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1. Numerical scheme 

While Part I focuses on steady-state and Part II focuses on the time transient response, the 

numerical simulations are the same for both parts. To that end, we will discuss all issues related to 

numerical simulations in the Supplementary Material of Part I. We acknowledge that in this 

discussion, we will show two time-transient movies. The presentation of these movies here is not 

for scientific sake but rather for numeric sake. 

1.1 Methods. 

The main text governing equations, Eqs. (2)-(5), with boundary conditions, Eqs. (10)-(14) were 

solved by the commercial finite element-based software COMSOL Multiphysics. Specifically, the 

Transport of Diluted Species, Electrostatic, and Creeping Flow modules were simultaneously 

solved with a time-dependent solver.  

To compute our time-dependent solution, we used a direct solution method, namely the 

multifrontal massively parallel solver (MUMPS), based on Gaussian factorization. The implicit 

Backward Differentiation Formula (BDF) solver was employed as the time-stepping method. The 

solver automatically determines the time steps to satisfy the specified relative tolerance (its value 

was set to 310− ). To better capture the system response, we used very small output time (the times 

at which the solution is stored for postprocessing and evaluation) steps for earlier times. Depending 

on the applied voltage, we increased it gradually for later times. Namely, as the applied voltage 

increases, the output time stepping decreases for later times. 

1.2 Initial conditions. 

The initial conditions used in all simulations are the equilibrium states that account for the 

electrical double layers (EDLs) at the interfaces. To find these equilibrium states, we considered a 

simplified situation whereby the initial conditions were 
,1,4 1c = , 1

,2 ,2 2c c N−

+ −= = , and 

1

,3 ,3 3c c N−

+ −= = −  (subscript numbers denote regions) with an applied potential difference 0V = . 

We let the system relax to its actual equilibrium state. The resultant solutions that account for the 

EDLs are then used as our initial conditions. 

1.3 Simulation parameters 

The simulation parameters used in Part I and Part II are provided in Table S1 and Table S2. 

Table S1 lists the dimensionless parameters that were held constant across all simulations. Table 

S2 provides the ranges of the dimensionless parameters 3N , 
3,4L , and V  as they are varied in each 

section. Table S3 lists all the characteristics parameters needed for the non-dimensional 

parameters. 

 

Table S1: Simulation dimensionless parameters used for all simulations in Part I and Part II.  

 Value 

Region lengths, 
1,2L  1 

Region width, W   2  

Fixed charge density, 2N  25 

Debye length,   310−   

Péclet number, Pe  0.5 
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Table S2: Region 3 fixed charge density, 3N , and length, 3L , Region 4 length, 4L , and voltage, 

V , used in the simulations of each section. 

 
3N  3L  4L  V  

Part I – Sec. 4 [ 25,0]−  1 1 [ 80,80]−  

Part I – Sec. 4; Part II – Sec. 3. 0 0 1 or 2 [ 80,80]−  

Part I – Sec. 4; Part II – Sec. 4.  25−  1 1 [ 100,100]−  

Part I – Sec. 4; Part II – Sec. 5. 10−  1 1 [ 80,80]−  

 

Table S3: The characteristics parameters of a binary electrolyte solution and a system needed for 

calculating dimensionless parameters.  

Parameter Value 

Diffusion coefficient, D  
9 210 [m s]−

 

Relative permittivity, r  78.4   

Dynamic viscosity,   49 10 [Pa s]−   

Absolute temperature, T  298[K]   

Bulk concentration, 0c  30.01 [mol m ]  

Region length, L  100 [ m]  

 

We note here that we chose the diffusion coefficient to be half of the typical value of KCl 

(Table S3). This was done so that our simulation parameters would be consistent with the 

simulation parameters of Rubinstein and Zaltzman (Rubinstein & Zaltzman, 2000; Zaltzman & 

Rubinstein, 2007). Taking the correct value would reduce Pe by a factor. Thereafter, all the 

observed phenomena would appear qualitatively unchanged but with some slight quantitative 

changes.  

1.4 Meshing 

To ensure that our final results are mesh-independent, while the strong variations at the 

interfaces, which are mesh-dependent, do not change the overall response, we varied the mesh for 

several scenarios. We show that the overall response does not change the response. 

1.4.1 Meshing in 2D 

To resolve the strong variations in the EDLs near the three interfaces located at 
1,2,3ky ==  , a 

non-uniform mesh was used in the y-direction normal to the interfaces with high refinement near 

the interfaces, while a uniform mesh was used in the tangential x-direction (Demekhin, Nikitin, & 

Shelistov, 2013; Karatay, Druzgalski, & Mani, 2015). In the y-direction, we used a refined mesh 

near each interface 
1,2,3k=  within the domains 

2 3 2 3

1,2,3 1,2,3[ 10 , 10 ]k k = = −  + (see Figure S1). In 

these domains, 101 mesh points were used on each side of 
1,2,3k=  to create meshes that were 

smallest at 
1,2,3ky ==   and largest at 

2 3

1,2,3 10ky ==   . To that end, we used the geometric series 

distribution option with a ratio of 250 between the small grid size 52.178 10−  (on both sides of 

1,2,3k=  and near the interface itself) and largest grid size, 35.445 10−  (far from the interface). In 
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our simulations, the EDL value was 310 −= , such that we were able to capture most of the changes 

very smoothly. Outside of these highly refined domains, 100 uniform mesh points were used in 

each region, with grid sizes of approximately 39 10− . As we will discuss shortly, while our 

number of elements for 2D simulations was 100 in the refined domain, we also considered 103 and 

104  for 1D simulations, where it will be observed that outside of the EDLs, there are no changes, 

while inside, there are small changes. Our choice of 100 elements was to ensure that the 

simulations were tractable.  

 
Figure S1. The mesh used in the numerical simulations near one of the interfaces. The mesh is 

structured to capture the sharp changes within the EDL. 

1.4.2 The differences between meshing in a 2D system vs. a 1D system 

This work calculates the various fields and their derivatives (which yield the fluxes). When 

calculating the fluxes j  and i , we noticed that there are large, almost discontinuous, jumps near 

the interfaces located at 1 2 3, ,y =    . These jumps occur regardless of whether we are 

considering a 1D system without EOF (Figure S2) or a 2D system either without EOF (Figure 

S3) or with EOF (not shown here). In the following, we will demonstrate that these spikes are a 

numerical artifact, and then we will discuss how we filter these spikes from our data to create 

“smoother” videos for the fluxes. 

Our previous work (Abu-Rjal & Green, 2021) focused on 1D convectionless systems. Since 

the system was 1D, we could mesh the interfaces in a highly resolved manner without considerable 

computation costs, such that the discontinuities were relatively small. However, our current setup 

differs in that we account for convection, which requires considering a 2D system. As a result, the 

computational costs increase substantially. Figure S2 demonstrates that in a pure 1D system, the 

magnitude of the spike decreases as the number of elements increases. Further, it can be observed 

that at a distance of   from the interfaces, all the electrical currents are the same regardless of the 

spike, indicating that outside the ( )O   boundary layers, the results are independent of numerics. 

Further, since the ESC is of order 
2/3( )O  , all of the meshes capture the structure of the ESC quite 

well. 
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Figure S2. The electric current, i , near the interfaces 1 2 3, ,y =     in 1D simulations for 

different meshes, with varying number of elements (NOE) in the domains 
2 3 2 3

1,2,3 1,2,3[ 10 , 10 ]k k = = −  + . In the top row, we plot i  in the domain  
1,2,3 1,2,3[ , ]k k = = −  +  

and the bottom row, we plot i  in the smaller domain  1 1
1,2,3 1,2,310 10

[ , ]k k = = −  + .  

 

 
Figure S3. The electric current, i , near the interfaces 1 2 3, ,y =     in 1D and 2D convectionless 

simulations for number of elements NOE 100=  in the domains 
2 3 2 3

1,2,3 1,2,3[ 10 , 10 ]k k = = −  + . 
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A similar behavior can be observed in Figure S3, where we compare the numerical simulations 

of the electrical current for a 1D and 2D convectionless system. As can be expected, within the 

boundary layer, the response differs. This can be expected as meshing effects from the transverse 

direction become non-negligible. In contrast, outside of the ( )O   boundary layers, the electrical 

current is independent of the meshing. Once more, this indicates that our chosen mesh is suitable 

for our simulations.  

Finally, in our past works (Green, Edri, & Yossifon, 2015; Abu-Rjal & Green, 2021), we have 

shown that in a 1D system, the x-average electrical current density, i, is a constant (i.e., it is 

independent of y) throughout the system. Indeed, we see in Figure S2 and Figure S3 that this is 

the case everywhere except near the three interfaces 1 2 3, ,y =    . We use this understanding to 

improve the presentation of our fluxes movies (Movies 3, 6, and 9) so that all the fluxes can be 

observed within reasonable limits. We have used a simple “filter”, described in the paragraph 

below, that removes the spiked regions. Beforehand, we note that, from visual inspections, the 

fields themselves ( , , ,c u v ) are smooth, and discontinuities cannot be observed. The 

discontinuities (the ‘spikes’) are observed only in the fluxes.  

Since the electrical current is spatially independent, except near the interfaces, we require that 

the ratio  

 
( , ) (0, )

( , )

n

n

i y t i t
err

i y t

−
 ,  

is smaller than a numerical error. Here, n is the grid point number in the y-direction and err  is the 

relative error, which we choose to be 410err −= . All points that satisfy this constraint are marked 

with a ‘1’, and those that do not are marked with a ‘0’, creating a vector that varies at each time 

step. At each step, we apply the vector to the remaining fluxes ( ,j j ). Finally, we note that, as 

can be observed in Figure S2 and Figure S3, the spikes are primarily located near the interfaces 

within the ESC, whose length is of order 
2/3( )O  . We now demonstrate how the time-dependent 

fluxes of those shown in Figure S2 vary. In particular, Movie S1 shows the time-dependent 

behavior of the electrical current for a varying number of elements, while Movie S2 shows the 

behavior of the remaining fluxes for the scenario of NOE =1000. The movies of fluxes in Part II 

will implement this smoothing filter. 

 

2. Supplement to the main text 

2.1 Reversal of depletion and enrichment regions 

In the main text, we stated that in unipolar systems, when 0V   is switched to 0V  , the 

depleted and enriched regions switch between Regions 1 and 4. Namely, for positive voltage, 

Region 1 is depleted and Region 4 is enriched, whereas for negative voltage, a reversal occurs. 

Figure S4 demonstrates this in an asymmetric unipolar system ( 1 42L L= ). For the sake of 

simplicity, we have considered the convectionless ( Pe 0= ) steady-state response while we have 

varied V . The simulation values here match those given in Table S2. 
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Figure S4. Ion concentrations, c+ , of the quiescent steady state for several positive (a and b) 

negative voltages (c and d) in Region 1 and Region 4 of an asymmetric unipolar system ( 1 42L L=

). The insets show the corresponding space charge density, e c c + −= − . Simulation parameters 

are given in Table S1 and Table S2. 

 

2.2 Vortex array stability in non-ideal bipolar systems 

Figure S5 illustrates the mixing process in a non-ideal bipolar system ( 10N = − ) for several 

applied voltages. These snapshots of the concentration field and velocity streamlines in Region 1 

are given at the same time step of 10t =  (which coincides with the end of our simulations). Note 

that as the voltage increases, the mixing becomes stronger (such that the orange region is “further 

compressed”). Around 50V = , we observe the breakdown of the periodic array and the appearance 

of a “chaotic motion” (Druzgalski, Andersen, & Mani, 2013). As the voltage is increased, this 

additional motion is responsible for increasing the current.  
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Figure S5: The positive concentration (2D color plot), c+ , and velocity streamlines (white lines) 

in Regions 1 of a non-ideal bipolar system ( 3 10N = − ) for several applied voltages at the same 

time step of 10t = . The surface average of the kinetic energy, kE , is given for each snapshot.  

 

2.3 Critical voltage, crV , vs 3N  

Figure S6(a) plots the dependence of the critical voltage of the onset of EOI on 3N . It can be 

observed that as 3N  increases, so does the critical voltage until it plateaus at the critical voltage 

of the ideal scenario. This can be attributed to the variation of the overall permselectivity of the 

system with 3N  (Abu-Rjal et al., 2014; Abu-Rjal & Green, 2021). Figure S6(b) shows the 

behavior of the steady-state space charge density, e , for two given voltages [(b1) 20V =  and (b2) 

40V = , both of which are above the critical voltage for the unipolar system] for varying values of 

3N . For 20V = , only the unipolar system ( 3 0N = , given by the pink line) has an ESC – which 

leads to EOI. While for 40V = , all values with 3 20N   have an ESC and thus can support EOI. 

In both voltages, it can be observed that the unipolar system has the most pronounced ESC 
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(maximal value and extent/length). As 3N  increases, the effects of the ESC become less 

pronounced, to the point that the ideal bipolar system ( 3 2N N= − , given by the purple line) is still 

in its quasi-equilibrium state.  

 

 
Figure S6: (a) The dependence of the critical voltage of the EOI onset, crV , on 3N . (b) The space 

charge density e  without EOI near the interface in Region 1 for different 3N , and for (b1) 20V =  

and (b2) 40V = . 

 

2.4 Kinetic energy scaling with crV V−  

Figure S7 presents intriguing empirical correlations between kE  in Region 1 and 2( )crV V−  

for several values of 3N . In all scenarios, it can be observed that there is the following parabolic 

dependence 
2[ ]k crE V V = − + , where   and   are fitting parameters. It is evident that as 

3N  increases, both   and   decrease, eventually reaching ( 1) ( 1) 0   = = = =  for the ideal 

bipolar scenario (not shown here since ( 1) 0kE  = ). It is obvious that   and   vary with 3N  

and 2N  (i.e.,  ), and possibly other variables, including the geometry. However, thus far, our 

attempts to curve fit   and   have been unsuccessful – the reason is that the underlying rationale 

for their dependence on 2N  and 3N  is not understood, and therefore, our attempts have used rather 

simplistic guesses. Future work is needed to clarify the dependence of   and   on all system 

parameters.  
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Figure S7: The steady-state surface average of the kinetic energy, kE , in Region 1 vs 2( )crV V−  

for several values of 3N . The curve-fitted values for   and   are given, as well as the coefficient 

of determination, 
2R .  

 

3. Movie Descriptions 
Movie name Section # Description 

Movie S1 Supplementary Material, Sec. 1.4 The time-dependent behavior of the electrical 

current near the interfaces 1 2 3, ,y =     in 1D 

simulations for varying number of elements (NOE).  

Movie S2 Supplementary Material, Sec. 1.4 The time-dependent behavior of ,j j  near the 

interfaces 1 2 3, ,y =     in 1D simulations for the 

scenario of NOE = 104. 
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