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1. The demonstrator’s (computer agent’s) model 

1.1. Overview 

 To set human-like parameters for the demonstrator (computer agent), we conducted a pilot 

experiment in which another set of participants worked on the same task online. Ninety-one students 

at the University of Tokyo (32 females; Mean age ± S.D. = 23.0 ± 1.9) worked on the same 30-armed 

bandit task as used in the main experiment for 100 trials individually without social information. After 

finishing the experiment, participants were compensated according to their task performances (Mean 

± S.D. = 1284 ± 119 JPY).  

 

1.2. Models 

 To develop a model that represents the average behavior of human participants reasonably 

well, we fitted a series of reinforcement learning models (Sutton & Barto, 2018; Wilson & Collins, 

2019) to the behavioral data and estimated behavioral parameters for each participant. In the full model, 

participants update the expected reward of option 𝑘  in response to reward 𝑟  according to the 

Rescorla-Wagner learning rule: 

 

𝑄!"#(𝑘) = 𝑄!(𝑘) + 𝛼)𝑟! − 𝑄!(𝑘)+, (1) 

 

where 𝛼 is the learning rate that takes a value between 0 to 1. We treated the initial value of each 

option, 𝑄$ = 𝑞%&%', as a free parameter. In order to take account of forgetting effect, we assumed that 

the values of unchosen options 𝑘/ return to the initial value according to the following equation: 

 

𝑄!"#)𝑘/+ = 𝑄!)𝑘/+ +	(1 − 𝛼() 1𝑞%&%' − 𝑄!)𝑘/+2 , (2) 

 

where 𝛼( is the forgetting rate. This is a free parameter which ranges from 0 to 1. When 𝛼( = 1, there 
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is no forgetting effect. When 𝛼( = 0, the values of unchosen options immediately return to the initial 

value.  

The overall valuation function consists of the expected reward and the correction term of the 

UCB1 (Upper Confidence Bound) score as follows: 	

	

𝑉!(𝑘) = 𝑄!(𝑘) + 𝜏 ⋅ 8
log 𝑡
𝑇!(𝑘)

, (3) 

 

where 𝑇!(𝑘) is the frequency of choosing option 𝑘 so far, and 𝜏(> 0) is a free parameter that 

governs the degree to which uncertainty is prioritized relative to the expectations of reward. 𝜏 can be 

interpreted as the uncertainty premium of each participant. In other words, when 𝜏  is greater, 

exploration becomes more directed to novel options.  

The probability of choosing option 𝑘 is produced according to the softmax choice rule: 

	

𝑃!(𝑘) =
exp)𝛽 ⋅ 𝑉!(𝑘)+

∑ exp)𝛽 ⋅ 𝑉!(𝑖)+)$
*+#

, (4) 

 

where 𝛽(> 0) is the ‘inverse temperature’ parameter that controls the level of stochasticity in the 

choice, ranging from 𝛽 = 0  for completely random responses to 𝛽 = ∞  for deterministically 

choosing the option with the highest value.  

Overall, the full model has five free parameters: 𝛼 , 𝛼( , 𝛽 , 𝜏 , and 𝑞%&%' . The prior 

distributions for each parameter were defined as follows:  

 

𝛼 ∼ Beta(2,2) (5)	

𝛼( ∼ Beta(2,2) (6)	

𝛽 ∼ Gamma(2,1/3) (7)	

𝜏 ∼ Cauchy"(0,10) (8)	
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𝑞%&%' ∼ Gamma(9.5,10) (9) 

 

 We considered seven sub-models in addition to this full model (see Table S1). These models 

include those in which 𝑞%&%' is fixed at 95 (i.e., the expected reward for one random choice), those in 

which 𝜏 is fixed at 0 (so the participant's uncertainty premium is not considered), and those in which 

𝛼( is fixed to 1 (so there is no forgetting effect). By comparing these models, we aimed to identify a 

computational model that simulates the behaviours of human participants reasonably well.  

 

1.3. Fitting procedure 

 We estimated individual parameters with the Markov Chain Monte Carlo (MCMC) method 

using Stan 2.31.0 (https://mc-stan.org) in R. The models contained at least four parallel chains, and we 

confirmed convergence of the MCMC with the Gelman-Rubin statistics 𝑅\ < 1.1. We calculated WBIC 

from MCMC samples for each model-participant combination and determined the approximate 

goodness of fit for each model by summing these values for all participants. To identify the globally 

best-fitting model, we derived the Widely Applicable Bayesian Information Criterion (WBIC; 

Watanabe, 2013) for each participant-model pair from the MCMC samples.  

 

1.4. Modelling results 

 The result of the model comparison is summarized in Table S1. According to the sum of 

estimated WBICs, the full model (No. 8) fit the behavioural data best. We then calculated the median 

of the maximum a posterior probability (MAP) estimates of the five behavioural parameters under the 

full model and designated the median estimates as the behavioural parameters of the demonstrator to 

be implemented in the main experiment. We confirmed that the performance of the computer agent 

(demonstrator) is approximately equivalent to that of the average human participant in the pilot 

experiment (t(210) = 1.26, d = 0.16, 95% CI [-0.09, 0.40], p = .209; Fig. S1).   
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Model 𝑞%&%' 𝜏 𝛼( Sum of WBIC 

1    14475 

2 x   13587 

3  x  14312 

4 x x  13503 

5   x 14451 

6 x  x 13443 

7  x x 14421 

8 (full model) x x x 13282 

 

  

Table S1. Result of the model comparison. The middle three columns indicate which free 
parameters were included in each model. 
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Fig. S1. Behavioral performance of the demonstrator. (a) Learning curves of the demonstrator 
(computer agent) and human participants. Each curve shows mean reward of the 185 demonstrators 
implemented in the main experiment, and mean reward obtained by the 91 participants in the pilot 
experiment. Trials in which the participants in the main experiment could not observe the preceding 
demonstrator’s behavior were shaded in gray. The vertical dashed line indicates the trial (i.e., the 
30th trial for the demonstrator) after which the participants in the main experiment could switch to 
independent trials any time. (b) Behavioral performance of the demonstrator (in the main 
experiment) and the participants in the pilot experiment, in terms of the quality of chosen option, 
which ranges from 1 (choosing only the worst-category options) to 6 (choosing only the best-
category option). There was no significant performance difference between the demonstrators and 
the participants (t(210) = 1.26, d = 0.16, 95% CI [-0.09, 0.40], p = .209). 
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2. Timing of independence 

  

Fig. S2. Distribution of the timing of independence. 38 (61.3%) participants in the Choice-only 
condition, 31 (50.0%) in the Reward-only condition, and 44 (72.1%) in the Choice-plus-reward 
condition switched to independence right after the mandatory independence phase was over (i.e., 
the 16th trial).  
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3. Individual learning curves of all demonstrator-participant pairs 

 Individual learning curves of all participant-demonstrator pairs are shown in Figs. S3-5. The 

x-axis refers to 100 trials in the experiment (Fig. 1). The solid lines are derived from nonparametric 

regression analysis with locally estimated scatterplot smoothing (LOESS).  
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Fig. S3. Individual learning curves of all demonstrator-participant pairs (Choice-only condition). 
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Fig. S4. Individual learning curves of all demonstrator-participant pairs (Reward-only condition).  
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Fig. S5. Individual learning curves of all demonstrator-participant pairs (Choice-plus-reward 
condition).  
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4. Proportions of choosing each of the 30 options 

 Figs. S6-8 show proportions of the demonstrator’s choices in observational trials (left) and 

the participant’s choices in independent trials (right) over the 30 options. The number above each panel 

indicates the IDs of the demonstrator-participant pairs in each condition. The locations of the 30 

options were identical to those in the experiment. The number in each grid represents the average 

reward of the option. 
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Fig. S6. Proportions of the demonstrator’s choices in observational trials (left) and the participant’s 
choices in independent trials (right) over the 30 options (Choice-only condition).  
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Fig. S7. Proportions of the demonstrator’s choices in observational trials (left) and the participant’s 
choices in independent trials (right) over the 30 options (Reward-only condition). 
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Fig. S8. Proportions of the demonstrator’s choices in observational trials (left) and the participant’s 
choices in independent trials (right) over the 30 options (Choice-plus-reward condition).  
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5. Exploration rates under an alternative definition 

  
  

Fig. S9. Exploration rates based on the combined benchmark with the best option during observation 
and that directly experienced after independence. Although participants in the Choice-only and 
Reward-only conditions were not able to discriminate the best option during the observation period, 
we calculated them as if the best option were known from social information. The exploration rate 
here became higher than in the original definition, suggesting that quite a few participants failed to 
set the best option during the observation period as the default for their independent search. The 
exploration rate was the highest in the Reward-only condition (Med = 0.75), moderate in the Choice-
only condition (Med = 0.52), and the lowest in the Choice-plus-reward condition (Med = 0.36). It 
should be noted the difference between the Choice-only and Choice-plus-reward was not 
statistically significant in this analysis (Wilcoxon rank-sum test: W = 2263, adjusted p = .053), but 
the overall pattern did not change qualitatively.  
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