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A. Appendix. Datasets

We perform the experiments mentioned in Section 3.3 on microscopy images available from
BBBC021v1®, a dataset from the Broad Bioimage Benchmark Collection'®. This dataset is com-
posed of breast cancer cells treated for 24 hours with 113 small molecules at eight concentrations, with
the top concentration being different for many of the compounds through a selection from the litera-
ture. Throughout the quality control process, images containing artifacts or with out of focus cells were
deleted, and the final dataset totalled into 13,200 fields of view, imaged in three channels, each field
composed of thousands of cells. In the cells making up the dataset, twelve different primary morpho-
logical reactions from the compound-concentrations were identified, with only six identified visually,
while the remainder were defined based on the literature, as the differences between some morphologi-
cal reactions were very subtle. We perform a simple cell detection in each field of view, in order to crop
cells centered in (196x196px) images. We then filter the images by compound-concentration, and keep
images treated by Nocodazole at its 4 highest concentrations. These compound-concentrations result
in 4 morphological cell reactions, for which we don’t have individual labels for each cell image. We
sample the same number of images from views of untreated cells, totalling into a final data subset of
3500 images, which we split into 70% training data, 10% validation data and 20% test data. We repeat
the same process for the compounds Taxol and Cytochalasin B, each containing 4 and 2 morphological
reactions respectively, to result in data subsets of sizes 1900 and 2300 images, respectively.

B. Appendix. Model training

B.1. Study of inter-class bias in self supervised classification

For results in Section 3.1 and Table 2, we run several trainings of 12 SSRL methods (!-3#6-810.11,15,19,20)
on Cifar10 and Cifar100('? with a Resnet18 architecture, with a pretraining of 1000 epochs without
labels. We use the same transformations with similar parameters on all approaches, namely a 0.4 max-
imal brightness intensity, 0.4 maximum contrast intensity, 0.2 maximum saturation intensity, all with a
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fixed probability of 80%. With a maximal hue intensity of 0.5, we vary the hue probability of application
between 0% and 100% by uniformly sampling 20 probability values in this range. We use stochastic
gradient descent as optimization strategy for all approaches, and through a line search hyperparame-
ter optimization, we use a batch size of 512 for all approaches except Dino® and Vicreg(") for which
we use a batch size of 256. Following the hyperparameters used in the literature of each approach,
we use a projector with a 256 output dimension for most methods, except for Barlow Twins'?, Sim-
siam®, Vicreg(" and Vibcreg!?, for which we use a projector with a 2048 output dimension, and
DeepclusterV2 and Swav® for which we use a projector with a 128 output dimension. For some
momentum based methods (Byol(”), MocoV2+ D, Nbeol(”)) and Ressl(zo)), we use a base Tau
momentum of 0.99 and use a base Tau momentum of 0.9995 for Dino®. For Mocov2+ (), NNCLR (/9
and SimCLR ), we use a temperature of 0.2.

We train the Barlow Twins('”) based model with a learning rate of 0.3 and a weight decay of 1074,
and Byol ') as well as NNByol'?) with a learning rate of 1.0 and a weight decay of 107>. We train
DeepclusterV2®) with a learning rate of 0.6, 11 warmup epochs, a weight decay of 107, and 3000
prototypes. We train Dino with a learning rate of 0.3, a weight decay of 10™%, and 4096 prototypes,
while we train MocoV2+(? with a learning rate of 0.3, a weight decay of 10™* and a queue size of
32768. For NNclr('?), we use a learning rate of 0.4, a weight decay of 107>, and a queue size of
65536. We train ReSSL?”) with a learning rate of 0.05, and a weight decay of 10~#, while we train
SimCLR ® with a learning rate of 0.4, and a weight decay of 10>, For Simsiam*), we use a learning
rate of 0.5, and a weight decay of 107>, and use for Swav® a learning rate of 0.6, a weight decay of
1079, a queue size of 3840, and 3000 prototypes. We use for Vicreg" and Vibcreg('?) a learning rate
of 0.3, a weight decay of 10~4, an invariance loss coefficient of 25, and a variance loss coefficient of
25. We use a covariance loss coefficient of 1.0 for Vicreg!" and a covariance loss coefficient of 200
for Vibcreg!'?). We perform linear evaluation after each pretraining for all methods, through freezing
the weights of the encoder and training a classifier for 100 epochs. We use 5 different global seeds (5,
6, 7, 8, 9) for each hue intensity value, and compute the mean topl accuracy resulting from the linear
evaluation, using each of the 5 different experiences. Each training run was made on a single V100
GPU. On ImageNet100”, we train a Resnet18 encoder with BYOL (", MoCo V2, VICReg" and
SimCLR ), using a batch size of 128 for 400 epochs. We use a learning rate of 0.3 and a weight decay
of 10™* for MoCo V2 and VICReg, and a weight decay of 107> and learning rates of 0.4 and 0.45 for
SimCLR and BYOL respectively. We repeat each experience three times with three global seeds (5,6
and 7) and compute its mean and standard deviation. We repeat the same experiment with the same
parameters on ResNet50 and ConvNeXt-Tiny.

For the results in Figures 1 and 2, we reuse the same training hyperparameters for Barlow Twins ('),
Moco V2, BYOL!D, SimCLR® and Vicreg!", and uniformly sample 10 values in the range of
[0;0.5] for the maximal hue intensity, with a fixed 80% probability. We run different experiments for
the 5 global seeds for each hue intensity, and compute their mean and standard deviation. We perform
the same process while fixing maximal hue intensity to 0.1, and varying its probability by uniformly
sampling 20 probability values in the range [0;100]. We repeat a similar process for the random crop-
ping and horizontal flips, by sampling 8 values uniformly in the range of [20;100] of the size ratio
to keep of the image, and sampling 20 values uniformly in the range of [0;100] for the probability of
application of horizontal flips.

B.2. MNIST Clustering

For the displayed clustering results in Figure 4, we use a VGG117 architecture, with a projector of
128 output dimension, trained using a MocoV2+ (" loss function on Mnist'*) for 250 epochs. We use
an Adam optimizer, a queue size of 1024, and a batch size of 32. We set temperature at 0.07, learning
rate at 0.001, and weight decay at 0.0001. We run two trainings with two separate sets of compositions
of transformations, each run on a single V100 GPU, and perform a Kmeans (K=10) clustering on the
resulting representations of the test set. For the digit clustering, we use a composition of transformations
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composed of a padding of 10% to 40% of the image size, color inversion, rotation with a maximal angle
of 25°, and random crop with a scale in the range of [0.5;0.9] of the image, and then a resizing of the
image to 32x32 pixels. For the handwriting flow clustering, we use a composition of transformations
composed of horizontal & vertical flips with an application probability of 50% each, rotations with
a maximal angle of 180°, random crop with a scale in the range of [0.9;1.1], and random erasing of
patches of the image, with a scale in the range of [0.02;0.3] of the image and a probability of 50%.
We perform linear evaluation by training classifiers on the frozen representations of the trained models,
in order to predict the digit class, and evaluate using the topl accuracy score. For results on Table 4
and Figure 4, we use ResNet18 and ConvNeXt-Tiny architectures with BYOL and MoCov2 ass SSRL
approaches. We use for BYOL a learning rate of 0.01 and a weight decay of 107>, with a projector with
a 256 output dimension. We then use the same parameters and augmentations as previous trainings.

B.3. Clustering evaluation with the AMI Score

We use the adjusted mutual information (AMI)('® in Sections 3.3 and 3.4 to evaluate clustering quality,
and to measure the similarity between two clusterings. It is a value that ranges from 0 to 1, where
a higher value indicates a higher degree of similarity between the two clusterings. This score holds
an advantage over clustering accuracy'? in one main aspect, being that the clustering accuracy only
measures how well the clusters match the labels of the true clusters, and does not take into account the
structure within the clusters, such as heterogeneity of some of the clusters. This is unlike the AMI score,
which takes into account both the structure between the clusters and the structure within the clusters,
by measuring the "agreement” between the groupings of a predicted cluster and the groupings of the
true cluster. If both clusterings agree on most of the groupings, then the AMI score will be high, and
inversely low if they do not.
The AMI score can be computed with the formula :

MI(X,Y)-EMI(X,Y))
max(H(X),H(Y)) - EMI(X,Y))

Where MI(X,Y) is the mutual information between the two clusterings, E(MI(X,Y)) is the
expected mutual information between the two clusterings, H(X) is the entropy of the clustering X,
and H(Y) is the entropy of the clustering Y. Mutual information (MI) is a measure of the amount of
information that one variable contains about another variable. In the context of AMI, the two variables
are the clusterings X and Y. MI(X,Y) is a measure of to what extent the two clusterings are related to
each other. Entropy is a measure of the amount of uncertainty in a random variable. In the context of
AMLI, the entropy of a clustering (H(X) or H(Y)) is a measure of how much uncertainty exists within
the clustering. Expected mutual information (E(M1(X,Y))) is the average mutual information between
the two clusterings, assuming that the two clusterings are independent.

The adjusted mutual information (AMI) is calculated by first subtracting the expected mutual infor-
mation (E(MI(X,Y))) from the actual mutual information (MI(X,Y)). This results in a measure
of of the extent of the relationship between the two clusterings beyond what would be expected
by chance. This value is then divided by the difference between the maximum possible entropy
(max(H(X), H(Y))) and the expected mutual information (E(MI(X,Y))). Normalization of the result
is achieved through this process, ensuring that it is always between 0 and 1. Figure | shows the results
of a clustering achieved on Nocodazole vs untreated cells, with the AMI score computed after ran-
domisation of the ground truth labels, in contrast to clustering results achieved without randomizing
the labels.

AMI(X,Y) =

B.4. Cellular Clustering

For the results in Sections 3.3 and 3.4, we use a VGG13('7) architecture, trained using a MocoV2+ @
loss function on the data subsets of the microscopy images available from BBBC021v1®, presented in
Section A, with a batch size of 128, for 400 epoch. We use an Adam optimizer, a queue size of 1024,
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Figure 1. We perform a Kmeans clustering (K=2) on the Nocodazole and untreated images using
Resnet models of various sizes, and evaluate them using the AMI score'’®) on a similar number of
randomly sampled images of each concentration of Nocodazole and a similar number of untreated cell
images. We observe that Resnet101 outperforms the other Resnet model sizes. We also perform an
experiment to better interpret the AMI scores achieved, by randomizing the labels and performing a
clustering with Resnet101, and reporting the AMI score of the clustering compared to the randomized
labels.

and set temperature at 0.07, learning rate at 0.001, and weight decay at 0.0001. Each training is made
on a single V100 GPU. We perform a Kmeans (K=2) on the resulting representations of the test set
of the data subsets of Nocodazole, Cytochalasin B and Taxol, and evaluate the quality of the achieved
clusters compared to the ground truth using the AMI score '®.

Table 1. Comparison of classes with significant negative correlations under variations of Hue
Intensity for Linear Evaluation and Fine-tuning phases. The table displays the number of classes with
statistically significant negative correlations (p-value < 0.05) for both Linear Evaluation and
Fine-tuning under different SSL methodologies, SimCLR, BYOL, and VicReg, all with ResNetI8 as the
backbone. The last row represents the percentage of shared classes between Linear Evaluation and
Fine-tuning that exhibited the same behavior trend (ascending, descending, or random,).

Methodology Simclr | BYOL | VicReg
Resnet18 + Linear Evaluation 97 80 92
Resnet18 + Finetuning 96 100 92
Class Behavior match 45% 52% 53%

In Table 3, we achieve the first AMI result through usage of an affine transformation composed of a
rotation with an angle of 20°, a translation of 0.1 and a shear with a 10° angle, coupled with color jitter
with a brightness, contrast and saturation intensity of 0.4, and a hue intensity of 0.125, with a 100%
probability, as well as random cropping of the image with a scale in the range of [0.9;1.1] and resiz-
ing to original image size of 196x196 pixel. For the second row result, we use an affine transformation
composed of a rotation with an angle of 20°, a translation of 0.1 and a shear with a 10° angle, coupled
with color jitter with a brightness, contrast and saturation intensity of 0.4, and a hue intensity of 0.125,
with a 100% probability, and a random rotation with a maximal angle of 360°. The results achieved
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Figure 2. We perform a Kmeans clustering (K=2) on the Nocodazole and untreated images using
VGG models of various sizes, and evaluate them using the AMI score''®) on a similar number of
randomly sampled images of each concentration of Nocodazole and a similar number of untreated cell
images. We observe that VGG16 outperforms the other VGG model sizes.

through a Resnet101, are achieved by performing a Kmeans (K=2) on the representations achieved on
the compound subsets using the Resnet101, and evaluating the cluster assignment quality compared
to ground truth using the AMI score '), The choice of Resnet101 over other Resnet sizes is motivated
through testing the performance of different sizes of Resnets on the different concentrations of Nocado-
zole/untreated cells, on which Resnet101 consistently shows the highest performance on the 4 highest
concentrations, as shown in Figure 1.

Table 2. Mean and standard deviation of topl accuracy from Resnetl8 using 12 self-supervised
approaches on Cifarl0, including VicReg, DeepCluster v2, SWAV, and others, are shown. The
experiment uniformly samples 20 hue transformation probabilities with fixed intensity (0.5), keeping
other parameters constant. Results show consistent accuracy across methods with minimal standard
deviation.

Barlow Twins | Byol | Deep Cluster v2 | MoCo V2+ | nnByol | nnclr | Ressl | SInCLR | SimSiam | SwaV | Vibcreg | Vicreg
‘ Mean 89.59 92.09 86.9 92.37 91.3 89.76 | 90.21 90.16 89.6 86.96 82.47 89.82
‘ Std 0.73 0.37 1.9 0.44 0.57 0.74 | 0.85 0.87 1.01 1.2 0.89 0.94

For the clusterings in Figure 6, we train the same architecture with the same hyperparameters on dif-
ferent compositions of transformations, and perform a Kmeans (K=4) on the resulting representations
of the test set. For all the clusters, the images displayed are the images closest to the centroid of each
cluster using an euclidean distance. The clustering in Figure 6 left is achieved by using a composition
of color jitter with a brightness, contrast and saturation intensity of 0.4, and a hue intensity of 0.125,
with a 100% probability, and horizontal and vertical flips, each with 50% probability of application, as
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well as random rotations with a maximal angle of 360°, an affine transformation composed of a rota-
tion with an angle of 20°, a translation of 0.1 and a shear with a 10° angle, and a random crop with a
scale sampled in the range [0.9;1.1], followed by a resizing of the image to the original size. The clus-
tering in Figure 6 right is achieved by color jitter with a brightness, contrast and saturation intensity
of 0.4, and a hue intensity of 0.125, with a 100% probability, horizontal and vertical flips, each with
50% probability of application, random rotations with a maximal angle of 360°, and a center crop with
a scale of 0.5, followed by a resizing of the image to the original size. For the clustering in Figure ??,
we trained the model with a sum of the losses (and corresponding transformations) of the models used
in Figure 6. Through a gridsearch hyperparameter optimization, with the goal of optimizing the AMI
score of a Kmeans clustering (K=2), we attributed a coefficient of 0.4 to the loss of the model used in
Figure 6 left, and a coefficient of 1.0 to the loss of the model used in Figure 6 right.

C. Additional results
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Figure 3. Resnet architectures’ inter-class accuracy on Cifarl0, Cifar100, and Imagenetl00, trained
with various SSRL methods, varying image transformation parameters. Each dot represents the mean
and error bar the standard deviation from five runs with different seeds. Results show consistent
overall accuracy but reveal transformations’ subtle, significant effects on specific class performance.
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Table 3. Inter-class Bias in Shared Classes Across SSL Methods. The table displays shared class
biases in Barlow Twins, BYOL, MoCo v2, SimCLR, and VICReg, trained with a ResNetI§ on
Cifarl00, focusing on Hue Intensity, Color Jitter Probability, and Crop Size. Results underline the
impact of transformations on shared biases, confirming class-level biases vary with transformations

and SSL methods.
Number of shared classes with inter-class bias | Hue Intensity | Color Jitter Probability | Crop size
In all 5 SSL approaches 51 0 0
In a minimum of 3 SSL approaches 97 3 4
In a minimum of 2 SSL approaches 99 27 8

Table 4. Linear evaluation results for VGGI1, ResNetl8, ConvNeXt-Tiny trained with MoCov2 and
BYOL SSRL methods on MNIST, using rotations, crops, flips, and random erasing. The outcomes show
consistent patterns across SSRL approaches and architectures, indicating robustness.

METHOD VGGI11 RESNETI8 CONVNEXT-TINY

BYOL 61.3 62.5 51.6
MoCov2 62.1 63.8 58.7
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VGG11 Backbone, trained with MoCov2 ResNet Backbone trained with MoCov2 ConvNeXt-Tiny Backbone trained with MoCov2
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Figure 4. Clustering results of MNIST dataset using various backbones trained with BYOL and
MoCov2 as SSRL approaches, using specific image transformations that preserve the handwriting
style and line thickness.
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