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SUPPLEMENTARY NOTE S1: CLASSICAL DERIVATION OF
GOLDMAN-HODGKIN-KATZ EQUATION

Here, for reader benefit, we report the standard derivation of the Goldman-Hodgkin-Katz (GHK)
equation [S1, S2]. We suggest the interested readers to explore also the interesting discussion in [S3].

1D model of flux through a membrane. The membrane is modelled as a homogeneous slab of
thickness L and the problem is 1D, i.e. all the quantities depends only on the coordinate normal to
the membrane, z in our reference system, see Fig. (S1). The problem is assumed to be stationary.
The z-component of the flux of the i-th ionic species is the sum of a diffusion and an electrophoretic
contribution and it is written as

Ji = −Di
dci
dz

+ cieνiµiEz , (S1)

where Di is the diffusion coefficient of the i-th species in the membrane, µi = Di/kBT its mobility
with kB the Boltzmann constant and T the temperature, νi the valence, e the elementary charge and
Ez = dV/dz the z-component of the electric field with V the electric potential. The electric field is
assumed to be constant through the membrane, so, with the sign convention reported in Fig. (S1),
Ez = ∆V/L. Eq. (S1) is valid in the membrane and the reservoir conditions (that, in a real system,
are set far from the membrane) are used as boundary conditions at z = 0 (trans) and z = L (cis).
Eq. (S1), equipped with the above mentioned boundary conditions, can be directly integrated

between z = 0 and z = L providing the following expression for the ion flux

Ji = eνiµiEz
Cc

i − Ct
i exp (eνiβ∆V )

1− exp (eνiβ∆V )
, (S2)

with, as usual, β = 1/kBT . Note that, in our reference system, fluxes through the membrane are
positive when going from trans to cis reservoir. If concentrations at the two reservoirs are identical,

cis

trans

FIG. S1. Membrane model. A membrane separates two reservoirs (cis and trans) where two electrolyte

solutions are present. Concentration of dissolved ions are indicated as C
c/t
i , where the superscript c/t refer

to the cis of trans reservoir and the subscript i to the ion species. A voltage ∆V is applied. Without loss of
generality, we assume that the cis reservoir is grounded. The membrane contains nanopores that allow the
passage of ions and water. In the Goldman description [S1], the system is model as a uniform membrane
and the reservoir conditions are applied to the membrane boundary. Moreover, as a further simplification,
the electric field inside the membrane is assumed to be uniform, so that, Ez = ∆V/L.
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the flux is only ruled by electrophoresis, and, thus, Eq. (S2), reduces to Ji = cieνiµiEz. If, instead,
∆V → 0, the flux is only diffusive and Eq. (S2) – applying, for instance, the de l’Hôpital rule –
reduces to Ji = Di(C

t
i − Cc

i )/L. In summary, for small ∆C and ∆V , the flux reads

Ji = Di
∆Ci

L
+ cieνiµi

∆V

L
. (S3)

Concerning the voltage, the linear approximation is valid for ∆V ≪ kBT/e, that for T = 300K
implies ∆V ≪ 25 mV. Note that in Eq. (S3) the coefficients that multiply ∆C and ∆V are positive
coherently with our definition for ∆C and ∆V and reference system. In different manuscripts,
authors can make different choices (for instance, one can invert the ground electrode), hence, before
applying formulas like Eq. (S3), it is important to understand which convention is used.

Reversal potential. The total ionic current can be obtained from ionic fluxes as

I = A

Ns∑
i

eνiJi , (S4)

with A the area of the membrane and Ns is the number of ionic species. I is a function of the

applied voltage ∆V and the ionic concentration in the two reservoirs (C
c/t
i ). In experiments, the

curve I(∆V ) can be measured while the individual contributions Ji are not accessible. For a given

set of concentrations C
c/t
i , the voltage Vr for which I = 0 is indicated as the reversal potential.

Given the reversal potential Vr, it is possible to deduce some property of the membrane. In this
theoretical framework, usually, a parameter called permeability is defined as

Pi =
Di

L
=

µikBT

L
, (S5)

where, in the last expression, the fluctuation-dissipation relation Di = µikBT is used. So, the total
current can be rewritten as

I = A

Ns∑
i

e2ν2i Piβ∆V
Cc

i − Ct
i exp (eνiβ∆V )

1− exp (eνiβ∆V )
. (S6)

When I = 0, Eq. (S6) provides a relation between the permeabilities Pi and the reversal potential
∆V = Vr. This implies, that, even if the 1D theoretical approach used to derive GHK is build on
assumptions that are not valid in a real membrane (for instance, the diffusion coefficient Di is not
a measurable quantity, the membrane thickness L may be not homogeneous, the diffusion in the
reservoirs and the entrance effects on the pores are not considered) it allows, in principle, to directly
measure an effective quantity (the permeability Pi) or, at least, to measure the relation between the
permeabilities of different ions.
The individual flux in Eq. (S2) and its linear approximation can be rewritten as function of the

permeability as it follows

Ji = eνiPi
∆V

kBT

Cc
i − Ct

i exp (eνiβ∆V )

1− exp (eνiβ∆V )
, (S7)

Ji = Pi∆Ci + eνiPiCi
∆V

kBT
, (S8)
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where, for small ∆C, we have Ct
i ≃ Cc

i ≡ Ci. The small forcing approximation (S8) is extremely
useful since it allows to straightforwardly estimate Pi from simple simulation set-ups. For instance,
in atomistic simulations it is very common to apply an voltage ∆V and measure the individual flux
of ions (for ∆C = 0) while in continuum PNP-S simulations (see Methods in the main text) it is
possible to modify both ∆C and ∆V , by altering the boundary conditions far from the membrane.

The case of a 1:1 electrolyte. In several nanopore experiments, the solution is a 1:1 electrolyte,
as KCl or NaCl [S4]. In this condition, (S6) reduces to

I = e2P+β∆V
Cc

+ − Ct
+ exp (eβ∆V )

1− exp (eβ∆V )
+ e2P−β∆V

Cc
− − Ct

− exp (−eβ∆V )

1− exp (−eβ∆V )
, (S9)

that, for I = 0, provides a relation between the reversal potential Vr and the ratio of permeabilities
P+/P− as it follows

Vr =
kBT

e
log

P+C
c
+ + P−C

t
−

P+Ct
+ + P−Cc

−
. (S10)

that, solved for the permeability ratio gives

P+

P−
=

Ct
− − Cc

− exp (eβVr)

Ct
+ exp (eβVr)− Cc

+

. (S11)

Eq. (S11) is commonly used in nanopore papers as a measure of the anion/cation selectivity of the
pore [S5–S8].
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SUPPLEMENTARY NOTE S2: DETAILS OF THE MD PROTOCOL

Molecular Dynamics Simulation Methods. All the MD runs were carried out using NAMD
2.14 [S9] with a time step ∆t = 2.0 fs, unless otherwise stated. Particle mesh Ewald [S10] method
with a 1.0 Å spaced grid are used for long-range electrostatic interactions. The force field is
CHARMM36 [S11] with TIP3P model for water [S12] and CUFIX corrections for ions [S13]. A
cutoff of 12 Å (switching distance of 10 Å) was used for the short-range nonbonded interactions.
Periodic boundary conditions with a parallelepipedic box are used. A Langevin thermostat was used
for all the simulations while a Nosé–Hoover Langevin piston pressure control was used for constant
pressure simulations [S14].

Biological pore and membrane set-up and equilibration. The protocol used to build and to
equilibrate the system is similar to the one reported in Di Muccio et al. [S15] that is also similar to
the one used in previous works [S16, S17]. The CytK structure is the same used in [S18]. For MspA,
we used the structure (PDB:1UUN, [S19] downloaded from the OPM database [S20] so that the
pore axis is already aligned with the z-axis. For CsgG we used PDB:4UV3 [S21], and we modelled
the β-barrel missing fragments (F144, F193 to L199) by using the SWISS-MODEL server [S22].
Mutants were obtained by using VMD mutator plugin [S23]. A POPC bilayer membrane, parallel
to the x-y plane, was generated using VMD [S23]. Before the equilibration, the lipid molecules
overlapping the protein or located in the pore lumen were removed. Subsequently, water and ions
were added using the solvate and ionize VMD plugins. After minimization, a first equilibration step
(P = 1 atm flexible cell, constant ratio, T = 300 K, time step ∆t = 0.5 fs) is performed, to allow the
relaxation of lipid tails and of the electrolyte. External forces were applied to the water molecules to
avoid their penetration into the membrane. The Cαs of the pore were kept fixed and the lipid heads
were harmonically constrained to their z-positions (spring constant k = 1 kcal/(mol Å2 )), allowing
a movement along the x-y plane. An initial temperature ramp is imposed (every 5 ps the velocities
are rescaled to a temperature of 0, 25, 50, . . . , 275, 300 K) for a smoothly relaxation of the system.
The total duration of this first step is ≃ 250 ps with minor differences among the simulations. A
second equilibration run was performed where the lipid heads were harmonically constrained only to
their x-y position. Protein Cαs were still fixed. Pressure and temperature controls were used as in
the first step, as well as the time step. The total duration of this second step is 250 ≃ ps. In a third,
1 ns long (time step 1 fs), equilibration step, all the constraints on the membrane are removed.
All the other control settings were as in the previous step. The last equilibration step is an NPT
run of 1 ns (time step 1 fs) with no constrains on the lipids and no external forces to keep the wa-
ter molecules out of the membrane. No constraints on the membrane and on the protein are applied.

Solid state nanopores. The protocol used to build and to equilibrate the system is similar to the
one employed in [S8]. We remand to that manuscript for details.

Non-equilibrium run and ionic and water current estimation. An electrical field E =
(0, 0, Ez), with Ez = ∆V/Lz, with ∆V the applied voltage and Lz the length of the periodic box
along the z-axis, is applied. The ionic current was measured via the equation [S15, S24]:

I(t) =
1

∆tLz

N∑
i=1

qi[zi(t+∆t)− zi(t)], (S12)

in which I(t) is the average ionic current in the interval (t, t + ∆t), qi is the charge of ion i, zi is
the displacement of ion i on the z-axis during the interval ∆t. The sum is over all ions. Cation and
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anion currents are calculated limiting Eq. (S12) to only one ionic species, while for EOF the sum is
over the Oxigen of the water molecules with qi = 1. Absolute errors and confidence intervals were
calculated through block average.
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cis

trans

t

σw =-0.256 C/m2

σw =0

FIG. S2. Boundary conditions for PNP-S. Here the system with pore radius d = 2 nm and L = 1.4 nm,
one of the different geometries simulated, is considered as example, in order to illustrate the boundary
conditions for the PNP-S problem. The nanopore is obtained from a membrane of thickness L and relative
permittivity of εm = 6. The membrane boundary is neutral, while the pore surface is negatively charged with
a surface charge density σw. This charge density is imposed through the condition: (ε0εs∇ϕs − ε0εm∇ϕm) ·
n̂ = σw, where the ϕs and ϕm indicate the potential inside the fluid and membrane, respectively. Also, since
the surface charge does not affect the electric field in the tangential direction across the solid-fluid interface,
the following condition is also imposed: (ε0εs∇ϕs − ε0εm∇ϕm) · t̂ = 0. For clarity, we used this notation
only for this boundary condition since the potential that appears in the Poisson equation is not divided in
those two terms, thus hereinafter the potential is simply indicated with ϕ. The impermeability conditions
for the membrane is J · n̂ = 0 and the no-slip condition is considered u = 0. In the spherical reservoirs,
of radius rs = 15L (with L funtion of the pore radius), the concentration of each ionic species is fixed at
ci = Cc at the cis reservoir and and ci = Ct for the trans one. We supposed also that the active electrode
is immersed in the trans reservoir and, therefore, here the potential at the boundary of the right reservoir is
set to ϕ = ∆V , while in the left one ϕ = 0. Since no mechanical forces exert an action on the system, the
free stress condition µ∇u+ pĨ = 0 is used, where Ĩ is the identity matrix. The boundary conditions are the
same employed in [S8, S25], for a more complete discussion see, among others [S26].
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FIG. S3. Geometries and computational meshes, used in Poisson-Nernst-Planck-Stokes (PNP-S)
nanofluidic simulations for evaluating electro-osmotic flow (EOF) through nanopores. Each geometry cor-
responds to a distinct pore size and length configuration used in the continuum electrohydrodynamics, the
same of the atomistic simulations of Fig. 3 of the main text. The first colum show the system geometries and
size, the second a zoom of the third column, representing the mesh used to discretize the PNP-S equations.
Pores size are reported on the left: (a) Diameter d = 1.0 nm, Length L = 0.2 nm; (b) Diameter d = 2.0 nm,
Length L = 1.4 nm; (c) Diameter d = 4.0 nm, Length L = 6.2 nm.
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FIG. S4. Test for numerical convergence with increasing reservoir size. In experiment, the voltage
and the concentration differences are applied very far from the membrane. This condition cannot be effi-
ciently reproduced in simulations. Consequently, it is relevant to verify how the result changes with the size
of the reservoir. In the Figure, nd is the radius of the hemispherical reservoir expressed in terms of pore
diameters.
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FIG. S5. Additional data on current I and reversal potential Vr from PNP-S simulations. The
general setup is shown in Fig. 2a of the main text, with Cc = 500 mM and Ct = 5 mM. (Top row) Total ionic
current I versus applied voltage (∆V = 0, 50, 150 mV) for five pore diameters (d = 1.0, 2.0, 3.0, 4.0, 5.0 nm).
Each curve in a panel corresponds to a different pore length L, see inset in top-left panel. (Middle row)
Reversal potential Vr as a function of L. (Bottom row) Permeability ratio from Eq. (4) of the manuscript as
a function of L. Gray squares is the permeability ratio from simulations where the two reservoirs are both at
c0 = 500 mM. Points in the middle and bottom rows are color-coded by pore diameter, matching the top-row
panels. Data for the simulated currents and flows are reported on Zenodo, doi:10.5281/zenodo.14916088.
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FIG. S6. Atomistic simulation of EOF through a solid state nanopores. (a) Set-up of atomistic simulation
for three systems, having different pore diameters and lengths. The pores are made of Lennard-Jones
atoms, represented as VdW spheres, white for the uncharged atoms and red for the charged ones. The red
spheres carry a charge corresponding to an average surface charge of −0.256C/m2. (b) EOF, selectivity and
total electric current from MD simulations for the cation selective pores displayed on the left, for different
concentrations, measured under an electric field Ez corresponding to a transmembrane voltage of 250 mV.
The prediction from the Gu et al. [S5] theory, Eq. (6) of the manuscript, obtained using the cation and anion
currents from MD and Nw = 6 or Nw = 12 are reported in gray and white. For each system, averages are
obtained from 400 ns simulations. Confidence intervals were obtained using a block average with each block
corresponding to 10 ns. For derived quantities (such as selectivity) we applied uncertainty propagation rules.
For the [S5] prediction, we used Eq. (6) instead of Eq. (10) to reduce the error propagation. To compact
multiple data on the same plot, three different scales are used for the vertical axis: a linear scale for Qeo,n,
a logarithmic scale for P+/P− and a logarithmic scale for the total current. For completeness, the original
data are reported in table S2 of the supporting information.
Comment: The narrowest pore (d = 1.0 nm) at 500 mMKCl, is selective for cations with P+/P− ≃ 2.5. The
cation selectivity is associated with a EOF that, for ∆V = 250 mV amounts to Qeo,n ≃ 26 molecules/ns. The
parameter Nw represents the number of water molecules that are dragged by a single ion. Using Nw = 12,
we get Qeo,n ≃ 24 that is quite close to the MD value, while, using Nw = 6 the prediction is quite far from
MD. A similar agreement is present at C = 50 mM KCl and C = 5 mM KCl indicating, that, at least in
the case of very narrow pores, the Gu et al. argument can provide a good estimate of the EOF. Instead,
increasing the diameter of the pore, the scenario changes. For both d = 2 nm and d = 4 nm, at 0.5 M
KCl Eq. 6 with Nw = 12 follows the MD trends while for smaller concentration strong deviations from MD
are evident. Overall the MD data is always larger than the prediction (even using Nw = 12, a quite high
value for the number of water molecules in the coordination shell of an ion) and, in some cases, the errors
can reach a factor of 2 or 3, in particular for larger pores. The MD data allow to explore other features
of the selectivity and EOF in nanopores. For instance, the permeability ratio P+/P− is larger at smaller
ion concentration, as it is expected since the Debye layer is thicker. Another observation, in line with the
theoretical expectation, is the trend of the total current I with ion concentration. As expected, I increases
with the concentration, however, the increase is not linear as it would be for large pores but sub-linear, i.e.,
I at 500 nM for d = 4 nm is only 4 times larger than I at 50 nM. This effect is due to the relevance of
surface contribution at the nanoscale with respect to the bulk ones. Indeed, the fixed surface charge at the
pore wall brings a number of counterions in the pore that is roughly independent on the ion concentration.
The same geometries were also simulated with PNP-S, see Figures S7 and S8.
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FIG. S7. PNP-S simulations of electrohydrodynamics of systems similar to the the MD ones reported in
Fig. S6. In particular, analogous combinations of pore length and diameter are used, as indicated by the
labels on the left of each row. Reservoir salt concentration and electric potential is controlled by imposing
appropriate boundary conditions at the reservoir hemispherical boundaries, details in Supplementary Figure
S2. Panels show the selectivity, total current and EOF from simulations at ∆V = 250 mV, and EOF
predicted from the arguments presented in the main text. Horizontal magenta lines correspond to the
selectivity ratio estimated using GHK model, Eq. (4) of the main text, with the Vr estimated from reversal
potential simulations shown in Fig. S5. Dark gray bars refer to EOF from Eq. (10) of the main text using
P+/P− estimated from GHK, while white and gray bars refer to estimation using Eq. (6) with different
values of Nw. To compact multiple data on the same plot, three different scales are used for the vertical
axis: a linear scale for Qeo,n, a logarithmic scale for P+/P− and a logarithmic scale for the total current I.
For completeness, the original data are reported in table S1 of the supporting information. Representative
voltage, charge and EOF fields are in Supplementary Figure S8.
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FIG. S8. Additional PNP-S data. Representative field distributions of the solution for the data shown
in Fig. S7, panel c first column, of the main text, with Cc = Ct = 5 mM. Each panel shows the voltage
distribution, net charge density ρe [mol/L], and EOF velocity [m/s] for different nanopore geometries. Pore
sizes are shown on the left: (a) Diameter d = 1.0 nm, Length L = 0.2 nm; (b) Diameter d = 2.0 nm, Length
L = 1.4 nm; (c) Diameter d = 4.0 nm, Length L = 6.2 nm.
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FIG. S9. Additional data, EOF vs pore length. Electro-osmotic flow (EOF) as a function of pore length
L for three fixed pore radii (r = 0.5, 1.5, 2.5 nm; rows) and three salt concentrations (c0 = 5, 50, 500 mM;
columns), computed from PNP-S simulations at ∆V = 150 mV. Bottom panels report some analogous cases,
computed by molecular dynamics simulations, for the radius r = 1.5 nm. MD production data are averaged
over 400, 200, 100 ns for the 5, 50, 500 mM systems, respectively. Data for the simulated currents and flows
are reported in Table S3. In general, MD and PNP-S show similar trends (for instance, the flow overall
decreases with the pore length L) although some qualitative and quantitative differences are evident. For
instance, in the 500 mM case MD predicts a monotonously decreasing EOF while PNP-S shows a maximum
around L = 1.5 nm. Systematic comparison between MD and PNP-S is not the aim of our work, nevertheless,
we would like to report the possible causes of the different prediction typically reported in the literature.
The first point to stress is that PNP-S does not include purely nanoscale effects as liquid slippage and finite
size of the ions and, consequently, a quantitative match is not expected unless PNP-S is modified to include
these aspects in an effective way (for instance, as boundary condition for slippage or as additional terms for
the finite size [S26]). Another difference is that in PNP-S the reservoirs are large somehow emulating the
experimental conditions of nanopore sensing devices. This can be done because in finite elements simulations
we can use a not uniform computational grid with larger cells far from the pore. Consequently, simulation
of large reservoirs is not extremely demanding. Instead, the MD simulations are tri-periodic. In essence,
MD does not reproduce a single pore but an infinite array of pores and, consequently, pore-pore interactions
can alter the transport properties with respect to the single pore case [S25, S27].
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d [nm] L [nm] Salt 1:1 I [nA] I+ [nA] I− [nA] Qeo,n [molecules/ns]

1 0.2 0.005M 0.0592 0.0443 0.0066 1.03

1 0.2 0.05M 0.409 0.336 0.0743 6.66

1 0.2 0.5M 3.124 2.408 0.717 19.43

2 1.4 0.005M 0.0916 0.0915 0.0002 6.51

2 1.4 0.05M 0.347 0.3416 0.0057 25.72

2 1.4 0.5M 2.371 2.129 0.242 105.88

4 6.2 0.005M KCl 0.0972 0.0971 0.0001 17.29

4 6.2 0.05M KCl 0.476 0.468 0.0076 90.43

4 6.2 0.5M KCl 3.378 3.196 0.282 368.73

TABLE S1. PNP-S data for ionic and electroosmotic flow at 250 mV. Data refer to the nanopore systems
shown in Fig. S7. d is the pore diameter, while L the pore length. The electrolyte is a 1:1 salt water solution,
with the two ionic species having opposite charges ±1e and diffusion coefficients D+ = D− = 2×10−9 m2/s.
The fluid dynamic viscosity is 1× 10−3Pa · s and density 1000 kg/m3.

d [nm] L [nm] Salt I [nA] I+ [nA] I− [nA] Qeo,n [molecules/ns]

1 0.5 0.005M KCl 0.0530 ± 0.0027 0.0443 ± 0.0025 0.0087 ± 0.0012 3.7 ± 1.4

1 0.5 0.05M KCl 0.1125 ± 0.0039 0.0860 ± 0.0032 0.0264 ± 0.0021 6.3 ± 1.6

1 0.5 0.5M KCl 0.787 ± 0.017 0.551 ± 0.012 0.2266 ± 0.0096 25.7 ± 1.6

2 1.5 0.005M KCl 0.1732 ± 0.0056 0.1721 ± 0.0055 0.00103 ± 0.00078 24.1 ± 2.2

2 1.5 0.05M KCl 0.4565 ± 0.0067 0.4464 ± 0.0078 0.0101 ± 0.0035 44.6 ± 2.4

2 1.5 0.5M KCl 2.502 ± 0.020 2.276 ± 0.032 0.226 ± 0.021 171.8 ± 4.9

4 6 0.005M KCl 0.2940 ± 0.0066 0.2765 ± 0.0065 0.0175 ± 0.0018 55.7 ± 6.0

4 6 0.05M KCl 1.016 ± 0.011 0.912 ± 0.011 0.1045± 0.0061 150.0 ± 5.1

4 6 0.5M KCl 4.237 ± 0.025 3.231 ± 0.033 1.006 ± 0.026 195.6 ± 8.3

TABLE S2. Solid state nanopore data for ionic and electroosmotic flow at 250 mV. Data refer to the
nanopore systems shown in Fig. S6. d is the pore diameter, while L the pore length.
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d [nm] L [nm] KCl [M] I [nA] I+ [nA] I− [nA] Qeo,n [molecules/ns]

3.0 10. 0.005 0.167 ± 0.010 0.160 ± 0.009 0.007 ± 0.004 17.3 ± 2.1

3.0 20. 0.005 0.203 ± 0.010 0.195 ± 0.009 0.007 ± 0.003 15.9 ± 1.6

3.0 30. 0.005 0.165 ± 0.011 0.162 ± 0.011 0.003 ± 0.003 13.3 ± 1.6

3.0 10. 0.05 0.421 ± 0.017 0.405 ± 0.014 0.015 ± 0.010 37.2 ± 4.3

3.0 20. 0.05 0.407 ± 0.016 0.377 ± 0.014 0.031 ± 0.008 27.8 ± 3.6

3.0 30. 0.05 0.400 ± 0.018 0.380 ± 0.016 0.020 ± 0.008 22.3 ± 3.1

3.0 10. 0.5 1.523 ± 0.024 1.302 ± 0.030 0.221 ± 0.027 86.3 ± 4.2

3.0 20. 0.5 0.957 ± 0.021 0.877 ± 0.028 0.080 ± 0.023 48.4 ± 3.6

3.0 30. 0.5 0.705 ± 0.019 0.725 ± 0.025 -0.019 ± 0.018 34.6 ± 3.1

TABLE S3. Solid state nanopore data for ionic and electroosmotic flow at 150 mV, for different pore lengths.
Data refer to the plot shown in Supplementary Fig. S9. d is the pore diameter, while L the pore length.

Pore Salt I [nA] I+ [nA] I− [nA] Qeo,n [molecules/ns]

MspA 1M KCl 1.838 ± 0.029 1.500 ± 0.045 0.338 ± 0.043 43.8 ± 3.5

MspA-M3 1M KCl 1.077 ± 0.029 0.285 ± 0.042 0.791 ± 0.044 -37.7 ± 3.6

CytK-2E4D 1M KCl 0.889 ± 0.014 0.733 ± 0.026 0.156 ± 0.017 21.7 ± 1.6

CytK-6K 1M KCl 0.517 ± 0.023 0.027 ± 0.007 0.490 ± 0.020 -20.4 ± 0.8

CsgG-3K 0.5M KCl 0.441 ± 0.019 0.062 ± 0.038 0.379 ± 0.038 -17.6 ± 3.7

CsgG-3K2S 0.5M KCl 1.010 ± 0.029 0.314 ± 0.029 0.696 ± 0.036 -38.8 ± 4.9

TABLE S4. Biological nanopore data for ionic and electroosmotic flow at 250 mV. Data refer to the nanopore
systems shown in Fig. 4 and 5 of the manuscript.



S-17

SUPPLEMENTARY REFERENCES

[S1] David E Goldman. Potential, impedance, and rectification in membranes. The Journal of general
physiology, 27(1):37–60, 1943.

[S2] Alan L Hodgkin and Bernard Katz. The effect of sodium ions on the electrical activity of the giant
axon of the squid. The Journal of physiology, 108(1):37, 1949.

[S3] Yoav Green. The goldman-hodgkins-katz equation, reverse-electrodialysis, and everything in between.
arXiv preprint arXiv:2411.03342, 2024.

[S4] Sabine Straathof, Giovanni Di Muccio, Maaruthy Yelleswarapu, Melissa Alzate Banguero, Carsten
Wloka, Nieck Jordy van der Heide, Mauro Chinappi, and Giovanni Maglia. Protein sizing with 15 nm
conical biological nanopore yaxab. ACS nano, 17(14):13685–13699, 2023.

[S5] Li-Qun Gu, Stephen Cheley, and Hagan Bayley. Electroosmotic enhancement of the binding of a neutral
molecule to a transmembrane pore. Proceedings of the National Academy of Sciences, 100(26):15498–
15503, 2003.

[S6] Gang Huang, Kherim Willems, Misha Soskine, Carsten Wloka, and Giovanni Maglia. Electro-osmotic
capture and ionic discrimination of peptide and protein biomarkers with frac nanopores. Nature
communications, 8(1):935, 2017.

[S7] Alina Asandei, Irina Schiopu, Mauro Chinappi, Chang Ho Seo, Yoonkyung Park, and Tudor Luchian.
Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics
during capture and translocation. ACS applied materials & interfaces, 8(20):13166–13179, 2016.

[S8] Matteo Baldelli, Giovanni Di Muccio, Adina Sauciuc, Blasco Morozzo della Rocca, Francesco Viola,
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