
Flow S-1

Supplementary technical details

In this supplement, we provide the reader with a detailed description of how we closed the axial stress
exerted by the tapered bottleneck and thus evaluated the equation of motion (16). If not indicated
otherwise, cross references refer to the main document.

Supplement A. Constitutive law and sliding friction: model and experimental validation

According to the slenderness and the constitutive behaviour of the stopper anticipated in items (iii) and
(iv) of § 2.1 and following Saadallah (2020) (see also Fernandes et al., 2014), we express the typical
nonlinear dependence of �̃� on the relative compression 𝜀 with sufficient accuracy as

�̃�𝑛 (𝜀) = 𝐴𝜀3 − 𝐵𝜀2 + 𝐶𝜀 , 𝜀(𝑧, 𝑡) = 1 − 𝑅(𝑧, 𝑡)/𝑟𝐶
(
𝑧 − 𝑍 (𝑡)

)
, (S 1)

The positive model coefficients 𝐴, 𝐵, 𝐶 must be determined empirically via a best fit. These together
with a reliable estimate of a constant friction coefficient 𝜇 referring to the pairing cork/glass form the
input parameters determining the mechanical behaviour of the cork.

Both �̃�𝑛 (𝜀) and the friction coefficient 𝜇were sensed with due rigour by in-house testings. To this end,
we employed a reciprocating standard tribometer to apply �̃�𝑛 quasi-statically and �̃�𝑛 in an oscillatory
fashion on appropriate cork samples. To ensure a constant normal compressive stress acting normal
to the contact surface, the setup typically requires a relatively small, cuboid or cylindrical sample to
accomplish the first task. Therefore, a cuboid with dimensions �̃�1× �̃�2× �̃�3 = 14.0×12.5×17.5mm3

was cut out of the mid of a stopper. Given the constitutive behaviour outlined in item (iv) in § 2.1, here
and below the indices refer to main axes of stress and strain. A normal compressive force 𝐹3 was applied
by a lever with a length ratio of one-to-five and a corresponding amount of weight hanged onto its other
end. This yielded an indentation 𝛿3 (> 0) measured via a laser beam and indeed no perceptible transverse
expansion. A controlled stepwise increase of 𝐹3 allowed for measuring the stress �̃�3 = 𝐹3/(�̃�1�̃�2) as
a function of the relative compression 𝜀3 = 𝛿3/�̃�3. The observed uniaxial states of stress and strain
confirm the stipulated constitutive properties of cork. With these in mind, a permutation of the axes is
confidently supposed to leave the results essentially unchanged, and the measured quantities �̃�3 and 𝜀3
can be identified with respectively �̃�𝑛 and 𝜀 for the axisymmetric case in (S 1). Hence, a least-square
fit entailed 𝐴 = 30.608MPa, 𝐵 = 11.982MPa, 𝐶 = 4.200MPa (rounded). The so recorded relationship
�̃�𝑛 (𝜀) is depicted in figure S 1a.

The marked temporal increase 𝛿3 at a constant load 𝐹3 and correspondingly delayed approach of
its terminal value, indicating the anticipated static dependence of �̃�3 on 𝜀3, deserves mentioning. This
creeping behaviour points to the inherent, but neglected, viscoelastic properties of cork. Even after
approximately two minutes since the load had been applied, the stopper had not reached its final state
yet. Likewise, a noticeable relaxation was observed when the load was released.

The dynamic measurements of 𝜇 were carried out with a real stopper sliding over a glass surface in
a straightforward fashion. They confirm the suggestion by Fatima Vaz & Fortes (1998) that 𝜇 decreases
slightly with increasing sliding speed. An analogous but more pronounced trend was revealed for
increasing loads, 𝐹𝑛, applied normal onto the stopper and the glass plate underneath. Since the setup
required the associated normal stress being definitely lower than �̃�𝑛 during the sliding of the stopper
through the bottleneck, the found data shown in figure S 1b were extrapolated to suggest a nearly
constant value of 𝜇 close to 0.2. This is the figure we used initially in our simulations. We emphasise
that published measurements of 𝜇 are scarce, and the work by Fatima Vaz & Fortes (1998) represents
an appreciated exception. Their experiments suggest 𝜇 being a factor 2 to 3 times higher, but the cork
as well as the testing procedure they adopted differ from ours. Also, these authors mention the difficulty
of obtaining reliable results in a systematic manner given the strong scatter of the data.
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Figure S 1. (a) Stress �̃�𝑛 exerted perpendicularly on stopper vs. its relative compression 𝜀, (S 1);
(b) friction coefficient 𝜇 by in-house experiments: mean values (blue dots) and observed variation
(error bars).

Supplement B. Axial reaction and friction force during sliding

In this section, we scrutinise the numerical evaluation of (19) and (18). It is expedient to change the
variable of integration in (19) to 𝑟𝐶 via 𝑧 = (𝑑2/2 − 𝑟𝐶 )/𝑎𝐶 + 𝑍 (𝑡) and d𝑧 = − d𝑟𝐶/𝑎𝐶 , see (14).
This gives fixed lower and upper boundaries of integration 𝑟𝐶 = 𝑑1/2 and 𝑑2/2, respectively. The still
missing evaluation of 𝜕𝑅/𝜕𝑧 is deferred to Supplement C.

Anticipating the constant slope 𝑎𝐵 = − d𝑟𝐵/d𝑧, the above procedure of transforming the integration
variable also applies to (18). Expressing 𝜀 likewise, we obtain

𝐹𝐵 (𝑡) = 2π
𝑎𝐵 + 𝜇

𝑎𝐶

∫ 𝑟2

𝑟1 (𝑡 )

[
𝑏0 𝑟𝐶 + 𝑏(𝑡)

]
𝜎𝑛

(
1 − 𝑏0 −

𝑏(𝑡)
𝑟𝐶

)
d𝑟𝐶 , (S 2)

𝑏0 = 𝑎𝐵/𝑎𝐶 , 𝑏(𝑡) = 1/2 − 𝑎𝐵
[
𝑍 (𝑡) + 𝑟2/𝑎𝐶

]
, 𝑟1 (𝑡) = 𝑟𝐶

(
−𝑍 (𝑡)

)
, 𝑟2 = 𝑑2/2 . (S 3)

The ratio 𝜇/𝑎𝐵 � 5.11 for 𝜇 = 0.2 reveals a dominance of the frictional over the compressive
contribution to 𝐹𝐵. We can express 𝐹𝐵 in closed form upon substitution of (S 1) in (S 2) and integration
of the resulting polynomial in 𝑟𝐶 . This yields

𝐹𝐵 (𝑡) = 2π
𝑎𝐵 + 𝜇

𝑎𝐶

( 𝑎0
2

[
𝑟22 − 𝑟21 (𝑡)

]
+ 𝑎1 𝑏(𝑡)

[
𝑟2 − 𝑟1 (𝑡)

]
+ 𝑎2 𝑏

2 (𝑡) ln
[ 𝑟2

𝑟1 (𝑡)

]
− 𝑎3 𝑏

3 (𝑡)
[
𝑟−12 − 𝑟−11 (𝑡)

]
+ 𝑎4 𝑏

4 (𝑡)
[
𝑟−22 − 𝑟−21 (𝑡)

] )
,

(S 4)

with the coefficients 𝑎0,1,2,3,4 given by

𝑎0 = 𝑏0
[
𝐴(1 − 𝑏0)3 − 𝐵(1 − 𝑏0)2 + 𝐶 (1 − 𝑏0)

]
,

𝑎1 = 𝐴(1 − 𝑏0)2 (1 − 4𝑏0) − 𝐵(1 − 𝑏0) (1 − 3𝑏0) + 𝐶 (1 − 2𝑏0) ,
𝑎2 = −3𝐴(1 − 𝑏0) (1 − 2𝑏0) + 𝐵(2 − 3𝑏0) − 𝐶 ,

𝑎3 = 𝐴(3 − 4𝑏0) − 𝐵 , 𝑎4 = 𝐴/2 .


(S 5)

Supplement C. Modelling the stopper’s expansion

In the light of its constitutive behaviour, the radial decompression of the stopper occurs in a nonlinear
fashion. The two main assumptions underlying its modelling, anticipated in item (v) in § 2.1, are: (I) it
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Figure S 2. Expansion of the stopper: (a) radial speed of base (blue) and top surface (orange); (b) radii
of base (blue) and top (orange) vs. �̃�.

starts not earlier as at 𝑡 = 0; (II) it propagates with a speed comparable to that of a hyperelastic (radial-
longitudinal) wave, i.e. given by (𝐸/𝜌𝐶 )1/2 where 𝐸 = d�̃�𝑛/d𝜀 is the local bulk modulus of cork and
𝜌𝐶 its local density, until it has reached its relaxed state. We thus arrive at the modelled dimensionless
expansion speed

¤𝑅(𝑧, 𝑡) = 𝜕𝑅

𝜕𝑡
=

√︄
1

𝜅 𝜌𝐶 (𝑧, 𝑡)
d𝜎𝑛

(
𝜀(𝑧, 𝑡)

)
d𝜀

, 𝜌𝐶 (𝑧, 𝑡) = 𝜌𝑚𝐶

[
𝑟𝐶

(
𝑧 − 𝑍 (𝑡)

)
𝑅(𝑧, 𝑡)

]2
(S 6)

under the constraints 𝑅 ≤ 𝑟𝐶 , 𝑍 (𝑡) ≤ 𝑧 ≤ 𝑍 (𝑡) + 𝑙𝐶 , 𝑡 ≥ 0. Herein, 𝜌𝐶 = 𝜌𝐶/𝜌0 and 𝜌𝑚
𝐶
= 𝜌𝑚

𝐶
/𝜌0 (see

§ 2.2). In order to initiate the expansion in a most smooth manner for the sake of numerical stability,
the just escaped stopper is conveniently taken as cylindrical:

𝑅(𝑧, 𝑡 ≤ 0) =
{
𝑟𝐵 (𝑧)

(
𝑍 (𝑡) ≤ 𝑧 ≤ 0

)
,

1/2
(
0 < 𝑧 ≤ 𝑍 (𝑡) + 𝑙𝐶

)
.

(S 7)

For 𝑡 = 𝑍 (𝑡) = 0, we arrive at the initial condition 𝑅(𝑧, 𝑡 = 0) = 1/2. This complements (S 6) to a
first-order problem governing the temporal variation of 𝑅, which is independent of the position of the
stopper described by 𝑍 (𝑡) and thus decouples from the gas–stopper interaction. Therefore, the radial
expansion solely depends on the geometry of the bottleneck apart from the material properties involved.

Given the lossless elastic process it describes, (S 6) raises an oscillatory behaviour. In reality (Liger-
Belair et al., 2019), the wavy surface of the stopper associated with its axial movement through the
opening is rapidly damped by viscoelastic effects. Despite their entire neglect (last but not least, due to
the lack of reliable data), the self-consistency of our simplified model, based on the premises (I) and
(II) above, suggests a sufficiently reliable description of the expansion process. In order to suppress
unphysically exaggerated oscillations, it is stopped for each value of 𝑧 at the instance of 𝑡 where 𝑅

reaches 𝑟𝐶 such that 𝑅 = 𝑟𝐶 for all later times. The relaxation is taken as completed when 𝑅 = 𝑟𝐶 for
all values of 𝑧 along the stopper. We term the time needed to achieve this state relaxation time. Finally,
𝐹𝑏, 𝐹𝑡 and 𝐹𝑙𝑠 in (17) and (19) can be evaluated.

Standard numerical integration of ¤𝑅 yields a reliable, universal value of approximately 40 𝜇s for the
relaxation time. The expansion of the base and of the top faces of the stopper predicted by our model is
visualised in figure S 2.
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Supplement D. Technical details of discretisation

Here we provide the interested reader with specific information concerning the numerical discretisation.
Emphasis is placed on the dynamics of the stopper.

D.1. Realisation of boundary conditions

At first, we want to support the understanding of the implementation of the boundary conditions,
discussed in section 3.2, with the graphical illustration in figure S 3.
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Figure S 3. (a) Extrapolation condition and (b) no-penetration condition with a boundary velocity of
𝑣𝐶 . Ghost cells in both figures are to the right and their total number is 𝑁𝐺 = 2. 𝑁𝑙 is the last cell inside
the computational domain and 𝑚-1/2 is the surface index of the solid body.

D.2. Gas–stopper interaction

In order to assign the initial solution vector Q0 to the correct position on the grid of the computational
domain, functions must be defined which return the index of the cell interface nearest to a given point,
denoted by the argument of an array inside square brackets. For a two-dimensional array the first index
𝑖 always refers to the 𝑖-th cell interface in the 𝑧-direction and the second one 𝑗 to the index in the 𝑟-
direction, not depicting their potential dependence on time in any further equation. The opening of the
bottle with index 𝑏𝑜 and the one for the base surface of the stopper 𝑐𝑏 (𝑡) are evaluated by

𝑏𝑜 :
��𝑍𝑖 [𝑏0]�� → min , 𝑐𝑏 (𝑡) :

��𝑍𝑖 [𝑐𝑏 (𝑡)] − 𝑍 (𝑡)
�� → min , (S 8)

where 𝑍𝑖 is the array containing all cell interfaces in the 𝑧-direction. While 𝑏𝑜 and 𝑐𝑏 only possess one
numerical value for each time step, the indices of the inner surface of the bottle 𝑏𝑖𝑠 and the ones for the
lateral surface of the stopper 𝑐𝑙𝑠 must be defined as an array with index 𝑖, including all cell interfaces
with an index of 𝑗 and a position 𝑅𝑖 [ 𝑗] in the 𝑟-direction for which the following conditions are fulfilled:

𝑏𝑖𝑠 [𝑖] :
���𝑅𝑖

[
𝑏𝑖𝑠 [𝑖]

]
− 𝑟𝐵

(
𝑍𝑖 [𝑖]

) ��� → min , 𝑖 = 0, . . . , 𝑏𝑜 − 1 ,

𝑐𝑙𝑠 (𝑡) [𝑖] :
���𝑅𝑖

[
𝑐𝑙𝑠 (𝑡) [𝑖]

]
− 𝑅

(
𝑍𝑖 [𝑐𝑏 (𝑡) + 𝑖], 𝑡

) ��� → min , 𝑖 = 0, . . . , 𝑐𝑙 − 1 .
(S 9)

Here 𝑐𝑙 = 𝑏𝑜 − 𝑐𝑏 (𝑡0) is the total number of cells occupied by the stopper in the 𝑧-direction, whereas
𝑡0 is the starting time of the simulation. Here 𝑏𝑜 and 𝑐𝑙 are excluded because the last interface index
corresponds to the first cell centre index outside the given object.

In order to fulfil the given boundary conditions, an indicator field, ind[𝑖, 𝑗], is laid over the compu-
tational domain where its values refer to the type of material: 0 to fluid; 1 to bottle; 2 to stopper. Only
if the corresponding values between two neighbouring cells are different, the boundary conditions are
applied. The initial indicator field, ind0, has the following form:

ind0
[
𝑖, 𝑗

]
=


1: 𝑖 = 0, . . . , 𝑏𝑜 − 1 , 𝑗 = 𝑏𝑖𝑠 [𝑖], . . . , 𝑏𝑜𝑠 [𝑖] − 1 ,

2: 𝑖 = 𝑐𝑏 (𝑡0), . . . , 𝑐𝑡 (𝑡0) − 1 , 𝑗 = 0, . . . , 𝑐𝑙𝑠 (𝑡0) [𝑖 − 𝑐𝑏 (𝑡0)] − 1 ,

0: else .
(S 10)
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(a) (b)

Figure S 4. (a) Fluid cells contributing to 𝐹𝑙𝑠: the stopper occupies the grey cells, the fluid the remaining
ones; the red cells reduce and the green ones increase 𝐹𝑙𝑠; the blue lines indicate the values of
𝐼𝑙𝑠 = {1, 3, 5, 8, 11}. (b) Shifted fluid cells (light-green) due to axial movement of the stopper.

Here 𝑐𝑡 (𝑡) = 𝑐𝑏 (𝑡) + 𝑐𝑙 is the index of the top interface of the stopper and 𝑏𝑜𝑠 [𝑖] = 𝑏𝑖𝑠 [𝑖] + Δ 𝑗𝑏 are the
indices of the outer surface of the bottle with a constant total number of glass cellsΔ 𝑗𝑏 in the 𝑟-direction.

The pressure forces on the base and top surface can now be discretised as

𝐹𝑏 (𝑡) ≈ 2πΔ𝑟

𝑐𝑙𝑠 (𝑡 ) [0]−1∑︁
𝑗=0

𝑅𝑖 [ 𝑗] 𝑝(𝑡) [𝑐𝑏 (𝑡) − 1, 𝑗] , 𝐹𝑡 (𝑡) ≈ 2πΔ𝑟

𝑐𝑙𝑠 (𝑡 ) [−1]−1∑︁
𝑗=0

𝑅𝑖 [ 𝑗] 𝑝(𝑡) [𝑐𝑡 (𝑡), 𝑗] , (S 11)

where 𝑖 = −1 indicates the last entry, for instance 𝑐𝑙𝑠 (𝑡) [−1] = 𝑐𝑙𝑠 (𝑡) [𝑐𝑙 − 1]. Due to the expansion of
the stopper being faster than its axial motion, for a short period of time 𝑐𝑙𝑠 (𝑡 > 0) [0] can be bigger
than 𝑏𝑜𝑠 [−1], while 𝑐𝑏 (𝑡 > 0) is still equal to 𝑏𝑜. Therefore the gas still trapped inside the bottle and
the ambient air can both contribute to 𝐹𝑏, splitting the sum in (S 11.1) into∑︁

𝑗

→
∑︁
𝑗1

+
∑︁
𝑗2

: 𝑗1 = 0, . . . , 𝑏𝑖𝑠 [−1] − 1 , 𝑗2 = 𝑏𝑜𝑠 [−1], . . . , 𝑐𝑙𝑠 (𝑡) [0] − 1 . (S 12)

While 𝐹𝑏 and 𝐹𝑡 are integrated over 𝑟, the pressure force 𝐹𝑙𝑠 acting on the lateral surface of the stopper
must be integrated over 𝑧. This is referenced by the first sum in

𝐹𝑙𝑠 (𝑡 ≥ 0) ≈ 2πΔ𝑟
∑︁

𝑖∈ 𝐼𝑙𝑠 (𝑡 )

∑︁
𝑗

±
𝑅𝑖 [ 𝑗] 𝑝(𝑡) [𝑐𝑏 (𝑡) + 𝑖, 𝑗] . (S 13)

The array 𝐼𝑙𝑠 contains the indices relative to 𝑐𝑏 (𝑡) of all fluid cells in the 𝑧-direction contributing to
𝐹𝑙𝑠 . For bigger surface gradients, multiple cells can possess the same entry in 𝐼𝑙𝑠 (see figure S 4a),
explaining the second sum in (S 13), which is defined as

∑︁
𝑗

±
=


∑𝑐𝑙𝑠 (𝑡 ) [𝑖−1]−1

𝑗=𝑐𝑙𝑠 (𝑡 ) [𝑖+1] : 𝑐𝑙𝑠 (𝑡) [𝑖 − 1] > 𝑐𝑙𝑠 (𝑡) [𝑖 + 1] ,

−∑𝑐𝑙𝑠 (𝑡 ) [𝑖+1]−1
𝑗=𝑐𝑙𝑠 (𝑡 ) [𝑖−1] : 𝑐𝑙𝑠 (𝑡) [𝑖 − 1] < 𝑐𝑙𝑠 (𝑡) [𝑖 + 1] ,

𝑖 ∈ 𝐼𝑙𝑠 (𝑡) : 0 < 𝑖 < 𝑐𝑙 − 1 . (S 14)

This distinction is necessary to describe fluid cells acting on left (S 14, top row) and right (S 14, bottom
row) interfaces describing the discrete lateral surface of the stopper. As an immediate consequence of
its expansion, 𝐼𝑙𝑠 and therefore also

∑
𝑗
± can change at every time step.



S-6 Flow

Figure S 5. Cell updates for 𝑡𝑛 < 0 (a) and 𝑡𝑛 ≥ 0 (b). The green fluid cells update the light green ones
behind the stopper (grey). While the cells of the bottle (blue) keep their initial values, the cells of the
stopper marked with orange crosses have to be changed accordingly (ind=2, 𝑄=NaN).

D.3. Axial motion of the stopper

The spatially continuous motion of the stopper for discrete but variable time steps was already shown in
(20). 𝑡𝑛 = 0 is thereby defined as the point in time, when 𝑐𝑏 (𝑡𝑛) = 𝑏𝑜 for the first time. The result in (20)
is then used to calculate 𝑐𝑏 (𝑡𝑛+1) with (S 8), performing the following updates only if 𝑐𝑏 (𝑡𝑛+1) ≠ 𝑐𝑏 (𝑡𝑛).

1. Check if 𝑐𝑏 (𝑡𝑛+1) − 𝑐𝑏 (𝑡𝑛) = 1, otherwise the stopper has moved too fast and a smaller Δ𝑡𝑛 must
be chosen.

2. All values of 𝐼𝑙𝑠 increase by one due to the stopper moving exactly one cell.
3. The cells behind the stopper are now fluid cells,

ind[𝑐𝑏 (𝑡𝑛), 𝑗] = 0 : 𝑗 =

{
0, . . . , 𝑏𝑖𝑠 [𝑐𝑏 (𝑡𝑛)] − 1: 𝑡𝑛 < 0 ,

0, . . . , 𝑐𝑙𝑠 (𝑡𝑛) [0] − 1: 𝑡𝑛 ≥ 0 ,
(S 15)

and are filled with the same values as the ones to their left:

Q[𝑐𝑏 (𝑡𝑛), 𝑗] = Q[𝑐𝑏 (𝑡𝑛) − 1, 𝑗] . (S 16)

4. At that moment when there is only a single cell between the bottle opening and the stopper
(𝑐𝑏 (𝑡𝑛+1) = 𝑏𝑜 +1) in the 𝑧-direction, the values of the cells in between these two objects are taken
from the ones above the bottle:

Q
[
𝑏𝑜, 𝑗

]
= Q

[
𝑏𝑜 − 1, 𝑗 + Δ 𝑗𝑏

]
: 𝑗 = 𝑏𝑖𝑠 [−1], . . . , 𝑏𝑜𝑠 [−1] − 1 . (S 17)

5. Finally, the cells occupied by the stopper are updated in such a way (see figure S 5) that

Q[𝑐𝑏 (𝑡𝑛+1) + 𝑖, 𝑗] = NaN ,

ind[𝑐𝑏 (𝑡𝑛+1) + 𝑖, 𝑗] = 2 ,

}
: 𝑖, 𝑗 =

{
𝑐𝑙 − 1, 0, . . . , 𝑏𝑖𝑠 [−1] − 1: 𝑡𝑛 < 0 ,

0, . . . , 𝑐𝑙 − 1, 0, . . . , 𝑐𝑙𝑠 (𝑡𝑛+1) [𝑖] − 1: 𝑡𝑛 ≥ 0 .
(S 18)

D.4. Radial expansion of the stopper

While the axial motion of the stopper is characterised by updating 𝑐𝑏, the indices of the lateral surface
have to be computed prior to that because when assigning the new ind- and Q-values, (S 18) already
uses 𝑐𝑙𝑠 for the new time frame 𝑡𝑛+1. The temporally discrete radius of the stopper 𝑅𝑛 [𝑖] is spatially
continuous with respect to 𝑟 , but is defined as an array with index 𝑖 = 0, . . . , 𝑐𝑙 − 1, describing its
discrete nature with respect to 𝑧. The expansion speed ¤𝑅𝑛 is evaluated as mentioned in (S 6), exchanging
𝑅(𝑧, 𝑡) → 𝑅𝑛 [𝑖], 𝑍 (𝑡) → 𝑍𝑛 and 𝑧 → 𝑍𝑖 [𝑐𝑏 (𝑡𝑛) + 𝑖]. The latter two are the discrete arguments of 𝑟𝐶
(𝑍𝑖 − 𝑍𝑛). 𝑅𝑛+1 [𝑖] is computed with the explicit Euler method. In a following step, 𝑅𝑛+1 [𝑖] is used in
(S 9.2), finding the solution for 𝑐𝑙𝑠 (𝑡𝑛+1) [𝑖]. If 𝑐𝑙𝑠 (𝑡𝑛+1) ≠ 𝑐𝑙𝑠 (𝑡𝑛) is true for at least one entry, 𝐼𝑙𝑠 (𝑡𝑛+1)
and

∑±
𝑗 are updated accordingly.
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Next, the algorithm for the axial motion of the stopper starts off, updating Q, 𝑍 and 𝑅, the first two
only if necessary. The only exception is the last step, described in (S 18), which must be applied even if
the sole discrete motion of the stopper is its radial expansion for the given time frame, increasing the
number of cells occupied by the stopper. If the object also or exclusively moves axially at that instant,
the whole body is shifted along the 𝑧-axis, which requires proper allocation of the new fluid cells (see
figure S 4b):

ind[𝑐𝑏 (𝑡𝑛+1) + 𝑖, 𝑗] = 0 ,

Q[𝑐𝑏 (𝑡𝑛+1) + 𝑖, 𝑗] = Q[𝑐𝑏 (𝑡𝑛) + 𝑖, 𝑗]

}
:

{
0 ≤ 𝑖 < 𝑐𝑙 − 1, 𝑐𝑙𝑠 (𝑡𝑛) [𝑖] < 𝑐𝑙𝑠 (𝑡𝑛) [𝑖 + 1] ,

𝑗 = 𝑐𝑙𝑠 (𝑡𝑛) [𝑖], . . . , 𝑐𝑙𝑠 (𝑡𝑛) [𝑖 + 1] − 1 .
(S 19)

(S 19) is only invoked during the expansion phase since fluid cells need no longer to be shifted along
the lateral surface of the stopper after it has reached its relaxed state. Furthermore, it is important that
the shift of indices happens before (S 18); otherwise, newly created solid cells are shifted instead.
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