Supplementary Figure S1

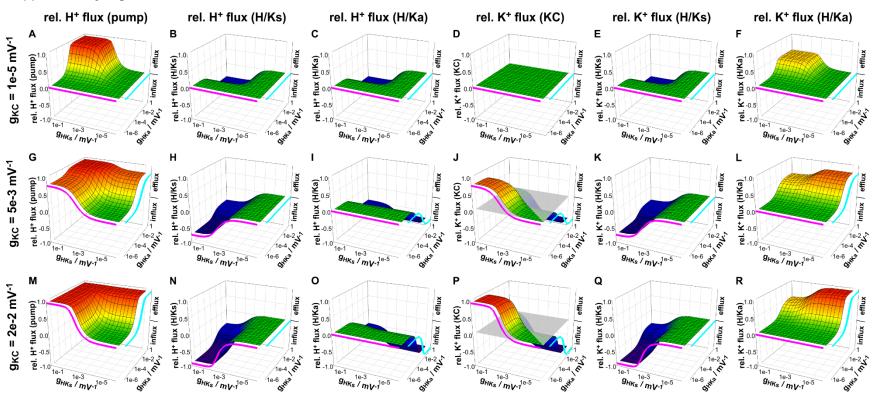


Figure S1. H⁺ and K⁺ fluxes through the different transporters in homeostatic (steady state) conditions. Dependency of the H⁺ and K⁺ fluxes on the activities of the K⁺ channels (g_{KC}), H⁺/K⁺ symporters (g_{HKs}) and H⁺/K⁺ antiporters (g_{HKa}). (**A**, **G**, **M**) Relative H⁺ flux mediated by the H⁺ ATPase. (**B**, **H**, **N**) Relative H⁺ flux mediated by the H⁺/K⁺ symporter. (**C**, **I**, **O**) Relative H⁺ flux mediated by the H⁺/K⁺ antiporter. (**D**, **J**, **P**) Relative K⁺ flux mediated by the K⁺ channel. (**E**, **K**, **Q**) Relative K⁺ flux mediated by the H⁺/K⁺ symporter. (**F**, **L**, **R**) Relative K⁺ flux mediated by the H⁺/K⁺ antiporter. The fluxes are shown relative to the maximal H⁺ efflux that can be generated by the H⁺ ATPase ($J_{Hmax} = I_{Hmax}/e_0$). Data were calculated for the case $n_s = 1$, $n_a = 1$, $V_{0,pump} = -200$ mV, and $E_H = +57.6$ mV (Δ pH = 1). The magenta lines show the values in the absence of active H⁺/K⁺ antiporters ($g_{HKa} = 0$), whereas the cyan lines indicate the values in the absence of active H⁺/K⁺ symporters ($g_{HKs} = 0$).

Supplementary Figure S2

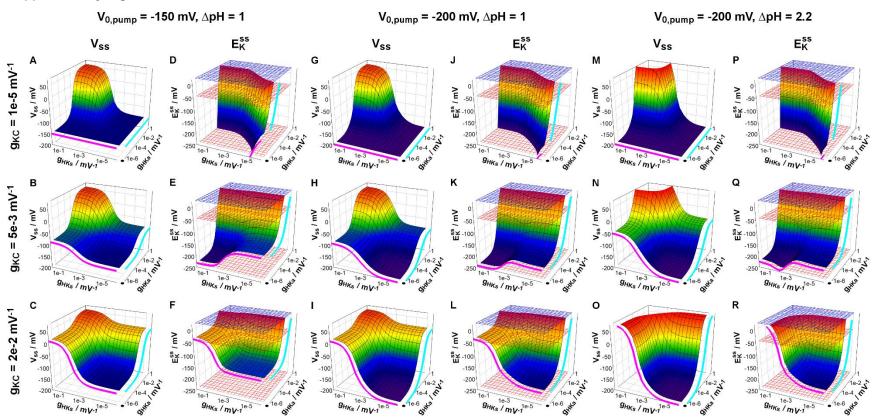


Figure S2. Membrane voltage and K⁺ gradient in homeostatic (steady state) conditions for different values of V_{0,pump} and E_H. Membrane voltage (V_{SS} , A-C, G-I, M-O) and K⁺ gradient (E_K^{SS} , D-F, J-L, P-R) in steady state for selected values of the activity of K⁺ channels (g_{KC}), H⁺/K⁺ symporters (g_{HKS}) and H⁺/K⁺ antiporters (g_{HKS}). Data were calculated for the case n_S = 1, n_A = 1, with (A-F) $V_{0,pump}$ = -150 mV, and E_H = +57.6 mV (Δ pH = 1), (G-L) $V_{0,pump}$ = -200 mV, and E_H = +57.6 mV (Δ pH = 1), and (M-R) $V_{0,pump}$ = -200 mV, and E_H = +126.6 mV (Δ pH = 2.2). The magenta lines show the values in the absence of active H⁺/K⁺ antiporters (g_{HKA} = 0), whereas the cyan lines indicate the values in the absence of active H⁺/K⁺ symporters (g_{HKS} = 0). The blue and red meshes limit roughly the physiologically relevant ranges for E_K^{SS} (between +20 mV, i.e. [K⁺]_{out}/[K⁺]_{in} ≈ 267mM/120mM and -50 mM, i.e. [K⁺]_{out}/[K⁺]_{in} ≈ 16mM/120mM, for an endomembrane, and between -50 mV and -250 mV, i.e. [K⁺]_{out}/[K⁺]_{in} ≈ 5µM/120mM, for the plasma membrane).

Supplementary Figure S3

 $V_{0,pump} = -150 \text{ mV}$

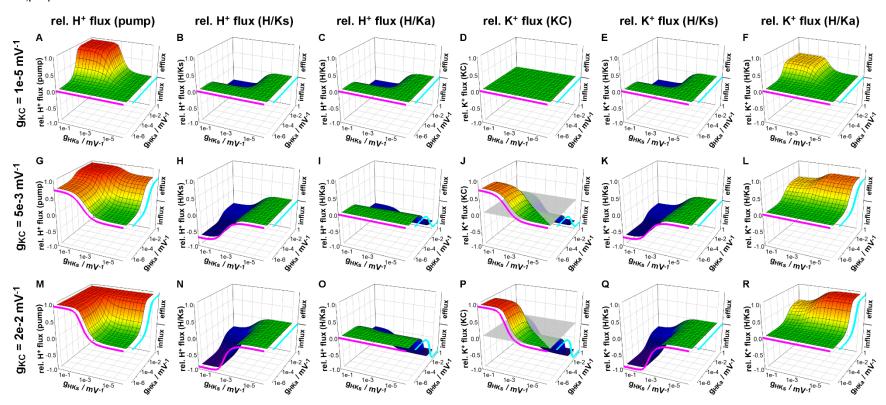


Figure S3. H⁺ and K⁺ fluxes through the different transporters in homeostatic (steady state) conditions for $V_{0,pump} = -150$ mV. Dependency of the H⁺ and K⁺ fluxes on the activities of the K⁺ channels (g_{KC}), H⁺/K⁺ symporters (g_{HKs}) and H⁺/K⁺ antiporters (g_{HKs}). (**A**, **G**, **M**) Relative H⁺ flux mediated by the H⁺/K⁺ symporter. (**C**, **I**, **O**) Relative H⁺ flux mediated by the H⁺/K⁺ antiporter. (**D**, **J**, **P**) Relative K⁺ flux mediated by the K⁺ channel. (**E**, **K**, **Q**) Relative K⁺ flux mediated by the H⁺/K⁺ symporter. (**F**, **L**, **R**) Relative K⁺ flux mediated by the H⁺/K⁺ antiporter. The fluxes are shown relative to the maximal H⁺ efflux that can be generated by the H⁺ ATPase ($J_{Hmax} = I_{Hmax}/e_0$). Data were calculated for the case $n_s = 1$, $n_a = 1$, $V_{0,pump} = -150$ mV. The magenta lines show the values in the absence of active H⁺/K⁺ antiporters ($g_{HKa} = 0$), whereas the cyan lines indicate the values in the absence of active H⁺/K⁺ symporters ($g_{HKs} = 0$).