairs of points with
replacement, measuring how spatially consistent κ is across space.
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H. Sensor placement toy experiment details

Here we provide more details on the sensor placement toy experiment.

H.1. Experiment design choices

To emulate a non-uniform, real-world sensor network to be optimised, we initialise X (c)
τ at the locations

of real Antarctic temperature station observations at τ = 2009/02/15, and interpolate the gridded
ERA5 temperature anomaly at X (c)

τ to compute y(c)
τ .

The JointMI, MarginalMI, and DeltaVar criteria for the GP models and the ContextDist
criterion only depend on the context set locations, X (c)

τ , not the observed values y(t)
τ (Appendix F.4).

Since we have a non-varying X (c)
τ in this toy experiment, the model-based acquisition functions do not

depend on time τ for the GPs, and so the sensor placements for these criteria can be run using a single
task. In contrast, each oracle acquisition function and the ConvGNP’s model-based criteria do depend
on the observed values y(t)

τ . For these acquisition functions we compute the average α(x(s)
i ) values in

Equation 2 using dates in 2014–2017, subsampled by a factor of 14, to yield J = 105 sensor placement
search tasks. A regular spatial grid is used for the search space X (s), with one query location every
100 km. The x(s)

i were masked out over the ocean to focus on land stations. The target locations X (t)
τ

were defined on the same grid with points over ocean masked out to focus on predicting land surface
temperature. These choices result in a search size and target set size of S = Nt = 1, 365. Note, limiting
the target set size to Nt = 1, 365 was due to the cubic computational cost of the GP baselines–the
ConvGNP could use a much denser target grid due to its linear scaling with number of target points.
For the ConvGNP, sequentially computing one of the acquisition functions over these J = 105 dates
and S = 1, 365 search points (totalling 143, 325 forward passes) took roughly 3 hours on a 32 GB
NVIDIA V100 GPU using TensorFlow’s eager mode.

The proposed placements X∗ were assessed by analysing model performance over 243 uniformly
spaced dates in 2018–2019 (sampling every 3rd day). The sensor placement search period aligns with
the model validation period, while the sensor placement analysis period aligns with the model test
period.

H.2. Full sensor placement results

Figure F1 plots the K = 10 proposed sensor placements for each model and placement criterion.
The full breakdown of the sensor placement results for each model, metric, and criterion is shown in
Figure H1, using independent y-axes to highlight differences in placement criterion performance for
a given model. However, this visually obscures two other differences: initial model performance and
the scale of improvement with added stations. Plotting the results with the y-axes shared across models
highlights these differences (Figure H2).
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Figure H1. Sensor placement results. Performance metrics on the 2018-2019 sensor placement ERA5
test data versus the number of stations revealed to the models. Results are averaged over tasks with
targets defined on a regular grid over Antarctica. For the Random placement criterion, the confidence
interval shows the standard error based on 5 random placements. a-c, joint normalised negative log-
likelihood (NLL). d-f, mean marginal NLL. g-i, root mean squared error (RMSE).
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Figure H2. Sensor placement results with shared y-axes. Performance metrics on the 2018-2019 sen-
sor placement ERA5 test data versus the number of stations revealed to the models. Placements are
revealed in the order of placement for each criterion. Results are averaged over tasks. For the Random
placement criterion, the confidence interval shows the standard error based on 5 random placements.
a-c, joint normalised negative log-likelihood (NLL). d-f, mean marginal NLL. g-i, root mean squared
error (RMSE).
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I. Comparison of the ConvGNP with deep kernel learning

The ConvGNP is perhaps most comparable to deep kernel learning (DKL; Wilson et al. 2015). In DKL,
neural networks parameterise a non-stationary covariance function and are trained to optimise a GP
prior over the context data. Then, as with vanilla GPs, standard Bayes’ rule conditioning is used with
that prior to output posterior GP predictives. In contrast, the ConvGNP learns to directly output the GP
predictive during training. This allows for outputting GPs that are not in the class of conditioned GP
priors, which is much more flexible and aids modelling complex environmental data. However, since
robust conditioning is not built in to the ConvGNP, it must learn appropriate conditioning mechanics
from the data. This necessitates a novel training scheme where the model is provided with a range of
context scenarios, expanding the training design space and likely making the ConvGNP more data-
hungry than DKL.

The ConvGNP scales linearly with the number of context points due to the SetConv encoder and
neural network architecture used to output the GP predictive. Predictions with the ConvGNP’s GP
predictive are made scalable by directly learning to output a low-rank approximation of the covariance,
reducing the computational cost from cubic to linear. In contrast, DKL methods are by default cubic
in the number of context and target points and must use approximate inference on the exact GP to
make predictions scalable (Wilson et al., 2015), resulting in an unknown penalty to prediction quality
(Wang et al., 2019). It is not obvious which is the best approach, although the out-of-the-box nature
of the ConvGNP’s scalability is convenient from a practitioner’s point of view. Computational cost at
inference time is important in the context of environmental applications because observations and target
predictions locations may lie on dense grids.

DKL can also be deployed in a meta-learning fashion (Patacchiola et al., 2020), which mitigates
the risk of overfitting that comes with heavily-parameterised covariance functions (Ober et al., 2021).
A direct comparison between the meta-learning abilities of the ConvGNP and DKL has not been
performed and would be a valuable addition to the literature.
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