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1. Assessment of the validity of 𝑚
𝑅𝑒𝜃

≪ 1

For the flows considered in this work, the validity of the assumption of treating𝑚/𝑅𝑒𝜃 ≪ 1 is assessed. It
is emphasized that the non-dimensional group 𝑚/𝑅𝑒𝜃 was considered a “small" parameter that allowed
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Figure 1. The assessment of the assumption 𝑚
𝑅𝑒𝜃

≪ 1 for the considered flows in this work. Subfigure
(a) corresponds to the five flat-plate, adverse pressure gradient boundary layers (Bobke et al., 2017),
subfigure (b) denotes the two-dimensional wing (NACA airfoils) flows (Vinuesa et al., 2017; Tanarro
et al., 2020) and subfigure (c) denotes the two cases of separating flows, the flow over the Boeing speed
bump (Uzun & Malik, 2022) and the transonic flow over the Bachalo-Johnson bump (Uzun & Malik,
2019).
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the expansions in this work. Figure 1 shows the variation in 𝑚
𝑅𝑒𝜃

with 𝑅𝑒𝜃 for all the non-equilibrium
flows considered in this work. It is clear that, at the largest, 𝑚/𝑅𝑒𝜃 ≈ 0.01 and hence this assumption
is justified.

2. Relation between of 𝛿, 𝛿∗, and 𝜃

For laminar flows, the solution to Thwaites method for 𝜃 and the universal correlation between 𝑚 and
the shape factor 𝐻 provides a 𝛿∗ which is useful for iteratively updating the “inviscid geometry” that
is used for computing the freestream profiles. The proposed model in this work provides a good fit for
𝜃, but a fit for 𝛿∗ is needed as well for iterative deployment with a potential flow solver. The analytical
expression for the displacement thickness can be derived from the continuity equation as,

𝑑𝛿∗

𝑑𝑠
=

𝑉𝑒

𝑈𝑒

+ 1
𝑈2
𝑒

𝑑𝑈𝑒

𝑑𝑠

∫ 𝛿

0
𝑈𝑑𝑛 (1)

where 𝛿 is the thickness of the boundary layer. For general flows, the integral in Equation 1 is the measure
of the mass flow rate inside the boundary layer, and is dependent on the local flow conditions (such as
𝑅𝑒𝜏 and pressure gradient 𝑑𝑃𝑒

𝑑𝑠
) and is unknown “a priori". For given values of 𝛿 and the flow variables

at the edge of the boundary layer𝑈𝑒,𝑉𝑒, and 𝑃𝑒, the growth rate of the displacement thickness is given as

𝑑𝛿∗

𝑑𝑠
=

𝑉𝑒

𝑈𝑒

− 1
𝑈2
𝑒

𝑑𝑈𝑒

𝑑𝑠

∫ 𝑠

𝑠0

𝑉𝑒 (𝑟)
𝑈𝑒 (𝑟)

𝑈𝑒 (𝑟)𝑑𝑟, (2)

where 𝑠0 is the streamwise location at which the flow can be first considered fully turbulent, within the
boundary layer, and 𝑠 is the location of interest. From geometrical arguments, the ratio 𝑉𝑒/𝑈𝑒, can be
approximately related to the growth of the boundary layer thickness as

𝑉𝑒

𝑈𝑒

≈ 𝑑𝛿

𝑑𝑠
(3)

Thus, the growth of the boundary layer affects the growth rate of the displacement thickness linearly as
follows,

𝑑𝛿∗

𝑑𝑠
=

𝑑𝛿

𝑑𝑠
− 1
𝑈2
𝑒

𝑑𝑈𝑒

𝑑𝑠

∫ 𝑠

𝑠0

𝑑𝛿

𝑑𝑟
𝑈𝑒 (𝑟)𝑑𝑟 (4)

Finally, a linear relationship between 𝑉𝑒/𝑈𝑒, 𝐿 and 𝑚 is fitted from the simulation data as

𝐿 (𝑚, 𝑅𝑒) = 𝑈𝑒

𝜈

𝑑𝜃2

𝑑𝑠
≈ 5 + 8𝑚 − 200

𝑑𝛿

𝑑𝑠
+ 200

𝑑𝛿𝑧𝑝𝑔, 𝑐𝑜𝑟𝑟

𝑑𝑠
(5)

which implies that,

𝑑𝛿

𝑑𝑠
≈ 5

200
+ 8

200
𝑚 − 𝑈𝑒

200𝜈
𝑑𝜃2

𝑑𝑠
+ 𝑑𝛿𝑧𝑝𝑔, 𝑐𝑜𝑟𝑟

𝑑𝑠
(6)

The quality of this fit is verified in Figure 2 by comparing the exact values of 𝐿 (𝑚, 𝑅𝑒) obtained from
the datasets considered in this work, and from Equation 6. The fit for 𝐿 (𝑚, 𝑅𝑒) is reasonable for all
cases considered, with some discrepancies observed in the low Reynolds number flow over the NACA
4412 airfoil (𝑅𝑒𝜏 ∼ O(100) for most of the flow). The ordinate of subfigure (c) in Figure 2 is nearly zero
as the boundary layer growth of a zero pressure gradient boundary layer is explicitly accounted, using
a high Reynolds number fit, in Equation 6. With the two proposed fits in this work, the displacement
thickness can be determined along the streamwise coordinate using Equations 2 and 6.
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Figure 2. The quality of the fit between the exact value of 𝐿 (𝑚, 𝑅𝑒) and that obtained from the
proposed Equation 6. Subfigure (a) contains data from the five adverse pressure gradient boundary
layers of Bobke et al. (2017), subfigure (b) contains the three boundary layers from the NACA airfoils
(Vinuesa et al., 2017; Tanarro et al., 2020) and subfigure (c) contains the data from the zero pressure
gradient boundary layer of Eitel-Amor et al. (2014).
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