Intermittent cell division dynamics in regenerating Arabidopsis roots reveals complex long-range interactions

T. Fallesen^{1,2}, S. Amarteifio³, G. Pruessner³, H. J. Jensen^{3,4}, G. Sena^{1*}

¹Department of Life Sciences, Imperial College London, UK. ²Crick Advanced Light Microscopy, Francis Crick Institute, London, UK. ³Department of Mathematics, Imperial College London, UK. ⁴Centre for Complexity Science, Imperial College London, UK

* Author for correspondence: g.sena@imperial.ac.uk

Rot Apical Elongation Zone Zone

SUPPLEMENTARY FIGURES

Supplementary Figure S1. Diagram of the *Arabidopsis* primary root tip. Cell proliferation occurs in the apical meristem, which is where the CYCB1;1::GFP signal was imaged in this work. In regenerating roots, the excision was performed right above the stem cell niche (red cells).

Supplementary Figure S2. (Top) Raw data with maximum intensity projections from time-lapse imaging of a representative regenerating primary root in *Arabidopsis* expressing CYCB1;1::GFP; the white blobs are GFP-positive cells, indicating mitotic events (arrows in the first panel point at some examples). (Bottom) Magnified version of the 66 hours frame, showing three clusters of events; Magenta, regions with 8.24 µm diagonal (see main text); Green, regions with 24.72 µm diagonal (see main text).