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1 The evolution of additive altruism

1.1 The role of FST in linear, additive interactions
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Figure A1: Payoff functions for the Prisoner’s Dilemma.
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In a linear cooperative interaction, the expected payoff for each individual i in group j
is

wij = w0 − cxij + bxj (A1)

where xij and xj are the individual and group phenotype, respectively. Parameter b repre-
sents the benefit all individuals in the group experience from the presence of cooperative
phenotypes, while c represents the individual cost for their cooperative behavior, where
b > c > 0.

Because we assume individuals exist within distinct groups, we can employ the multi-
level Price equation to partition total evolutionary change into the covariance dynamics
within and between groups as

w∆x = cov(wj, xj) + E(cov(wij, xij)). (A2)

With linear effects of phenotype on fitness, this expression can be simplified to

w∆x = (b− c)var(xj)− cE(var(xij))

where var(xj) represents the between-group variance in mean phenotype and E(var(xij))
represents the average variance within each group. Since the total variance in the metapop-
ulation, var(x), is equal to the sum of these two quantities per the Law of Total Variance,

= b var(xj)− c
(
var(xj) + E(var(xij))

)
= b var(xj)− c var(x)

Re-expressed with FST = var(xj)/var(x), the difference equation becomes

w∆x = var(x)(b FST − c) (A3)

Thus, altruism will increase in frequency whenever b FST > c, or when FST > c/b (Fig. A2).
Since the FST variance ratio is bounded between 0 and 1, the assumption that b > c is crucial
(Hamilton, 1975).

Taking the derivative of Equation (A3) with respect to FST yields

dw∆x
dFST

= var(x) b

This quantity is necessarily positive, so a marginal increase in within-group diversity (a.k.a.
a decrease in FST) will slow the rate at which cooperative behaviors can spread at any
frequency x.

1.2 Linear, additive fitness in pairwise and N-person games

What kind of interactions give rise to the fitness expression of Eq. (A1)? The default
scenario in evolutionary game theory is the random pairing of agents in a simultaneous,
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Prisoner’s Dilemma
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Figure A2: Contour levels (coloration) showing the strength of selection on spread of the co-
operative trait A in a metapopulation playing Prisoner’s-Dilemma-like cooperative dilemmas
per main text Eq. (1). Altruism will spread at any frequency, x, provided the metapopulation
FST > c/b.

symmetric game with the classic payoffs of the additive Prisoner’s Dilemma (Table A1). If
focal individual i is paired with alter j, their payoff is then given by

wi = w0 + xi(xj(b− c) + (1− xj)(−c)) + (1− xi)xjb

= w0 + xjb− xic

If the way that such dyads form is unspecified, xj can be treated as a random variable from
individual i’s perspective, and the unconditional expectation of xj is by assumption the
group frequency of A (E(xj) = p). Thus, the expected fitness payoff for individual i is Eq.
(A1).

A B
A b− c −c
B b 0

Table A1: Row-player payoffs in a Prisoner’s Dilemma, where b > c > 0.
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Linear fitness expressions are not confined to just dyadic interactions. In the linear
Public Goods Game, we imagine that each individual i contributes benefit xib into a group
production function, at a personal cost of cxi. The resulting aggregate benefits are bX, where
X = ∑N

i=1 xi, and because this is a public good, each individual receives bX/N regardless
of their individual contribution. Thus, the individual fitness function is

wi = w0 + b
X
N
− cxi.

Since p is the average frequency of behavior A in the population,

p =
1
N

N

∑
i=1

xi =
X
N

,

we have again reached Eq. (A1), but without explicitly assuming dyadic or pairwise
payoffs in the manner of a Prisoner’s Dilemma, nor that it represents an expectation given
an unknown partner. The linear PGG is commonly used to represent a non-excludable,
ambient benefit from an individual’s cooperative activities, e.g. picking up trash in a public
park, or forgoing exploitation of a fishery or forest (Ostrom, 2003). Coefficient b is known
commonly as the “multiplier” in a PGG, representing the marginal aggregate return-on-
investment for a given amount of activity (Gavrilets & Richerson, 2017). In this model, the
marginal effect of an individual’s contribution to their fitness, dwi/dxi, does not depend on
the contributions of others, so there is no possibility of frequency-dependence or synergistic
effects.
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2 The evolution of frequency-dependent group-beneficial traits

2.1 Adding synergy to the Prisoner’s Dilemma

A simple way to capture the concept of synergistic or frequency-dependent effects is a
modification of the additive Prisoner’s Dilemma model above. Assume that two cooperators
interacting together produce a total benefit which is either greater than, or less than, the
sum of their individual contributions, represented by some real value d. The revised payoff
matrix is given in Table A2.

A B
A b− c + d −c
B b 0

Table A2: Row-player payoffs in a Prisoner’s Dilemma with synergy, where b > c > 0 and
c− b < d < c.

For a population whose average tendency to play A is p, if any individual i plays
strategy A xi of the time, their expected payoff wi would be

wi = w0 + xi(p(b− c + d) + (1− p)(−c)) + (1− xi)pb (A4)

where w0 gives a baseline payoff for all players. Re-arranging yields

wi = w0 + bp− cxi + dpxi (A5)

which simplifies to the additive PD expression when d = 0. The synergy coefficient thus
serves as an interaction term between the focal’s tendency towards A and the expected
tendency of their partner. Supplying this into the Price equation yields an evolution
difference equation for trait A of

w∆x = x(1− x)(bFST − c + d(x + FST(1− x)) (A6)

Taking the derivative with respect to FST yields

dw∆x
dFST

= x(1− x)(b + d(1− x)) (A7)

As before, the marginal effect of FST on selection will always be positive within this range,
and group segmentation will allow A to evolve so long as

FST >
c− dx

b + d(1− x)

Given that b > c > 0, this game qualitatively resembles an additive Prisoner’s dilemma so
long as c− b < d < c. If the synergistic benefit is very large (d > c), a mixed equilibrium
emerges at group frequency k = c/d, and the game becomes a coordination dilemma. If, on
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the other hand, the synergistic effect is very deleterious (d < c− b), then a group of A has a
lower fitness than a group of B, so A is not a GBT and the interaction is no longer a social
dilemma at all (Taylor & Nowak, 2007).

One way to extend this model is to allow parameters c or b or both to be negative,
abandoning the original framing of “costs” and “benefits” of agents using trait A. Doing so
allows us to reach the other kinds of interactions described in Section 2 of the main text and
general expression in main text Eq. (3), where m = b + d, n = b, and k = c/d.
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Figure A3: Contour levels (coloration) showing the strength of selection on spread of the
cooperative trait A in a metapopulation playing Prisoner’s-Dilemma-like cooperative dilem-
mas with positive or negative synergy. Altruism will spread at any frequency, x, provided
the metapopulation FST > (c− dx)/(b + d(1− x)).

2.2 Linear synergy in generic dyadic interactions

Main text Eq. (3) presents a general payoff expression for frequency-dependent interactions
within a group-structured population. One way to motivate this expression is by adding
synergy to a Prisoner’s Dilemma, as described in the previous section. Another is to
use generic terms for each payoff, a common convention is the letters R, S, T, P for the
“Reward” of mutual cooperation, the “Sucker” payoff of cooperating against a defector, the
“Temptation” to defect, and the “Punishment” of mutual defection (Allen & Nowak, 2015).
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If we wish to avoid the narrow framing of “cooperation” and “defection”, we may instead
say that if two partners both choose strategy A, they both receive payoff a. If the focal
player chooses A and the other chooses B, focal receives b and the other player receives c,
and vis versa if focal chooses B and the other player A. If both players choose B, they both
receive outcome d (note that the symbols b, c and d are used differently here compared to
the PD). We can represent this with a 2x2 payoff matrix as payoffs to the Row player in
Table A3.

A B
A a b
B c d

Table A3: Payoff matrix in a generic 2-player dyadic game.

For a population whose average tendency to play A is p, if any individual i plays
strategy A xi of the time, their expected payoff wi would be

wi = w0 + xi(pa + (1− p)b) + (1− xi)(pc + (1− p)d) (A8)

where w0 gives a baseline payoff for all players. If we posit the existence of a population
frequency p = k at which all players have the same payoff, it must satisfy the equation

ka + (1− k)b = kc + (1− k)d

Solving for k gives

k =
d− b

(a− b)− (c− d)

All frequency-dependent games have a k, except for the degenerate case where (a− b) =
(c− d). In this case, the system reduces to an additive game, and if a < c, gives the classic
formulation of the dyadic one-shot Prisoner’s Dilemma (SI Section 1.2).

Depending on the payoff structure, k may not lie between 0 and 1, but if it does, this
represents a mixed equilibrium for the system, at which the balance of phenotypes causes
all individuals to receive the same average payoff. Assuming such an equilibrium exists, we
can fully express this system in terms of just three parameters. Define parameter m as the
marginal effect of a within-group increase in trait A on the fitness of a focal individual with
A, and n as the marginal effect of such an increase for a focal individual with trait B. For
individuals with mixed strategies the marginal effect of an increase in A is xjm + (1− xj)n,
the weighted average of m and n, and w̃ as the fitness payoff experienced by all players
when p = k, which is both w0 + b+ km and w0 + d+ kn. In these terms, fitness for individual
i is

wi = w̃ + xim(p− k) + (1− xi)n(p− k)

Assuming this fitness dynamic takes place within each group j of a metapopulation leads
to main text Eq. (3).
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2.3 Linear synergy in N-player interactions

We can also derive main text Eq. (3) from a model of N-person group interactions, in which
each individual affects the payoffs of all others in a group simultaneously. Starting with
a modified version of the PGG (SI Section 1.2), we begin by assuming that behavior A
creates a “public good” via aggregate production function GX, where again X = ∑N

i=1 xi,
and each individual i experiences a “cost” −Cxi in proportion to their propensity towards
A. To abstract away from the original cooperative framing of the PGG, we need not assume
that multiplier G is positive, nor that −C is negative; G < 0 implies that, as A increases in
frequency within the group, some “public bad” is also increasing.

To create synergistic dynamics, we make two additional assumptions in the N-person
context. First, both trait A and B generate exclusive “club good” payoffs available to players
only as a function of their relative participation in each behavior (McKean, 2000; Peña,
Nöldeke, & Lehmann, 2015). In a cultural context, this reflects how different norms can
have frequency-dependent effects for their users (Boyd & Richerson, 2002). Mathematically,
this assumption takes the form of two additional production functions, SA(X) and SB(X).
Because these are club payoffs, individual i with phenotype xi receives a share of SA(X) in
proportion to their investment, xi/X, so as a result their total fitness payoff is

wi = w0 +
GX
N
− Cxi +

SA(X)xi

X
+

SB(X)(1− xi)

N − X

where again p = X/N, the mean frequency of trait A in the group. We can incorporate
assumptions about the synergistic nature of social interactions using different mathematical
forms of the production function (Ostrom, 2003). Assuming that the relative benefits for
using a behavior are directly proportional to the number of other users of that behavior,
the club production functions take the form SA(X) = PX2 and SB(X) = Q(1− X)2 (Fig.
A4, left). As with G, we make no assumptions about the signs or relative magnitudes of
parameters P and Q; a positive production parameter indicates that each additional unit of
investment into the behavior creates a larger and larger aggregate payoff, while a negative
parameter indicates that each additional unit of investment is increasingly detrimental
to participants, as in a market-entry game (Anderson & Engers, 2007). In both cases, the
marginal effects are linear functions of X.

We can show that linear returns to scale on the aggregate level leads to constant per-
capita returns to scale (λ = 1 in the geometric production functions of Peña et al. (2015)).
The individual fitness expression in this model is

wi = w0 + Gp− Cxi + PXxi + Q(1− X)(1− xi)

= w0 + Gp− Cxi +
P
N

pxi +
Q
N
(1− p)(1− xi)

Notably, even in the absence of any public good (G = 0), cost C still has meaning as the
“entrance fee” to an individual for fully switching from one strategy to the other. Define
trait frequency k at which all individuals in the group experience the same fitness w̃, which
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may be achievable (0 < k < 1) or not (k > 1 or k < 0). At k, the fitness for a full A-type
(xi = 1) must equal that of a full B-type (xi = 0), so

w0 + Gk +
Q
N
(1− k) = w0 + Gk− C +

P
N

k

k =
Q + NC
Q + P

Note that 0 < k < 1 implies that C < P/N and C < Q/N if Q + P > 0, or C > P/N and
C > Q/N if Q + P < 0. The fitness payoff at this frequency is thus

w̃ = w0 + k
(

G− Q
N

)
+

Q
N

.

Rearranging individual fitness yields

wi = w̃ + (p− k)

(
G− Q

N
+ xi

(
P
N

+
Q
N

))

= w̃ + (p− k)

(
xi

(
G +

P
N

)
+ (1− xi)

(
G− Q

N

))
= w̃ + (p− k)(xim + (1− xi)n)

where m = G + P/N and n = G − Q/N, both constants with respect to p, so we have
again reached main text Eq. (3)(Fig. A4, right). We can also represent this model in the
common b, c and d notation per Queller (1985), where b = G− Q/N, c = C + Q/N and
d = (P + Q)/N. This illustrates how both club production functions contribute to the
synergistic term d.

The above model demonstrates that, although the assumption that interactions take
place in dyads is sufficient (Van Cleve & Lehmann, 2013) and often quite intuitive, club
goods with quadratic production functions can also lead to constant returns to scale
(marginal effects) for individuals (Boyd & Richerson, 2002; Ostrom, 2003).
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Figure A4: (left) Example aggregate production functions from the joint action of N indi-
viduals choosing strategy A at amount X = ∑N

i=1 xi, from functions SB(X) (yellow) and
SA(X) + GX (green) exhibiting linear returns to scale. Payoff P′ = P + GN represents the
total output with all individuals using behavior A, and Q the total output with all individuals
using behavior B. The example here shows P = 500, Q = 400, G = 1, and C = 2. (right)
Individual fitness payoffs corresponding to the aggregate payoff functions shown, all terms m,
n, k and w̃ calculated according to the N-person model in SI Section 2.2. Note that 0 < k < 1
implies that C < P/N and C < Q/N if Q + P > 0, or C > P/N and C > Q/N if Q + P < 0.

3 Four Essential Frequency-dependent Games

Here, we review four synergistic games discussed in the main text.

3.1 Stag Hunt

The Stag Hunt is a classic model of social coordination (Skyrms, 2004) in which two hunters
can together catch a stag, or individually secure a hare. Both hunters are better off if they
can coordinate on the Stag strategy, but each runs the risk of ending up with nothing if
they try for the stag while their partner chooses a hare. Formally, we can say a Hare player
receives payoff H regardless of their partner’s choice, while a Stag player either receives
S > H > 0 if their partner also plays Stag, or 0 if their partner plays Hare. Thus, we can
define a Stag Hunt using the symmetric row-player payoff matrix (Table A4).

In an evolutionary context, we say any specific individual i has a behavioral phenotype
that plays Stag xi of the time, and in aggregate the population frequency of Stag play is p.
Assuming random pairing, the expected fitness payoff to individuals is then

wi = w0 + xi pS + (1− xi)H (A9)
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Stag Hare
Stag S 0
Hare H H

Table A4: Payoff matrix in a 2-player dyadic Stag Hunt.

for some baseline fitness w0 shared by all members of the population. At Stag frequency
k = H/S, all individuals have the same average fitness w̃ = w0 + H, so this is the mixed
equilibrium of the evolutionary system. If p > k, the fitness payoff for Stag players is higher
than the payoff for Hare players, while if p < k, the reverse is true (Fig. A5, left). The mixed
equilibrium is thus unstable, and selection generally leads the population to coordinate
entirely on one (p = 1), or the other (p = 0) strategy.

Stag Hunt
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Figure A5: (left) Fitness functions for Stag-Hunt-like interactions per main text Eq. (3), where
k = 0.6. (right) Line segment in (m, n) space corresponding to Stag Hunt interactions (θ = 0
if trait A is Stag).

The coordination dynamic of the Stag Hunt can be explored in the context of our generic
metapopulation model of linear synergy (Eq. (3)) by interpreting strategy A as “Stag” and
strategy B as “Hare”, so that m = S and n = 0. In (m, n) space, Stag-Hunt-like interactions
lie along the line segment given by n = 0, where m > 0. In radians, these interactions are
therefore defined along angle θ = 0 (Fig. A5, right).

Applying these constraints to main text Eq. (5), the expected change in the prevalence
of A in the metapopulation simplifies to

w∆x = mx(1− x)
(
(x− k)− FST(x− 1)

)
. (A10)

This equation can be described by a contour diagram over possible values of x and FST
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(Fig. A6). Selection moves the metapopulation towards the A-equilibrium whenever the
metapopulation mean frequency x > k regardless of the FST variance ratio. This follows the
basic coordination pattern, which favors common strategies. When x < k, selection will
still favor the Stag strategy provided that it is concentrated within groups above threshold
FST = (k− x)/(1− x). Below this threshold, Stag strategies are too widely dispersed to
effectively coordinate, and the metapopulation moves towards a state of all-Hare. In the
extreme scenario where x ≈ 0, Stag can still invade a metapopulation of Hare provided that
FST > k.

Stag Hunt
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Figure A6: Contour levels (coloration) showing the strength of selection on spread of the
group-beneficial trait A in a metapopulation playing Stag-Hunt-like coordination dilem-
mas per Equation (A10). Stag behavior can increase at any frequency, x, provided that
metapopulation FST > (k− x)/(1− x).

Taking the derivative of Equation (A10) with respect to FST yields

dw∆x/dFST = mx(1− x)2 (A11)

which is necessarily positive; a marginal increase in FST within a Stag-Hunt-like interaction
always favors the spread of group-beneficial behaviors. In this regard, it is like an additive
model of altruism such as the Prisoner’s Dilemma. However, it differs from the Prisoner’s
Dilemma because if Stag is already common enough within a metapopulation (greater than
k), it can stabilize at any level of within-group diversity.
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The Stag Hunt is also notable because, although xj = 0 has the lower pure-strategy
group payoff, group fitness is minimized at frequency x∗j = k/2, half-way to the mixed
equilibrium. Thus, a group moving out of the Hare basin of attraction must undergo a
decrease in average fitness before realizing the larger benefits from the presence of Stag
behavior. This limits the force of equilibrium selection between groups of Stag and groups
of Hare, compared to coordination games in which n > 0 and group-beneficial strategies
produce an additional net benefit to all members of the group (Boyd & Richerson, 2002).

3.2 Hawk-Dove

The Hawk-Dove game was initially described by Maynard Smith and Price (1973) and has
become a standard model of conflict and competition. In this game, we imagine a pair of
agents disputing access to some resource. If both employ the Dove strategy, each has an
equal chance of getting the resource. If one plays Hawk and the other Dove, the Hawk gets
all of the resource without a fight, and the Dove nothing. If both play Hawk, though, a fight
begins in which one gains the resource at a large cost to the other, again with equal chance
to each participant. Let V be the total value of the resource under dispute, and C > V
represent the cost of losing a fight, if both players choose Hawk. This game structure then
implies the symmetric row-player payoff matrix in Table A5.

Dove Hawk
Dove V/2 0
Hawk V (V − C)/2

Table A5: Payoff matrix in a 2-player dyadic Stag-Hunt.

In an evolutionary context, we say any specific individual i with a behavioral phenotype
that plays Dove xi of the time, and in aggregate the population frequency of Dove play is p.
Assuming random pairing, the expected fitness payoff to each individual is then

wi = w0 + xi pV/2 + (1− xi)(pV + (1− p)(V − C)/2) (A12)

where baseline fitness w0 is shared by all members of the population. At Dove frequency
k = (C−V)/C, all individuals have the same average fitness w̃ = w0 + kV/2, so this is the
mixed equilibrium of the evolutionary system, and in an anti-coordination game dynamic,
this mixed equilibrium is also the only stable one, as each strategy enjoys a higher payoff
when rare and so can invade the other.

The anti-coordination dynamic of the Hawk-Dove can be explored in the context of
our generic metapopulation model of linear synergy (Eq. (3)) by interpreting strategy A
as “Dove” and strategy B as “Hawk”, so that m = V/2 and n = (V + C)/2 (Fig. A7).
Rearranging the definition of k in the Hawk-Dove game gives

k =
n− 2m
n−m
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Hawk Dove
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Figure A7: (left) Fitness functions for Hawk-Dove-like interactions per main text Eq. (3),
where k = 0.6. (right) Line segment in (m, n) space corresponding to Hawk-Dove interactions
(θ = 1.29 if trait A is Dove).

meaning that, in (m, n) space, Hawk-Dove-like interactions lie along the line segment given
by

n = m
(

2− k
1− k

)
where n > 0 and m > 0. In radians, these interactions are defined along angle θ =
atan2(2− k, 1− k). Applying these constraints to main text Eq. (5), the expected change in
the prevalence of A in the metapopulation simplifies to

w∆x = (m− n)x(1− x)
(
(x− k)− FST(x− k + 1)

)
. (A13)

This equation can be described by a contour diagram over possible values of x and FST
(Fig. A8). Selection increases the frequency of Dove whenever the metapopulation mean
frequency x < k regardless of the FST variance ratio. This follows the basic anti-coordination
pattern, which favors rare strategies. When x > k, selection will still favor the Dove strategy
provided that it is concentrated within groups above threshold FST = (x− k)/(x− k + 1).
Below this threshold, Dove strategies are too widely dispersed to effectively prevent Hawks
from invading, and the metapopulation moves towards the mixed equilibrium. In the
extreme scenario where x ≈ 1, Hawks can yet be prevented from invading provided that
FST > (1− k)/(2− k), e.g. if Hawks can be effectively quarantined within a single group.

Taking the derivative of Equation (A13) with respect to FST yields

dw∆x/dFST = −(m− n)x(1− x)((x− k) + 1) (A14)
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Figure A8: Contour levels (coloration) showing the strength of selection on spread of the
group-beneficial trait A in a metapopulation playing Hawk-Dove-like anti-coordination
dilemmas per Equation (A12). Dove behavior can increase at any frequency, x, provided that
metapopulation FST > (1− k)/(2− k).

which is necessarily positive; a marginal increase in FST within a Hawk-Dove-like interaction
always favors the spread of group-beneficial behaviors. In this regard, it is like an additive
model of altruism such as the Prisoner’s Dilemma. However, it differs from the Prisoner’s
Dilemma because group-beneficial norms can stabilize at any level of within-group diversity
under certain conditions.

In a Hawk-Dove game, the group average fitness is given by

wj = w̃ + (2− k)(xj − k)− (xj − k)xj (A15)

which is maximized when xj = 1. A marginal increase in Hawks always lowers group
fitness. This is also true more generally in anti-coordination dilemmas in which m > 0 and
m < n < m(2− k)/(1− k), but not true if m > 0 and n > m(2− k)/(1− k). As such, the
Hawk-Dove is an important transition point between interactions in which the presence of
B is uniformly deleterious and those in which some small amount of B can increase group
fitness.
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3.3 Invisible Hand

The Invisible Hand game takes its name from Adam Smith’s famous metaphor for the
unintended group benefits of specialization and exchange. Consider, for example, a game
in which a pair in a foraging party either can construct shelter or search for food. The payoff
table here is given by Table A6.

Shelter Food
Shelter H H + E/2
Food H + E/2 E

Table A6: Payoff matrix in a 2-player dyadic Invisible Hand.

If both players obtain food, they have no shelter. If both players each make a shelter,
they have no food. As an anti-coordination game, individuals benefit from not doing the
same thing.

In an evolutionary context, we can say any specific individual i has a behavioral pheno-
type that plays Food xi of the time, and in aggregate the population frequency of Food play
is p. Assuming random pairing, the expected fitness payoff to individuals is then

wi = w0 + xi(pE + (1− p)(E/2 + H)) + (1− xi)(p(E/2 + H) + (1− p)H) (A16)

for some baseline fitness w0 shared by all members of the population. At Food frequency
k = E/2H, all individuals have the same average fitness w̃ = w0 + kE/2 + H, so this is the
mixed equilibrium of the evolutionary system, and in an anti-coordination game dynamic,
this mixed equilibrium is also the only stable one, as each strategy enjoys a higher payoff
when rare and so can invade the other. Unlike anti-coordination dilemmas like Hawk-Dove,
though, both are better off as a result.

The anti-coordination dynamic of the Invisible Hand game can be explored in the
context of our generic metapopulation model of linear synergy (Eq. (3)) by interpreting
strategy A as “Food” and strategy B as “Shelter”, so n = E/2 and m = E/2− H (Fig. A9).
Rearranging the definition of k in the Invisible Hand game gives

k =
n

n−m

meaning that, in (m, n) space, Invisible-Hand-like interactions lie along the line segment
given by

n = −m
(

k
1− k

)
where n > 0 and m < 0. In radians, these interactions are defined along angle θ =
atan2(k,−(1− k)). Applying these constraints to the main text Eq. (5), the expected change
in the prevalence of A in the metapopulation simplifies to

w∆x = (m− n)x(1− x)
(
(x− k)− FST(x− (1− k))

)
(A17)
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Figure A9: (left) Fitness functions for Invisible-Hand-like interactions per main text Eq. (3),
where k = 0.6. Note that in Invisible Hand k > 0.5 is required for A to be GBT. (right) Line
segment in (m, n) space corresponding to Invisible Hand interactions (θ = 2.16).

The dynamics of this equation can be described by a contour diagram over possible values
of x and FST (Fig. A10). As in the Hawk-Dove and other anti-coordination games, selection
favors group-beneficial behaviors whenever the metapopulation mean frequency x < k, at
any variance ratio of FST. When x > k, selection will still favor strategy A provided that it
is concentrated within groups above threshold FST = (x− k)/(x− (1− k). In the extreme
scenario where x ≈ 1, B can be prevented from spreading provided that FST > (1− k)/k.

Taking the derivative of Eq. A17 gives

dw∆x/dFST = −(m− n)x(1− x)(x− (1− k)) (A18)

which equals 0 if x = 1− k. If x < (1− k), the marginal effect of an increase in FST on
selection for the A is negative, while if x > (1− k), this effect is positive. Even when the
marginal effect of FST is positive, this does not necessarily enhance group fitness; on a group
level, the average payoff is

wj = w̃ + (m− n)(xj − k)2

which implies a group-fitness maximum at x∗j = k. Because group fitness is maximized
at the mixed equilibrium in the Invisible Hand game, the effect of FST here differs from
Stag Hunt and Hawk-Dove. When x < (1− k), A-players are welcome additions to groups
mostly composed of trait B, and A will spread at any frequency. However, the marginal
effect of FST in this region is negative. When x > k, the marginal effect of FST on ∆x is
positive, but this has the effect of preserving A in highly-segregated groups and preventing
the appearance of mixed-strategy groups which realize the highest payoffs. In both cases,
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Figure A10: Contour levels (coloration) showing the strength of selection on spread of the
group-beneficial trait A in a metapopulation playing Invisible-Hand-like anti-coordination
dilemmas per Equation (A17). Strategy A can increase at any frequency, x, provided that
metapopulation FST > (x− k)/(x− `). Invisible Hand has a negative marginal effect of FST
below, and positive marginal effect above, the frequency x = 1− k (white dashed line).

greater segregation between strategies slows the spread of group-beneficial A’s through
the metapopulation; FST functions to hinder, rather than assist, movement towards a social
optimum within the population. This phenomenon is present in complementary games
more generally, and also in some anti-coordination dilemmas.

3.4 Pure Coordination

In a Pure Coordination game, players must choose between two equivalent behavioral
options that yield the same payoff regardless of which they coordinate on. If they fail to
coordinate, and each chooses a different behavior, they both experience a cost (which may
or may not be the same for each player). The Pure Coordination game is ’pure’ because
each alternative is functionally equivalent if both players use it. Perhaps the most common
real-world example of a coordination dilemma is bidirectional traffic flows. Travellers on
roads, bike paths, walkways, etc. can either stay to the right or left of oncoming traffic, and
are generally much better off so long as all travellers agree on which side is correct.
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Figure A11: (left) Fitness functions for Pure-Coordination-like interactions per main text Eq.
(3), where k = 0.6. Note that neither trait is GBT in this game. (right) Line segment in (m, n)
space corresponding to Pure Coordination interactions (θ = −0.58).

Imagine two travellers must each decide to either move Left or Right when passing
each other on a trail. Define payoff b as the outcome each player receives for successful
coordination. If the row player chooses Left while the column player chooses Right, row
receives −C and column receives −D, and vis versa if the row player chooses Right and
the column player Left. Without loss of generality, we can simplify the system by setting
b = 0. The resulting payoff matrix is given by Table A7.

Left Right
Left 0 −C
Right −D 0

Table A7: Payoff matrix in a 2-player dyadic Pure Coordination game.

For our purposes, the definition of the Pure Coordination game requires only that Left-
Left and Right-Right pairs receive the same payoff, so that no GBT exists. It does not matter
if C > D, C < D, or C = D.

In an evolutionary context, we can say that any specific individual i has a behavioral
phenotype that plays Left xi of the time, and in aggregate the population frequency of Left
play is p. Assuming random pairing, the expected fitness payoff is

wi = w0 − xi(1− p)C− (1− xi)pD (A19)

for some baseline fitness w0 shared by all members of the population. At Left frequency
k = C/(D + C) all individuals have the same average fitness w̃ = w0 − Dk, so this is
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the mixed equilibrium of the evolutionary system. As this is a coordination game, the
equilibrium is unstable, and the system will quickly move to either all Right or all Left
strategies.

The coordination dynamic of a Pure Coordination game can be explored in the context
of our generic metapopulation model of linear synergy (Eq. (3)) by interpreting strategy A
as “Left” and strategy B as “Right”, so that m = C and n = −D (Fig. A11). Rearranging the
definition of k in the Pure Coordination game gives

n
m

= −1− k
k

meaning that, in (m, n) space, Pure-Coordination-like interactions lie along the line segment
given by

n = −m
(

1− k
k

)
where m > 0 and n < 0. In radians, these interactions are defined along angle θ =
atan2(−(1− k), k). Applying these constraints to main text Eq. (5), the expected change in
the prevalence of A in the metapopulation simplifies to

w∆x = (m− n)x(1− x)(x− k)(1− FST) (A20)

This equation can be described by a contour diagram over possible values of x and FST (Fig.
A12). Selection favors behavior A whenever the metapopulation mean frequency x > k,
and B when x < k, at any variance ratio of FST. In any metapopulation for which x = k, the
system is in an unstable equilibrium.

Taking the derivative of (A20) with respect to FST yields

dw∆x/dFST = −(m− n)x(1− x)(x− k) (A21)

which is necessarily negative. Thus, unlike in the evolution of altruism, or in the Hawk-
Dove or Stag Hunt, a marginal increase in FST within a Pure-Coordination-like interaction
always slows the rate at which the population reaches a payoff-optimal pure strategy
equilibrium.

The Pure Coordination interaction represents an extreme boundary of interactions
considered here, because each pure-strategy equilibrium has the same average fitness. Here,
then, the definition of A and B in our frequency-dependent model is truly arbitrary and
neither is the GBT. The non-coordination costs determine the location of the unstable mixed
equilibrium, but in Pure Coordination, the worst outcome for a group is always a 50/50
split between the two behaviors.

Simple coordination games that are near Pure Coordination show more complex evolu-
tionary dynamics. These games, which we might call “Impure Coordination”, exist when
m > 0 and 0 > n > −m(1− k)/k. A representative example is shown in Fig. A13, which
mirrors the structure of Invisible Hand. This game was initially described by (Allen &
Nowak, 2015).
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Figure A12: Contour levels (coloration) showing the strength of selection on spread of the
group-beneficial trait A in a metapopulation playing Pure Coordination-like coordination
dilemmas per (A20). Strategy A can increase at any FST provided that x > k.
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