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A Retrieval-augmented generation (RAG)

In RAG systems, LLM generation needs not rely exclusively on facts implicitly encoded
in model weights, but instead can make use of external data sources [1]. Specifically,
the RAG architecture generally comprises two separate components: a retriever and a
reader, also known as generator. The retriever gathers relevant facts from external data
sources and the reader, which can be any text-to-text model, processes the retrieved data
to respond to input questions. As data sources can be updated at a relative low cost and
independently from LLM training, RAG systems are capable of incorporating new data in
their responses without needing to update LLM weights.

The performance of RAG systems is generally sensitive to retrieval success and the abil-
ity of the LLM-reader to process long context windows. Ideally, the retrieved data should
contain all the necessary information to answer a given question (high recall) and mini-
mal amount of irrelevant data (high precision). The simplest data store is a collection of
unstructured text documents. Despite advances in text search methods such as BM25 [2]
and semantic search [3], this type of data repository suffers from relatively low retrieval
recall and precision, which force the reader component to fall back on its internal knowl-
edge. Structured data stores such as knowledge graphs and RDBMS databases can enable
more targeted retrieval, but they require annotation efforts for data instantiation and more
elaborate retrieval methods. With semi-structured data, a mix of retrieval strategies can
be leveraged and retrieval performance can be tuned accordingly.

Of relevance to TWA are retrieval methods for knowledge graphs, which fall under two
broad categories: semantic parsing and information retrieval. Semantic parsing-based
systems convert user queries in natural language to a query language compatible with
the underlying data store, such as SPARQL', Cypher [4], S-expression [5], KoPL [6], or
formulated as a program in a general-purpose language like Python [7, 8]. Meanwhile,
information retrieval-based systems extract fragments of knowledge graphs by performing
relation classification [9, 10] and vector similarity search [11]. Although the information
retrieval approach is generally simpler to implement, it is unable to capture higher-order
query operations and often suffers from low recall. Meanwhile, the approach of semantic
parsing can capture complex constraints such as numerical comparisons and global-level
operations, but the development of an accurate semantic parser is not as straightforward.

Advances in NLP capabilities of LLMs have made the development of semantic parsers
easier, rendering semantic parsing the generally preferred approach. Exemplary methods
include logical query construction as a multi-step search problem [12] and draft-then-
refine, whereby a candidate logical form is first generated via zero-shot [13] or in-context
few-shot learning [7, 14, 15] and is then refined to improve alignment to query intent and
the knowledge base’s schema.

One example of a RAG system for reticular chemistry is MOF Chatbot [16]. However,
it operates on the level of documents and requires LLMs that can handle long context
windows. It also might not be able to handle multi-hop questions due to the inherent
limitations of document-RAG.

Thttps://www.w3.org/TR/sparql11-query/



B In-context learning

A technique commonly employed in this usage of LLMs is in-context few-shot learning
[17], whereby LLMs are provided with a few examples of text input-output pairs at test
time, which help align LLM’s behaviour with user expectation. In this section, we pro-
vide an overview of in-context learning, including its definition, variants of its setup, and
factors influencing its performance.

B.1 Formulation

Few-shot in-context learning, or in-context learning for short, refers to the ability of a
model to learn to perform tasks when provided with few demonstrations, also known as
examples, and without updating its weights. Formally, given an input text x, text gener-
ation model f, instruction /, and demonstration set D = {(x1,y1), .., (X, yx) }, the model
outputs the label y of x as y = f(I,D,x). Although in-context learning was first reported in
the GPT-3 model as part of the line of research that experiments with model scaling [17],
it has been shown that smaller models can also be trained to perform in-context learning
[18].

B.2 Variations

Common variations in in-context learning setups differ in the construction of demonstra-
tion set D, output processing, and instruction construction.

A demonstration set can be fixed at inference time, generally for simple tasks that can be
handled with a small number of demonstrations. Retrieval of a demonstration subset is re-
quired for complex tasks that are accompanied by a training set that cannot be reasonably
fit into the context window of an LLM. Even for LLMs with long context windows, in-
discriminate inclusion of demonstrations in LLM prompts might slow down or introduce
noise to inference.

Output processing is any additional treatment applied to LLM output meant to obtain
a better result than direct LLM decoding. For example, in a workflow that employs the
self-consistency check, an LLLM is invoked multiple times to obtain a set of n outputs, of
which the majority vote decides the final result [7, 14].

Construction of instruction input into LLMs can be fixed or dynamically adapt to every
input query to enhance semantic parsing quality. For instance, knowledge base relations
that are the most semantically similar to user questions may be inserted into the LLM
prompt to minimise hallucination of non-existent schema elements [7].



C Marie’s implementation

Unlike standalone large language model (LLM)-based chatbots that tend to hallucinate
scientific facts in low-resource domains, ‘Marie’ provides fact-oriented responses by aug-
menting LLM generation with data retrieved from TWA [19, 20]. Furthermore, ‘Marie’
displays a fine-grained understanding of user intent owing to its semantic parsing com-
ponent, which can accurately represent logical expressions such as ‘boiling point greater
than 100°C’—an ability that embedding-based methods found in conventional vector-
based retrieval-augmented generation (RAG) systems lack.

C.1 Input rewriter

Our system relies on in-context learning to detect physical quantities broken down into
magnitudes, units, and quantity types. Refer to Fig. S1 for the structure of the prompt.
Unit conversion is done using the Pint library”, whereby the target unit is looked up based
on the quantity type; if no target unit is registered for a quantity type, the quantity will be
converted to the SI base units.

( \
Instruction:

Your task is to detect physical quantities in natural language texts
based on the examples given. Please ignore physical quantities
with no units and respond with a single JSON object exactly, or
‘null’ if no physical quantities are present.

Input-output examples:
“Find all chemical species with boiling point above 50°C.”

{

"template": "Find all chemical species with boiling point above
= {1"

"quantities": [

{"type": "boiling_ point", "walue": 50, "unit": "degC"}

]
}

“What is the solubility of C6H6?”

Input:
“Find alcohol solvents with a boiling point between 100°C and
120°C”

\ J

Figure S1: LLM prompt for physical quantity detection.

Zhttps://pint.readthedocs.io/en/stable/



Table S1: Characteristics of questions found in our semantic parsing dataset.

Criterion  Variants Example

Answer set  single What is the reference zeolite of framework ABW?

cardinality multiple  Find all steroids with molecular weight around 200 g/mol.

Number of  single Retrieve all MOPs known to have geometric structure (2-bent)x3(3-
constraints pyramidal)x2.

multiple  Find all polymer lubricants with melting point between 200 K and

300 K.
Hop 1 Find transport model of oxygen radical.
distance 2 What are the boiling points of alkenes?
3 Show all transport models of species that can be used as fuels, indi-
cate which reaction mechanisms the data are derived from.
Query yes Compare thermo models of hydrocarbons across all mechanisms
federation they appear in.

no Show the optimised geometry of H2 calculated using MP2.

C.2 Semantic parser

The semantic parsing dataset are manually crafted to cater to diverse information needs
within the chemical realm of TWA. The examples display varying levels of complexi-
ties, such as single- and multi-hop questions, single- and multi-constraint questions. No-
tably, we include queries that require federation over multiple SPARQL endpoints, such
as “Compare thermo models of hydrocarbons across all mechanisms they appear in.”.
Here, the information of which species are classified as hydrocarbon is located in the
ontospecies triplestore, while thermo model data are stored in the ontokin triplestore.
For a full analysis of question characteristics, see Table S1.

Our prompt template contains three slots for the input query, relevant knowledge base
relations and semantic parsing demonstrations. Both semantic parsing examples, and
knowledge base relations are retrieved on-demand by vector similarity search, with the
user question as the search query. Each semantic parsing demonstration (x;,y;) is rep-
resented by the embedding of the input query, i.e. fspgrr(¥;), While each relation r is
represented by the embedding of its formatted rdfs:label and rdfs:comment at-
tributes, Le. f S-BERT © f format(ardfszlabebardfs:comment)- We retrieve kKG,relations = 10 relations
and Kgemonstrations = 10 demonstrations without tuning these parameters. See Fig. S2 for an
example of how our prompt is constructed.



Instruction:

Your task is to translate the input question to an executable data
request based on the provided relations and semantic parsing
examples. Please respond with a single JSON object exactly.

Relations:
{
"IRI": "os:hasUse",
"comment": "A relation between a species and its uses or

— applications."

}

Input-output examples:
“What are some common usages of aromatic compounds?”

{

"var2cls": { "ChemicalClass": "os:ChemicalClass", "Use": "os:Use"
= 1

"entity bindings": { "ChemicalClass": ["aromatic compound"] 1},
"triplestore": "ontospecies",

"query": "SELECT DISTINCT ?ChemicalClass ?Use WHERE { ?Species

— os:hasChemicalClass/rdfs:subClassOf* ?ChemicalClass . ?Species

< os:hasUse ?Use . }"

}

“What chemicals can be used to regulate pH?” =>

Input:
“Find chemicals commonly used as fuels”

Figure S2: LLM prompt for semantic parsing.

C.3 Entity linking

Table S2 summarises strategies for entity linking used in Marie, and Fig. S3 illustrates the
entity linking logic for entities of class AssemblyModel.



Table S2: Summary of entity linking strategies and their corresponding illustrative exam-
ples. Entities to be linked are in bold.

Example

Strategy Input question Entity linking logic

Inverted index “Whatisthe charge Match against all rdfs:label, skos:altLabel,
lookup of benzene?” TUPAC names, molecular formulae, and SMILES
strings of Species nodes.

Semantic “What chemicals Perform semantic search over the labels of all Use

search can be used to nodes;entity with label “pH regulator” is matched.
regulate pH?”

RDF subgraph “Find MOPs with Execute RDF graph query that matches any

matching assembly model (4- AssemblyModel entities that are linked to exactly
pyramidal)x6(2- six units of 4-pyramidal and twelve units of 2-bent
bent)x12?” GenericBuildingUnit nodes.

PREFIX : <https://

.thewozldava:ar.com/J

< kg/ontomops/>

SELECT DISTINCT ?AM WHERE ({
?AM :hasGenericBuildingUnit ?GBU1;

-Generic _,:hasModuIarity :hasGenericBuildingUnitNumber ?GBUNuml.
g — . 2 . i Ne o i
i;ﬂmngU:s\ -hasPlanarity. "pyramidal” ?GBU1 .hasgzd?larlty 4; :hasPlanarity
. — "pyramidal".
:hasGeneric isNumberOf -Generic ?GBUNuml :isNumberOf ?GBU1l ;
BuildingUnit o . R i : i 6
uildingUni hasGeneric_ BuildingUnit Nuﬁiig&;ﬁue @ — :hasUnitNumberValue 6.
BuildingUnit Number
:Assembly Number ?AM :hasGenericBuildingUnit ?GBU2;
Model ‘hasGeneric — :hasGenericBuildingUnitNumber ?2GBUNum2.
BuildingUnit :Generic . : . q L. q
~ Number \)BuildingUnit :hasUnit ?GBU2 :hasModularity 2; :hasPlanarity
:hasGeneric / Nuiiler NumberValue . <  "pent".
BuildingUnit .\ umberof 2GBUNum2 :isNumberOf ?GBU2;
/ ] ) < :hasUnitNumberValue 12.
:Generic |_—hasModularity

BuildingUnit \:hasPIanarity FILTER NOT EXISTS ({

?AM :hasGenericBuildingUnit ?GBUExclude.
(S3(a)) FILTER ( ?GBUExclude NOT IN ( ?GBUL ,
< ?GBU2 ) )

(S3(b))

Figure S3: [llustration of RDF subgraph matching as a strategy for entity linking. (a) The
ABox subgraph that defines the assembly model (4-pyramidal)x6(2-bent)x12.
(b) the SPARQL query to determine the IRI of this entity.



D Model verification

In contrast to pre-trained general-purpose LLMs, Marie is limited to the domain knowl-
edge that can be retrieved from the connected knowledge graphs. It performs extremely
well within the confines of the domain knowledge model and fails outside of these bounds,
which makes comparing traditional benchmarks unnecessary. An in-depth comparison
was nonetheless provided for a previous (less capable) version of Marie by Tran et al.
[21]. For this specific work, an analysis and rudimentary comparison is shown in Tab. S3.

Table S3: Analysis of Marie’s capability to retrieve MOPs information based on example
questions and comparison with augmented ChatGPT.

. Marie® ChatGPT”
Question
speed® repeatability accuracy® | accuracy
What are all the MOPs with the CBU formula
[MgdCS6H7601254]? 10.4s 10/10 24.0/24 6/24
Give me all MOPs with a geometric structure
of (5-pyramidal)x 12(3-planar)x20. o-1s 10710 12.0/12 112
Return all assembly models based on the
CBU [(C6H3)O(CH2)13CH3(C02)2]. 738 10710 3073 213
What assembly models are representative of 596 10/10 502 1\
icosahedral geometry?
Find the modularity of CBU
[(C3N3)(C6H4)3(CO2)3]. 6.7s 10/10 1.0/1 0/1
What is the provenance of the informa-
tion about MOP [V302(OH)2(HCO2)3]4 | 7.6s 10/10 1.0/1 0/1
[(C6H4)(C3H2N2)2]6?
What MOPs are associated with DOI
10.1016/j.chempr.2017.02.002? 6.4 1010 1071 o
Whlch cherl}lcal 'bu'lldmg 'unlts are used as 2- 705 10/10 17.0/17 017
linear generic building units?
¢ Version 6 b Version GPT-40 ¢ Average values after asking each question 10 times separately.

Eight representative example questions (not from training set) were asked 10 times each
to prove repeatability and answers checked regarding their accuracy and response speed.
Speed was measured for the KG information retrieval, generating an additional natural
language response takes a bit longer. Average speeds between 5 and 10 seconds are sat-
isfactory for our use case and seems to not only depend on the number of items retrieved
but also complexity of the query.

With Marie, the same and correct results were achieved every time. Based on the question,
one or more items are retrieved (e.g. 24 MOPs in the first question or a single number in
the fifth question). For a fair comparison, ChatGPT (version GPT-40) was provided with

8



manuscript and supplementary information files of Kondinski et al. [22]. These contain
all information required to answer the questions. As expected, it shows some success but

none of the answers are complete and more complex questions could not be answered at
all.
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