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A. Appendix
A.1. Choice of NN architecture
We experimented with ResNet and UNet architectures for the neural network part of the purely data
driven and hybrid NN-PDE approach discussed in section 3.3 of the main paper. Table A.1 provides
details of the convolutional blocks, layers of the network, and activation function. The UNet32 archi-
tecture with 2 layers is used for 32 × 32 cases and the UNet100 architecture with 3 layers is used for
100 × 100 case discussed in the paper. Table A.2 shows the comparison between MAPE achieved by
ResNet and UNet architectures for the purely data-driven and the hybrid NN-PDE approach for dif-
ferent cases considered in the paper. For the hybrid NN-PDE approach with 32 × 32 resolution cases,
the ResNet and UNet achieve comparable performance with the UNet yielding the lowest error. The
main difference arises in the 100 × 100 resolution case. The ResNet fails to converge during training,
leading to high test error. On the contrary, the UNet achieves low training and testing errors. The main
advantage of UNet comes from transforming high resolution input to low resolution representation and
reconstructing it back to the high resolution output. Therefore, we choose the UNet architecture for the
hybrid NN-PDE approach. For the purely data-driven approach the ResNet was found to be better for 2
out of 3 cases. Specifically for the nonUniform-Bunsen32 case, UNet performs very poorly for the PDD
approach. Therefore, we report ResNet errors for the PDD approach throughout the paper.

A.2. Additional Experiments
We additionally compare against the variant of the purely data-driven model described in section 3.2.
It employs a neural network model to learn the complete flow states P𝑐 (𝜙) given an input flow state
𝜙𝑆 where 𝜙𝑆 = [𝑇,𝑌 𝑓 , 𝑌𝑜, 𝑢, 𝑝]. Keeping all hyperparameters the same, the ResNet is trained to predict
all quantities of flow state for nonUniform-Bunsen32 case. As the PDD approach does not enforce
any physical laws, the inclusion of additional quantities results in a more difficult learning task, which

Table A.1. Details of various neural network architectures used in this paper.
Hyper-parameters ResNet UNet32 UNet100

Kernel size 5 5 5
Latent size 32
Activation LeakyReLu LeakyReLu ReLu

Loss MSE MSE MSE
# ResBlocks 5
# UNet layers 2 3

CNN stack depth 2 3 2
Base latent size 16 16

Spatial down-sample by layer 2 2
latent sizes (32) (32,64)

# trainable parameters 261,953 136,227 362,371

Table A.2. Mean and standard deviation of errors over different architectures for purely data-driven
and hybrid NN-PDE approaches.

PDD PDD Hybrid NN-PDE Hybrid NN-PDE
ResNet UNet ResNet UNet

M
A

PE

Planar-v0 6.33 ± 3.05% 7.09 ± 4.40% 1.62 ± 0.44% 1.40 ± 0.65%
uniform-Bunsen 7.58 ± 3.73% 2.87 ± 1.53% 2.01 ± 0.99% 0.72 ± 0.37%

nonUniform-Bunsen32 12.48 ± 11.31% 19.19 ± 14.92% 3.25 ± 2.35% 2.04 ± 1.39%
nonUniform-Bunsen100 - - 15.68 ± 10.44% 3.23 ± 3.76%
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Figure A.1. Bar plot of MAPE of temperature field predictions by a purely data-driven model trained
to predict 5 quantities of flow state (PDD-5), PDD model trained to predict 3 quantities of flow state
(PDD), and hybrid NN-PDE model (Hybrid).

given the same number of learnable parameters naturally results in a deteriorated quality of the inferred
results. Figure A.1 shows the MAPE of the temperature field predicted by this new variant (referred
to as PDD-5) with the PDD approach described in section 3.3 and hybrid NN-PDE approach for the
nonUniform-Bunsen32 case. Across all test cases, PDD-5 performs worse with an overall MAPE of
23.45 ± 18.07% than the PDD approach (12.48 ± 11.31%) as problem complexity has increased.
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