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This document provides a companion to the paper “Regression with archaeological count data” in Advances
in Archaeological Practice. All data and code required to reproduce the examples in the paper are available
below.

As discussed in the introduction of the paper, regression in archaeology often relies on ordinary least squares
regression (see Table 1 in the main manuscript). However, there are several reasons why this may not be the
best approach when working with counts. After a brief review comparing count regression with least squares
regression, we introduce a suggested workflow (Figure 1) for fitting and checking count regression models.
We then illustrate different paths through this workflow with five case studies. These include:

1. Counts of Yurok houses by village area (where Poisson regression works OK)
2. Counts of household members by household size in Guatemala (where we fail to reject the null hypothesis)
3. Counts of active ceramic vessels per household by the number of adult residents (where overdispersion

leads to a negative binomial)
4. Counts of cattle bones across time periods (where sampling windows vary with categorical predictors)
5. Counts of projectile point types per time period vary with proxies of precipitation and temperature

(where multivariate analysis is needed)
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Count regression vs. Least Squares regression

Here we draw on a hypothetical example of how counts of obsidian artifacts vary with distance from the
volcanic source to illustrate the limitations of OLS and the benefits of count regression.

## dist.km count
## 1 3 17
## 2 8 19
## 3 19 7
## 4 20 9
## 5 20 3
## 6 22 6
## 7 27 5
## 8 33 1
## 9 37 6
## 10 40 1
## 11 46 2
## 12 62 2
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Results of a) linear (ordinary least squares [OLS]), b) log-linear (OLS with a logged response variable), and c)
Poisson regression predicting counts of obsidian artifacts across hypothetical archaeological sites as a function
of the distance from the volcanic source. Black dots show the observed values at each site. Grey solid lines
show the predicted model fit. Black vertical lines show the distance between the predicted and observed
value for each site (the residuals), which the model is trying to minimize should. Grey horizontal dashed
lines indicate zero.

As discussed in the text, each model does progressively better at describing the data (Table 1 in the main
text for definitions of terms):

a) The linear model has several issues: it under-predicts both high values (see i) and low values (see ii),
which is a sign of a poor fit and patterning in the residuals; moreover, it predicts counts below zero (see
ii), which is impossible. Overall it has a reasonable goodness-of-fit, accounting for 60% of the deviance
in model fit (likelihood r-squared [r2

l ] = 0.60).
b) The log-linear model does a bit better: while it also under-estimates high values (see iii), it does not

predict counts below zero (see iv). It has a slightly lower goodness-of-fit than the linear model (r2
l =

0.57).
c) The Poisson model does the best job: it more closely predicts the high values (see v) and does not

predict values below zero (see vi). It has the highest goodness-of-fit (r2
l = 0.57). In this case, count

regression is a better choice than a linear or log-linear model for describing the relationship and making
predictions about how obsidian tool count declines as a function of distance to the volcanic source.

3



Figure 1: Flowchart outlining recommended procedures for fitting and evaluating count models. This is not
exhaustive, but provides guidance on model fitting and diagnostics that archaeologists are likely to encounter.
An example flowchart for multiple regression is available below
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1 Poisson regression: Yurok villages
Question: How do house counts vary with village (or archaeological site) size?

To answer this question, we draw on data from Cook and Treganza (1950) who report investigations from
Waterman (1920) on how the counts of houses (and inferred people) vary with village size across historic
Yurok villages in northwestern California. These data are commonly used with other data sets examining how
hunter-gatherer population size may vary with village size to make predictions about residential population
size from archaeological site size (e.g., Yellen 1977; Codding et al. 2016). These data can also help estimate
how many structures may be expected in a site of a specific size.

Spoiler alert: this first example illustrates when a simple Poisson regression works OK.
Waterman

## Village Area Houses Population
## 1 Omen 766 4 24
## 2 Rekwoi 19314 22 132
## 3 Woxero 2251 6 36
## 4 Woxtek 3942 7 42
## 5 Qootep 4896 19 114
## 6 Pekwan 5690 16 96
## 7 Meta 2223 5 30
## 8 Murek 16002 18 108
## 9 Saa 4719 9 54
## 10 Kepel 3068 9 54
## 11 Qenek 1802 6 36
## 12 Wahsek 2132 9 54
## 13 Weitspus 11589 21 126
## 14 RLrgr 1338 5 30
## 15 Pekwutul 2174 6 36
## 16 Tsurai 6349 11 66

Variables include:

• Village = Yurok village name
• Area = area in square feet (note: their table says “Area (in sq. mi.)” but this cannot be the case and

Waterman’s original maps indicate feet as the unit).
• Houses = the number of houses per village
• Population = the village population estimated by multiplying house count by 6, which they say is “the

most likely value for the mean number of inhabitants per house” (Cook and Treganza 1950: 232).

1.1 Exploratory data analysis

#pdf("Figure3.pdf", height = 4, width = 7)

par(pty = "s", mfrow = c(1, 2))

with(Waterman,
hist(Houses,

main = NA,
xlab = "Houses"
)

)

with(Waterman,
plot(Houses ~ Area,
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ylab = "Houses",
xlab = "Village Area\n(square ft)",
pch = 19
)

)

Houses

F
re

qu
en

cy

0 5 10 15 20 25

0
1

2
3

4
5

6
7

5000 15000

5
10

15
20

Village Area
(square ft)

H
ou

se
s

1.2 Fit a Poisson GLM
Note: here we follow an arbitrary convention in naming model objects where the first terms before the period
indicate the model and family, and the second set after the period indicate the response and predictor(s).
Subsequent objects derived from the model object will have an additional period followed by the next object
type.
glm_Pois.House_Area <- glm(Houses ~ Area,

family = poisson(link = "log"),
data = Waterman
)

1.2.1 Model diagnostics

Before checking the model results, we should run some diagnostics.

1.2.1.1 Overdispersion First, check for overdispersion: if the variance is greater than the mean. Following
Bolker et al. (2022) we do this by dividing the sum of Pearson’s squared residuals over the residual degrees of
freedom. The value should be close to one.

This can be done as such:
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sum(residuals(model.object, type="pearson")ˆ2)/df.residual(model.object)

Or, we can use the function written by Bolker et al. (2022) that includes the estimation of a p-value as well:
overdisp_fun <- function(model) { #create a new function

rdf <- df.residual(model) #object for residual degrees of freedom (rdf)
rp <- residuals(model,type="pearson")#object for Pearson's residuals
Pearson.chisq <- sum(rpˆ2) #sum of squared residuals (ssr)
prat <- Pearson.chisq/rdf #ssr divided by rdf
pval <- pchisq(Pearson.chisq, #chi-square test on ssr

df=rdf,
lower.tail=FALSE)

c(chisq = Pearson.chisq, #data for output
ratio = prat,
rdf = rdf,
p = pval)

}

Apply the function to our model:
overdisp_fun(glm_Pois.House_Area)

## chisq ratio rdf p
## 21.21964206 1.51568872 14.00000000 0.09613494

The over-dispersion parameter (ratio) is close enough to 1, suggesting a Poisson distribution that assumes
equal mean and variance is sufficient.

1.2.1.2 Zero-inflation Zero-inflation is when the model over- or under-fits zeros. We can check this
by calculating the ratio of observed zeros to predicted zeros. This should also be around 1 (± 1). In this
particular case, we know this cannot be a problem as there are no zeros in the data. Nonetheless, we can
calculate this by dividing the sum of observed zero cases by the sum of predicted zero cases:
sum(Waterman$Houses == 0)/sum(glm_Pois.House_Area$fitted.values == 0)

We can also make this into a function for future use:
zeroinfl_fun <- function(model, response) {

obs_zero <- sum(response == 0) #number of zeros in observations
mod_zero <- sum(round(model$fitted.values) == 0)#number of predicted zeros rounded
c(obs_0 = obs_zero,

mod_0 = mod_zero,
ratio = obs_zero/mod_zero)

}

To apply this function, pass the model object and the response variables:
zeroinfl_fun(model = glm_Pois.House_Area, response = Waterman$Houses)

## obs_0 mod_0 ratio
## 0 0 NaN

There are no zero observations (i.e., no villages without houses), so the model does not predict any zeros.
The ratio returned is “not a number” or ’‘’NaN” ’.

1.2.1.3 Residuals Now let’s look at the model residuals, specifically, the deviance residuals.
glm_Pois.House_Area.resid <- residuals(glm_Pois.House_Area, "deviance")
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par(pty = "s", mfrow = c(1,2))

hist(glm_Pois.House_Area.resid,
xlab = "Residuals",
main = "")

plot(glm_Pois.House_Area.resid ~ glm_Pois.House_Area$fitted.values,
ylim = c(-3,3),
ylab = "Residuals",
xlab = "Fitted",
main = "",
pch = 19
)

abline(h = 0, #draw a horizontal line at zero
col = "grey")
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Two or three villages have more houses than expected given their size. This suggests that they are densely
occupied villages, which may be due to a number of factors such as physical restraints on areas suitable for
houses, or social benefits to aggregation in some locations. Examining outliers such as this can lead to further
research questions and bring the investigator back to the data in order to better explain such trends. For
more on these villages, see Waterman (1920).

Though overall, this is not terribly bad, especially given the small sample size.
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Sidebar: What would “bad” residuals look like?
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c) Non−linear patterning

Examples of residual by fitted plots to examine a) acceptable pattering in Poisson residuals, b) patterning
structured by between-group variation (dashed lines show group-level mean residuals), and c) patterning
structured by a non-linear relationship between y and x not accounted for in the model.

1.2.2 Results

1.2.2.1 Goodness of fit Is our model an improvement on a null model?

Fit the null model:
glm_Pois.House_null <- glm(Houses ~ 1,

family = poisson(link = "log"),
data = Waterman
)

Compare to the proposed model using a likelihood ratio test with the anova function:
anova(glm_Pois.House_null, #note: the models must be nested from less to more complex

glm_Pois.House_Area,
test = "LRT" #specify likelihood ratio test (lrt)

)

## Analysis of Deviance Table
##
## Model 1: Houses ~ 1
## Model 2: Houses ~ Area
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 15 51.247
## 2 14 19.103 1 32.144 1.432e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Yes, the model is a significant improvement on a null model with only the y-intercept. If the proposed model
were not an improvement, the Pr(>Chi) value would be blank.

Now calculate the likelihood r-squared (r2
l ) value. This can be done with the model object by either calculating

one minus the residual deviance over the null deviance, or by the model deviance over the null deviance.
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with(glm_Pois.House_Area, 1 - (deviance/null.deviance))

## [1] 0.6272335
with(glm_Pois.House_Area, (null.deviance-deviance)/null.deviance)

## [1] 0.6272335

This shows that village area accounts for about 62% of the deviance, or variation, in house count.

1.2.2.2 Coefficients Now that we know the model is doing a reasonable job, we can examine what it
tells us about the relationship between the number of houses and village size. To do this we pass the model
object to the summary function:
summary(glm_Pois.House_Area)

##
## Call:
## glm(formula = Houses ~ Area, family = poisson(link = "log"),
## data = Waterman)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.918e+00 1.195e-01 16.052 < 2e-16 ***
## Area 6.940e-05 1.151e-05 6.029 1.65e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 51.247 on 15 degrees of freedom
## Residual deviance: 19.103 on 14 degrees of freedom
## AIC: 88.498
##
## Number of Fisher Scoring iterations: 4

The summary function returns a lot of information. Let’s focus on a few important points:

• Call: this repeats the model call.
• Deviance Residuals: this shows the quantiles (minimum, first quartile, median, third quartile, and

maximum value) of deviance residuals. These are the same values we plotted above in a histogram.
• Coefficients: these are very important, they show all the model coefficients for the intercept and the

predictor variables. It is good practice to produce this table in your manuscript or supplementary
materials when publishing results.

– Estimate: this is the coefficient for each term (see main text). Note: as the mode link is logarithm,
take the exponent of the coefficient for it to be on the scale of the response (counts).

– Std. Error: this is the standard error of the coefficient.
– z value: this is the test statistic, for a Poisson it will be a “z” value.
– Pr(>|z|): this is the p-value which reports the probability of a Type-I error, or a false positive,

specifically, falsely rejecting a true null hypothesis. While researchers often pay a lot of attention
to p-values, they are prone to several issues and misinterpretations. Nonetheless, it is good to
carefully consider what they imply, and to report them.

• Signif. codes: this is just a key to the symbols that correspond to each p-value at standard thresholds
or alpha values.

• (Dispersion parameter. . . ): this reports the dispersion parameter of the model, note it will not be 1
with all models such as negative binomial models (see below).
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• Null deviance: this is the total deviance from the null model, calculated as the sum of log-likelihoods of
each y observation given only information about the y-intercept.

• Residual deviance: this is the deviance remaining after accounting for the predictor variables, calculated
as the sum of log-likelihoods of each observation given information about the y-intercept and predictor
variable(s).

• . . . degrees of freedom: the number of independent values, should be n-2 for a bivariate model accounting
for the slope and intercept.

• AIC: this is the Aikake’s information criteria value, which helps approximate how well a model fits the
data. Lower values indicate a better fit.

• Number of Fisher. . . : This reports how many rounds were needed to fit the model.

We can extract each coefficient from the object. For example, let’s pull the coefficient for the predictor
variable and take it’s exponent:
exp(glm_Pois.House_Area$coefficients[2])

## Area
## 1.000069

As discussed in the text, this means that the number of houses increases by 0.0007% with each unit increase
in the predictor, or by each square foot. This may not seem like a lot, but remember the range of square feet
in village size is about 800 - 19000.

1.2.2.3 Prediction Now we can use prediction to estimate counts from other values. For example, if
working on an archaeological site that is 4,000 square feet in area, how many house features should you expect
to find?

To answer this, we again use the predict function. Note that we have to supply a data.frame with the new
data we’d like to predict from. The variable(s) in this data frame must have exactly the same names as the
variables in the model, and must include all variables in the model.
predict(glm_Pois.House_Area,

newdata = data.frame(Area = 4000),
type = "response" #*
)

## 1
## 8.984357
#* for simplicity sake, we are asking for the prediction to be in the response scale
#* (i.e., counts) but this is not the best practice when also taking the standard
#* error in order to plot confidence intervals; this is discussed more below
#* and in Simpson (2018a)

If similar processes are structuring the relationship between house number and village size, we should expect
to find about 9 houses at a village site of 4,000 square feet.

To examine how the predicted number of houses varies across the full range of village areas, we can predict
along a sequence (note: if your values have missing or NA values, include na.rm = TRUE in the min and max
call used to identify the range of values; this is true for median or mean as well if used to hold additional
variables constant at the central tendency in multivariate models; see Section 5 below).
#create a vector across the range of x values
area_seq <- seq(from = min(Waterman$Area, na.rm = TRUE) - 1000, #from the min -1000 -NAs

to = max(Waterman$Area, na.rm = TRUE) + 1000, #to the max +1000 -NAs
by = 1000 #for each 1000 square feet

)

#predict ceramic counts a cross the range of x
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house_pred <- predict(glm_Pois.House_Area, #the model object
newdata = data.frame(Area = area_seq), #*
se = TRUE, #include the standard error of the prediction
type = "link" #be sure to predict on the link scale
)

#* note, the new data must be a data frame with columns corresponding to
#* each variable in the model, each of which must have the exact same name
#* as the model variable.

Check out the resulting object. For each value in the prediction sequence (area_seq), the object has a
predicted fit and standard error around the fit. Note these are on the link scale, so they are the logged values:
house_pred

## $fit
## 1 2 3 4 5 6 7 8
## 1.901654 1.971052 2.040450 2.109848 2.179246 2.248644 2.318042 2.387440
## 9 10 11 12 13 14 15 16
## 2.456838 2.526236 2.595634 2.665032 2.734430 2.803828 2.873226 2.942624
## 17 18 19 20 21
## 3.012022 3.081420 3.150818 3.220216 3.289614
##
## $se.fit
## 1 2 3 4 5 6 7
## 0.12156780 0.11281644 0.10460079 0.09705698 0.09035345 0.08468997 0.08028694
## 8 9 10 11 12 13 14
## 0.07735988 0.07607934 0.07652802 0.07867634 0.08239145 0.08747395 0.09370160
## 15 16 17 18 19 20 21
## 0.10086250 0.10877250 0.11728011 0.12626459 0.13563122 0.14530611 0.15523163
##
## $residual.scale
## [1] 1

We can use these to make a plot of the model fit, but first, we need one more thing. We have to save the
inverse link function from the model object (note, this will be the same for all Poisson and negative binomial
GLMs that have a log link). We use this to convert the predicted value, which is logged, back to the response
scale.
family(glm_Pois.House_Area)

##
## Family: poisson
## Link function: log
#this function tells you the model family and link, it also
#includes an inverse link function

inv_link.glm_Pois <- family(glm_Pois.House_Area)$linkinv #save model inverse link
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Plot the predicted model fit:
par(pty = "s")

with(Waterman,
plot(Houses ~ Area,

pch = 19,
xlim = c(0, 20000),
ylim = c(0, 25),
xlab = "House Area (square feet)",
ylab = "Number of Houses",
type = "p"
)

)

#this plots the predicted model fit
lines(inv_link.glm_Pois(house_pred$fit) ~ area_seq)
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In this case, we would get the same thing if we plotted the exponent of the predicted fit:
par(pty = "s")

with(Waterman,
plot(Houses ~ Area,

pch = 19,
xlim = c(0, 20000),
ylim = c(0, 25),
xlab = "House Area (square feet)",
ylab = "Number of Houses",
type = "p"
)

)

#this plots the predicted model fit
lines(exp(house_pred$fit) ~ area_seq) #using exp instead of inv_link
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Note, we could also round the prediction so that we display the response as counts:
par(pty = "s")

with(Waterman,
plot(Houses ~ Area,

pch = 19,
xlim = c(0, 20000),
ylim = c(0, 25),
xlab = "House Area (square feet)",
ylab = "Number of Houses",
type = "p"
)

)

#this plots the predicted model fit
lines(round(inv_link.glm_Pois(house_pred$fit), 0) ~ area_seq)
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We can add the 95% confidence intervals by adding and subtracting two times the standard error (or,
approximately 95%) to the predicted response:
par(pty = "s")

with(Waterman,
plot(Houses ~ Area,

pch = 19,
xlim = c(0, 20000),
ylim = c(0, 25),
xlab = "House Area (square feet)",
ylab = "Number of Houses",
type = "p"
)

)

#this plots the predicted model fit
lines(inv_link.glm_Pois(house_pred$fit) ~ area_seq)

#this plots the predicted model fit plus two times the standard error, approx. 95%
lines(inv_link.glm_Pois(house_pred$fit + 2 * house_pred$se.fit) ~ area_seq, lty = 2)

#this plots the predicted model fit minus two times the standard error, approx. 95%
lines(inv_link.glm_Pois(house_pred$fit - 2 * house_pred$se.fit) ~ area_seq, lty = 2)
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Note: this is where we need to use the inverse link as opposed to taking the exponent. For an excellent post
on why, see Simpson (2018a).
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We can also plot the confidence intervals as a polygon:
par(pty = "s")

plot(NA, #start with a blank plot
pch = 19,
xlim = c(0, 20000),
ylim = c(0, 25),
xlab = "House Area (square feet)",
ylab = "Number of Houses",
type = "p"
)

polygon(y = c(inv_link.glm_Pois(house_pred$fit + 2 * house_pred$se.fit),
rev(inv_link.glm_Pois(house_pred$fit - 2 * house_pred$se.fit))),

x = c(area_seq, rev(area_seq)),
col = "grey",
border = F
)

#note the use of c() to stitch together the back and forth, and the use of rev to flip
#the vector. Imagine you are specifying all the points to draw outlines of the polygon.

lines(inv_link.glm_Pois(house_pred$fit) ~ area_seq)

#add the data points
with(Waterman,

points(Houses ~ Area, pch = 19)
)
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There are clearly some outliers here, specifically Qo’-o-tep and Pe’kwan villages which appear to have more
densely clustered houses than other villages (see Waterman 1920: Maps 14-15). This residual variation may
inspire the researcher to look more into this to understand what might be behind this behavioral difference.
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2 Poisson regression: Guatemalan households
Question: How do the number of residents vary with house size?

To answer this, we draw on Loucky’s data reporting occupants and size from two maize-growing communities
in Guatemala (San Juan la Laguna and Santa Catarina Palopó) taken from a random samples of households in
each village (Kolb 1985, first presented by Kolb and Loucky in 1974 at the Society for American Archaeology
meeting). Data are from Kolb (1985: Tables 9 and 10; https://www.jstor.org/stable/2743081). Spoiler alert:
this is an example where we fail to reject the null hypothesis.
Loucky

## COMMUNITY HOUSEHOLD.ID FAMILY.TYPE NUM.PERSONS HOUSE.SIZE.M2
## 1 SAN JUAN LA LAGUNA 1 N 4 52.67
## 2 SAN JUAN LA LAGUNA 2 N 2 16.85
## 3 SAN JUAN LA LAGUNA 3 N 4 28.09
## 4 SAN JUAN LA LAGUNA 4 N 6 16.85
## 5 SAN JUAN LA LAGUNA 5 N 6 35.29
## 6 SAN JUAN LA LAGUNA 6 N 7 35.82
## 7 SAN JUAN LA LAGUNA 7 E 7 77.95
## 8 SAN JUAN LA LAGUNA 8 E 6 35.11
## 9 SAN JUAN LA LAGUNA 9 E 9 30.90
## 10 SAN JUAN LA LAGUNA 10 N 6 24.58
## 11 SAN JUAN LA LAGUNA 11 E 5 21.07
## 12 SAN JUAN LA LAGUNA 12 N 2 47.05
## 13 SAN JUAN LA LAGUNA 13 E 5 33.36
## 14 SAN JUAN LA LAGUNA 14 N 6 55.48
## 15 SAN JUAN LA LAGUNA 15 N 6 50.56
## 16 SAN JUAN LA LAGUNA 16 N 7 54.77
## 17 SAN JUAN LA LAGUNA 17 N 4 39.33
## 18 SAN JUAN LA LAGUNA 18 N 7 54.07
## 19 SAN JUAN LA LAGUNA 19 N 6 24.23
## 20 SAN JUAN LA LAGUNA 20 N 6 64.25
## 21 SAN JUAN LA LAGUNA 21 N 4 67.06
## 22 SAN JUAN LA LAGUNA 22 E 2 61.09
## 23 SAN JUAN LA LAGUNA 23 N 7 28.97
## 24 SAN JUAN LA LAGUNA 24 N 6 28.09
## 25 SANTA CATARINA PALOPO 1 N 5 44.25
## 26 SANTA CATARINA PALOPO 2 N 6 84.24
## 27 SANTA CATARINA PALOPO 3 N 7 28.07
## 28 SANTA CATARINA PALOPO 4 N 4 28.08
## 29 SANTA CATARINA PALOPO 5 N 7 16.87
## 30 SANTA CATARINA PALOPO 6 N 2 14.04
## 31 SANTA CATARINA PALOPO 7 N 2 42.14
## 32 SANTA CATARINA PALOPO 8 E 2 28.08
## 33 SANTA CATARINA PALOPO 9 N 5 33.70
## 34 SANTA CATARINA PALOPO 10 N 2 21.06
## 35 SANTA CATARINA PALOPO 11 N 8 14.08

Variables include:

• COMMUNITY = San Juan la Laguna or Santa Catarina Palopó
• HOUSEHOLD.ID = arbitrary identifier
• FAMILY.TYPE = Nuclear or Extended
• NUM.PERSONS = Number of individuals residing in the house
• HOUSE.SIZE.M2 = Size of house in meters squared
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Other variables in Kolb (1985: Tables 9 and 10) not included here:

• AREA.PER.PERSON.M2 = Per person household area
• NUM.ROOMS = Number of rooms in each household
• WALL = Construction of walls: A, adobe; C, cania (cane, vertical strips); W, wattle-and-daub; Cm,

cement, B, bajareque (cane, horizontal strips)
• WALL.HL = Construction of walls simplified to indicate high (adobe or cement) vs. low investment

(cane) (or mixed; M); any one building with adobe or cement marked as permenant for the household
• ROOF = Construction of roof: C, tejada (ceramic tile); L, limina (sheet roofing); T, techumbre (thatch)

or paja (straw).

2.1 Exploratory data analysis

par(pty = "s", mfrow = c(1,2))

with(Loucky,
hist(NUM.PERSONS,

xlab = "Number of Persons",
main = NA
)

)

with(Loucky,
plot(NUM.PERSONS ~ HOUSE.SIZE.M2,

ylab = "Number of Persons",
xlab = expression("House Size ("~mˆ2~")")
)

)
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2.2 Fit a Poisson GLM

glm_Pois.Persons_Area <- glm(NUM.PERSONS ~ HOUSE.SIZE.M2,
family = poisson,
data = Loucky
)

2.2.1 Diagnostics

As above, we will check for overdispersion and zero-inflation.

overdisp_fun(glm_Pois.Persons_Area)

2.2.1.1 Overdispersion

## chisq ratio rdf p
## 25.3801189 0.7690945 33.0000000 0.8258485

No meaningful overdispersion.

zeroinfl_fun(glm_Pois.Persons_Area, response = Loucky$NUM.PERSONS)

2.2.1.2 Zero-inflation

## obs_0 mod_0 ratio
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## 0 0 NaN

There are no zero observations.

2.2.2 Results

Next evaluate the model fit relative to a null model and evaluate the proportion deviance explained.

glm_Pois.Persons_null <- glm(NUM.PERSONS ~ 1,
family = poisson,
data = Loucky
)

anova(glm_Pois.Persons_null,
glm_Pois.Persons_Area,
test = "LRT"
)

2.2.2.1 Goodness of fit

## Analysis of Deviance Table
##
## Model 1: NUM.PERSONS ~ 1
## Model 2: NUM.PERSONS ~ HOUSE.SIZE.M2
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 34 28.230
## 2 33 28.119 1 0.11039 0.7397

The model is not a significant improvement on the null model.
with(glm_Pois.Persons_Area, (null.deviance-deviance)/null.deviance)

## [1] 0.003910364

House size only accounts for 0.3% of the variation in the number of residents.

summary(glm_Pois.Persons_Area)

2.2.2.2 Coefficients

##
## Call:
## glm(formula = NUM.PERSONS ~ HOUSE.SIZE.M2, family = poisson,
## data = Loucky)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.584871 0.175754 9.018 <2e-16 ***
## HOUSE.SIZE.M2 0.001371 0.004115 0.333 0.739
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 28.230 on 34 degrees of freedom
## Residual deviance: 28.119 on 33 degrees of freedom
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## AIC: 151.89
##
## Number of Fisher Scoring iterations: 4

Given the poor model fit, there is no need to evaluate the model further. We can reject the null hypothesis
that the number of household members varies positively with house area.

What other factors may confound this relationship? Consider looking at the data set further to evaluate this.
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3 Negative binomial regression: Michoacán pottery
Question: How do counts of active ceramic vessels vary with the number of household adults?

Michael Shott’s ethnoarchaeological work examines the distribution of surviving and failed pottery across
24 households in Michoacán (Shott 2018, 2022). These data are from Shott (2022) “Shott supplementary
material 1” available at https://doi.org/10.1017/aaq.2022.57. The data table used here aggregates Shott’s
supplementary data by household.

Spoiler alert: this case illustrates overdisperion and the need to move to a negative binomial regression.
Shott

## fam failed active famsiz adults volume
## 1 1 50 11 4 2 NA
## 2 2 69 26 5 4 NA
## 3 3 49 12 7 3 NA
## 4 4 10 19 3 2 NA
## 5 5 16 31 10 4 456
## 6 6 38 19 7 4 NA
## 7 7 10 16 5 2 246
## 8 8 44 7 2 2 NA
## 9 9 41 14 7 3 NA
## 10 10 35 14 1 1 341
## 11 11 33 38 7 5 275
## 12 12 15 37 8 4 NA
## 13 13 27 8 4 4 NA
## 14 14 27 28 4 4 243
## 15 15 90 5 1 1 NA
## 16 16 18 16 2 2 NA
## 17 17 20 14 3 2 NA
## 18 18 24 28 3 3 NA
## 19 19 15 6 7 2 754
## 20 20 33 32 7 3 420
## 21 21 5 7 5 4 541
## 22 22 0 11 2 2 261
## 23 23 0 27 6 5 285
## 24 24 2 9 NA NA 1197

The data include:

• fam = number code for household (1-24)
• failed = failed pottery (summed from status column; 0 = failed; 1 = surviving)
• active = surviving pottery (summed from status column; 0 = failed; 1 = surviving)
• famsiz = number of co-residents
• adults = number of adults
• volume = median volume of all pottery in cc
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3.1 Exploratory data analysis

par(pty = "s", mfrow = c(1,2))

with(Shott,
hist(active,

main = NA,
xlab = "Inventory Size"
)

)

with(Shott,
plot(active ~ adults,

pch = 19,
xlim = c(0, 6),
ylim = c(0, 40),
xlab = "Adults",
ylab = "Inventory Size"
)

)
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3.2 Fit a Poisson GLM

glm_pois.inv_adu <- glm(active ~ adults,
family = poisson(link = "log"),
dat = Shott)

3.2.1 Model diagnostics

Before checking the model results, we should run sum diagnostics. First, check for overdispersion. Apply the
function to our model:
overdisp_fun(glm_pois.inv_adu)

## chisq ratio rdf p
## 7.134988e+01 3.397613e+00 2.100000e+01 2.131621e-07

Significant overdispersion, meaning the mean and variance are not equal. The ratio suggests the variance is
3.4 times the mean.

3.3 Refit with a negative binomial GLM
Let’s retry the fit with a negative binomial model in the MASS library (Venables and Ripley 2002):
library(MASS)

## Warning: package 'MASS' was built under R version 4.3.2

Fit the negative binomial model:
glm_nb.inv_adu <- glm.nb(active ~ adults,

dat = Shott
)

#note, we do not need to specify the family here, the default link is log

3.3.1 Model diagnostics

3.3.1.1 Overdispersion Check if the negative binomial model fits better:
overdisp_fun(glm_nb.inv_adu)

## chisq ratio rdf p
## 20.0899018 0.9566620 21.0000000 0.5155733

Looks good! This model adequately accounts for overdispersion.
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3.3.1.2 Residuals Just as with a Poisson model, we can plot the deviance residuals.
glm_nb.inv_adu.resid <- residuals(glm_nb.inv_adu, "deviance")

par(pty = "s", mfrow = c(1,2))

hist(glm_nb.inv_adu.resid,
xlab = "Residuals",
main = "")

plot(glm_nb.inv_adu.resid ~ glm_nb.inv_adu$fitted.values,
ylim = c(-3,3),
ylab = "Residuals",
xlab = "Fitted",
pch = 19
)

abline(h = 0,
col = "grey")
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The residuals look as expected. Some linear patterning due to the nature of count data, but overall centered
on zero and spread fairly evenly across the range of fitted values.
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We can also examine how well the model performs by examining the fitted by observed values. If this were a
perfect fit, the points should all vary along a 45 degree line.
par(pty = "s")

plot(glm_nb.inv_adu$fitted.values ~ Shott[-24,]$active,
xlab = "Observed",
ylab = "Fitted",
pch = 19,
xlim = c(0,35),
ylim = c(0,35)
)

abline(a = 0, b = 1) #45 degree line
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#note: last case does (#24) not have co-resident estimate so this case is dropped
#automatically in the model and needs to be manually dropped here for plotting.
#This is why the code includes "Shott.inv[-24,]".
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3.3.2 Results

First check goodness of fit.

3.3.2.1 Goodness of fit Compare to a null model:
glm_nb.inv_null <- glm.nb(active ~ 1,

dat = Shott
)

anova(glm_nb.inv_null,
glm_nb.inv_adu,
test = "Chisq" #Xˆ2 for negative binomial see ?MASS::anova.negbin
)

## Likelihood ratio tests of Negative Binomial Models
##
## Response: active
## Model theta Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)
## 1 1 3.911032 23 -174.4211
## 2 adults 7.351390 21 -156.9579 1 vs 2 2 17.46318 0.0001614055

A model that includes the number of adults significantly improves the model fit.

Calculate the proportion of deviance explained:
with(glm_nb.inv_adu, (null.deviance-deviance)/null.deviance)

## [1] 0.373723

The number of co-residing adults accounts for about 37% of the deviance in ceramic inventory.

3.3.2.2 Coefficients Now that we know the model is doing a reasonable job, we can examine what it
tells us about the relationship between the number of co-residing adults and active pottery per household.
To do this we pass the model object to the summary function:
summary(glm_nb.inv_adu)

##
## Call:
## glm.nb(formula = active ~ adults, data = Shott, init.theta = 7.351389966,
## link = log)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.97980 0.26147 7.572 3.68e-14 ***
## adults 0.29786 0.07961 3.741 0.000183 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(7.3514) family taken to be 1)
##
## Null deviance: 37.497 on 22 degrees of freedom
## Residual deviance: 23.483 on 21 degrees of freedom
## (1 observation deleted due to missingness)
## AIC: 162.96
##
## Number of Fisher Scoring iterations: 1
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##
##
## Theta: 7.35
## Std. Err.: 3.12
##
## 2 x log-likelihood: -156.958

This output looks the same as for the Poisson GLM above, but note that it reports the dispersion parame-
ter/Theta value, which is estimated by the model.

Extract the coefficient and take the exponent:
exp(glm_nb.inv_adu$coefficients[2])

## adults
## 1.346978

With each additional adult, we expect there to be 35% more ceramic vessels in the house.

3.3.2.3 Prediction How many pots would we expect to find in a household of 10 adults?
predict(glm_nb.inv_adu, #the model object

newdata = data.frame(adults = 10), #for 10 adults
type = "response" #for simplicity, predict on the response scale
)

## 1
## 142.3713

The model predicts 142 active vessels for a house of ten adults, but note: this does predict outside the range
of observation, and so should be treated with caution.

Predict across a range of x:
#create a vector across the range of x values
adults_seq <- seq(from = min(Shott$adults, na.rm = TRUE) - 1, #from the min -1 -NAs

to = max(Shott$adults, na.rm = TRUE) + 1, #to the max +1 -NAs
by = 0.5 #for each 0.5 value
)

#predict ceramic counts a cross the range of x
pottery_pred <- predict(glm_nb.inv_adu, #the model object

newdata = data.frame(adults = adults_seq), #*
se = TRUE, #include the standard error of the prediction
type = "link" #be sure to predict on the link scale
)

#* note, the new data must be a data frame with columns corresponding to each variable
#* in the model, each of which must have the exact same name as the model variable.

Check out the resulting object. For each value in the prediction sequence (adults_seq), the object has a
predicted fit and standard error around the fit. Note these are on the link scale, so they are the logged value:
pottery_pred

## $fit
## 1 2 3 4 5 6 7 8
## 1.979802 2.128734 2.277666 2.426597 2.575529 2.724461 2.873393 3.022325
## 9 10 11 12 13
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## 3.171257 3.320188 3.469120 3.618052 3.766984
##
## $se.fit
## 1 2 3 4 5 6 7
## 0.26146708 0.22464346 0.18903261 0.15547013 0.12560886 0.10272878 0.09218357
## 8 9 10 11 12 13
## 0.09803780 0.11787282 0.14610129 0.17879083 0.21390589 0.25042821
##
## $residual.scale
## [1] 1

We can use these to make a plot of the model fit, but first, we need one more thing. We have to save the
inverse link function from the model object (note, this will be the same for all negative binomial GLMs).
We use this to convert the predicted value, which is logged, back to the response scale. For a more detailed
explanation and tutorial on this, see Simpson (2018a).
family(glm_nb.inv_adu)

##
## Family: Negative Binomial(7.3514)
## Link function: log
#this function tells you the model family and link,
#it also includes an inverse link function

inv_link.glm_nb <- family(glm_nb.inv_adu)$linkinv #inverse link of the model
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Plot the response:
par(pty = "s")

with(Shott,
plot(active ~ adults,

pch = 19,
xlim = c(0, 6),
ylim = c(0, 40),
xlab = "Household Adults",
ylab = "Inventory Size",
type = "p"
)

)

lines(inv_link.glm_nb(pottery_pred$fit) ~ adults_seq)

lines(inv_link.glm_nb(pottery_pred$fit + 2 * pottery_pred$se.fit) ~ adults_seq, lty = 2)

lines(inv_link.glm_nb(pottery_pred$fit - 2 * pottery_pred$se.fit) ~ adults_seq, lty = 2)
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Graphical representation of the predicted model fit compared to the null and saturated models:
#pdf("Figure5.pdf", height = 3, width = 7.5) #save pdf figure

par(pty = "s", mfrow = c(1,3))

with(Shott,
plot(active ~ adults,

pch = 19,
xlim = c(0, 6),
ylim = c(0, 40),
xlab = "Household Adults",
ylab = "Inventory Size",
type = "p"
)

)
abline(h = mean(Shott$active)) #only the mean
mtext("a) Null", side = 3, line = 0.5, adj = 0, cex = 0.75)

with(Shott,
plot(active ~ adults,

pch = 19,
xlim = c(0, 6),
ylim = c(0, 40),
xlab = "Household Adults",
ylab = "Inventory Size",
type = "p"
)

)
lines(inv_link.glm_nb(pottery_pred$fit) ~ adults_seq)
mtext("b) Model", side = 3, line = 0.5, adj = 0, cex = 0.75)

with(Shott[with(Shott, order(adults, active)),], #order by x axis values
plot(active ~ adults,

pch = 19,
xlim = c(0, 6),
ylim = c(0, 40),
xlab = "Household Adults",
ylab = "Inventory Size",
type = "o" #over plot - a fit for every point
)

)
mtext("c) Saturated", side = 3, line = 0.5, adj = 0, cex = 0.75)
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4 Count regression with variable sampling windows: Neolithic
cattle

Question: Do counts of auroch and cattle (Bos spp.) bones increase during the Neolithic compared to the
Mesolithic?

To address this question, we draw on the EUROEVOL data set that examines the Cultural Evolution
of Neolithic Europe (Manning 2016; Manning et al. 2015; Timpson et al. 2016). These data are from
Manning and colleague’s (2015) “FaunalBones” – two files providing the data (EUROEVOL09-07-201516-
34_FaunalBones.csv) and field type definitions (FaunalBones_fields.csv) for each bone assigned by PhaseCode
and species with associated measurements.

To answer our question, we are interested in two species: aurochs (Bos primigenius) and cattle (Bos taurus).
However, distinguishing between the two based on their bones alone is problematic given that it is done by
size and there is overlap between them (Wright 2016). Here we include all Bos counts for this analysis given
that we are interest to determine if there is an increase reliance on Bos with the transition to agriculture.
Here we model variation over categorical time periods.
Manning

## Phase Period bos NISP
## 1 AARTS LN 24 63
## 2 ABL LN 753 3249
## 3 ADP EN 12 26
## 4 AGER LM 0 43
## 5 AGR LN 1 3
## 6 AH LN 0 15
## 7 ALS MN 10 21
## 8 AP EN 11 23
## 9 AUE LN 27 58
## 10 AULS LN 187 910
## 11 AUW EN 11 29
## 12 BAL1 EN 138 312
## 13 BAL2 MN 96 206
## 14 BR1 EN 16 40
## 15 BRNK MN 6 13
## 16 BUC EBA 147 482
## 17 BUH EBA 51 118
## 18 CALB LN 99 223
## 19 CCZ EBA 250 602
## 20 CH LN 21 42
## 21 CHAT MN 20 40
## 22 CHL2 LN 75 273
## 23 CHL4 LN 25 113
## 24 CHL6 LN 117 395
## 25 CHL8 LN 91 468
## 26 CLM MN 16 39
## 27 CML MN 14 36
## 28 COUR MN 9 18
## 29 CP-C LN 6 13
## 30 CRN12 MN 6 13
## 31 CSO EN 30 75
## 32 CYA EN 18 36
## 33 DBK LMEN 7 31
## 34 DH LN 11 36
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## 35 DM1 EN 12 31
## 36 DRC LNEBA 2 5
## 37 DRZ MN 13 33
## 38 DUL LN 11 30
## 39 DW LN 0 1484
## 40 E1 EN 146 341
## 41 ERGO LN 64 226
## 42 FALK MN 63 163
## 43 FF EBA 6 12
## 44 FN MN 4 17
## 45 FTF2 LMEN 3 6
## 46 FTF4 LN 5 12
## 47 FTF5 EBA 7 14
## 48 GDEC LN 311 622
## 49 GDF LN 25 108
## 50 GGB MN 0 13
## 51 GGBZ EBA 9 39
## 52 GGC MN 0 20
## 53 GGCAM LN 19 67
## 54 GNA EN 28 82
## 55 GNA2 MN 4 18
## 56 GRAV MN 40 81
## 57 GRYS1 LN 30 70
## 58 GW EN 22 48
## 59 GW2 MN 23 47
## 60 GW3 MN 8 16
## 61 GW4 MN 19 39
## 62 HAL MN 9 20
## 63 HCE EN 12 24
## 64 HENE1 LN 188 587
## 65 HH EN 13 31
## 66 HH-HS EN 2 5
## 67 HH-SS EN 10 41
## 68 HK EN 12 39
## 69 HK2 MN 908 2608
## 70 HLB EN 2 4
## 71 K1 EN 0 1
## 72 K2 LN 2 4
## 73 KBR LN 1 3
## 74 KRP2 MN 26 52
## 75 KWII LN 1 3
## 76 LAG EN 10 20
## 77 LAG5 MN 58 129
## 78 LD MN 36 82
## 79 LGX LN 6 12
## 80 LROB MN 105 241
## 81 LSMII EN 11 44
## 82 LSMIII EN 25 56
## 83 MAIX LN 494 1154
## 84 MAIZ MN 29 88
## 85 MC1 EN 4 24
## 86 MESP2 LN 16 52
## 87 MIC MN 164 375
## 88 ML1 LM 0 8
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## 89 ML234 EBA 9 26
## 90 MLB EN 4 12
## 91 MRO MN 23 60
## 92 MSCH LN 2 4
## 93 MSEE LN 31 73
## 94 MW MN 99 214
## 95 NBO MN 32 82
## 96 NIED LN 3 6
## 97 NOY1 MN 101 255
## 98 ODE LN 18 53
## 99 P1 EN 7 14
## 100 P2 LN 2 4
## 101 PBF1 LN 6 14
## 102 PFH EN 1 6
## 103 PLARB MN 21 56
## 104 PLF EN 7 14
## 105 POGJ MN 13 27
## 106 PORH EN 0 41
## 107 RADW EBA 3 30
## 108 RAT EN 29 70
## 109 RB MN 31 104
## 110 REBA MN 30 74
## 111 RES LN 77 238
## 112 RG EN 3 9
## 113 RI2 LNEBA 13 36
## 114 ROTF EN 3 28
## 115 SCB3 EBA 147 362
## 116 SCBG LN 371 882
## 117 SCE EN 37 74
## 118 SCH MN 13 38
## 119 SCHI MN 60 165
## 120 SEEA LN 61 138
## 121 SHN EBA 3 9
## 122 SPH LM 2 9
## 123 SR8 MN 52 114
## 124 SRF LN 3 12
## 125 STF EBA 191 465
## 126 STRL1 EN 75 182
## 127 STRL2 MN 4 8
## 128 STW MN 21 42
## 129 TEM1 LN 23 46
## 130 TEM2 EBA 36 72
## 131 THIE MN 12 24
## 132 TRM2 LN 9 18
## 133 VAI EN 925 2447
## 134 VTOL MN 193 463
## 135 WEG12 MN 52 104
## 136 WH1 EN 145 307
## 137 WH3 EN 46 100
## 138 WHX EN 1 2
## 139 WHX2 LN 12 25
## 140 WIT LN 1 3
## 141 WKP LN 6 32
## 142 WM LN 4 22
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## 143 ZWJ EN 3 6

• Phase = “The use of the term ‘Phase’ in these datasets refers to data aggregated at the level of the
cultural unit. . . the most common level of aggregation in the faunal and archaeobotanical reports, and
therefore offered maximum comparative potential between the different datasets” (Timpson et al. 2016).

• Period = time period
– “LM” = late Mesolithic
– “LMEN” = late Mesolithic/early Neolithic
– “EN” = early Neolithic
– “MN” = middle Neolithic
– “LN” = late Neolithic
– “LNEBA” = late Neolithic/early Bronze Age
– “EBA” = early Bronze Age

• bos = counts of identifiable specimens (NISP) to Bos primigenius or Bos taurus.
• NISP = total number of all identifiable specimens (NISp)

First we need to prepare the data to answer the question: how do counts of Bos bones vary over time? We
need to order the factors for each time period.
#set as factor
Manning$Period <- factor(Manning$Period, levels = c("LM",

"LMEN",
"EN",
"MN",
"LN",
"LNEBA",
"EBA")

)

The unit of analysis is each “phase”, which we can examine by period to see how counts of Bos bones vary.
However, by modeling time period as a factor, the result will examine variation relative to the reference class,
in this case, how each subsequent time period compares to the late Mesolithic. This is appropriate given
our question, however, the transitional time period “LMEN” complicates this hypothesis test. As such, we
remove it.
Manning.sub <- subset(Manning, Period != "LMEN") #all except transitional M-N

Manning.sub$Period <- droplevels(Manning.sub$Period) #drop unused factor level

How many levels do we have?
levels(Manning.sub$Period)

## [1] "LM" "EN" "MN" "LN" "LNEBA" "EBA"

Note: the first level value is the reference class to which all others will be compared. For us, this is perfect as
we want to compare agricultural periods with the last non-agricultural period. However, you can re-order
factor levels however you need to answer the question. See ?levels.

4.1 Exploratory data analysis
Plot the distribution of Bos bones for each time period using box plots and see how the number of Bos bones
varies with the total number of identifiable specimens (NISP).
par(pty = "s", mfrow = c(1,2))

with(Manning.sub,
plot(bos ~ Period/NISP, #plot Bos bones by period and NISP
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ylab = expression(italic("Bos ")~"spp. Bones")
)

)
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Clearly the number of cattle bones increases as a function of the total number of bones per phase, so we need
to include an offset for NISP.

4.2 Fit a Poisson GLM with offsets

glm_Pois.bos_period <- glm(bos ~ Period,
offset = log(NISP), #include a log offset
family = poisson(link = "log"),
data = Manning.sub
)

4.2.1 Model diagnostics

overdisp_fun(glm_Pois.bos_period)

4.2.1.1 Overdispersion

## chisq ratio rdf p
## 9.973755e+02 7.387967e+00 1.350000e+02 1.746483e-131

Significant overdispersion detected.
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4.3 Refit with a negative binomial GLM
Note, the syntax for including an offset differs with MASS::glm.nb so that we include it as an additive term
specified as an offset.
glm_negb.bos_period <- glm.nb(bos ~ Period +

offset(log(NISP)),
data = Manning.sub
)

4.3.1 Model diagnostics

overdisp_fun(glm_negb.bos_period)

4.3.1.1 Overdispersion

## chisq ratio rdf p
## 71.1213609 0.5268249 135.0000000 0.9999988

The negative binomial model accounts for overdispersion.

zeroinfl_fun(model = glm_negb.bos_period, response = Manning.sub$bos)

4.3.1.2 Zero-inflation

## obs_0 mod_0 ratio
## 8.000000 3.000000 2.666667

There are 8 observed zeros and 3 predicted zeros, which suggests some zero-inflation, but nothing too
concerning. Just make sure to pay attention when interpreting predictions of low counts as these could be
zero.

4.3.2 Results

Now assess goodness of fit and model coefficients.

4.3.2.1 Goodness of fit First compare to a null model:
glm_negb.bos_null <- glm.nb(bos ~ 1 +

offset(log(NISP)),
data = Manning.sub
)

anova(glm_negb.bos_null,
glm_negb.bos_period,
test = "Chisq" #Xˆ2 for negative binomial see ?MASS::anova.negbin
)

## Likelihood ratio tests of Negative Binomial Models
##
## Response: bos
## Model theta Resid. df 2 x log-lik. Test df
## 1 1 + offset(log(NISP)) 6.087784 140 -1009.5073
## 2 Period + offset(log(NISP)) 7.195535 135 -990.7728 1 vs 2 5
## LR stat. Pr(Chi)
## 1
## 2 18.73456 0.002153641
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This model is a significant improvement on the null.

Likelihood r2
l :

with(glm_negb.bos_period, (null.deviance-deviance)/null.deviance)

## [1] 0.1122308

Period accounts for about 11% of the deviance in Bos bone counts.

summary(glm_negb.bos_period)

4.3.2.2 Coefficients

##
## Call:
## glm.nb(formula = bos ~ Period + offset(log(NISP)), data = Manning.sub,
## init.theta = 7.19553472, link = log)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.2933 0.7233 -4.553 5.29e-06 ***
## PeriodEN 2.3420 0.7277 3.219 0.001288 **
## PeriodMN 2.4023 0.7265 3.307 0.000944 ***
## PeriodLN 2.2028 0.7267 3.031 0.002437 **
## PeriodLNEBA 2.3003 0.8282 2.777 0.005479 **
## PeriodEBA 2.3094 0.7346 3.144 0.001668 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(7.1955) family taken to be 1)
##
## Null deviance: 175.61 on 140 degrees of freedom
## Residual deviance: 155.90 on 135 degrees of freedom
## AIC: 1004.8
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 7.20
## Std. Err.: 1.24
##
## 2 x log-likelihood: -990.773

Bos bone counts are significantly higher during all Neolithic and Bronze age periods compared to the
Mesolithic.

To get the rate ratio for any period, just take the exponent of that coefficient. For example, for the Early
Neolithic (EN) period, the ratio is exp(2.34), or ≈ 10.4 times the number of Bos spp. bones when compared
to the late Mesolithic.

Note: when the predictor variable is a factor, the first factor is the “reference class” to which all others are
compared, as such, the model does not return coefficients for the first class. Here this is useful as it allows
us to assess how Bos bone counts vary across Neolithic (i.e., farmer) periods relative to the Mesolithic (i.e.,
hunter-gatherer) period.
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4.3.2.3 Prediction Plot the predicted responses per time period holding the sample size (NISP) at the
median value (n = 40):
bos_pred <- predict(glm_negb.bos_period,

newdata = data.frame(
Period = levels(Manning.sub$Period), #for each level of period
NISP = median(Manning.sub$NISP) #for the median NISP

),
type = "link",
se = TRUE
)

As we predicted on the link scale, this will show the predicted log counts of bones:
bos_pred$fit

## 1 2 3 4 5 6
## 0.3955356 2.7375444 2.7978110 2.5983163 2.6957899 2.7049125

As above, take the exponent to see the predicted counts:
exp(bos_pred$fit)

## 1 2 3 4 5 6
## 1.485179 15.449002 16.408690 13.441088 14.817218 14.953009

Show the predicted number of Bos bones for each time period with confidence intervals. This can be done as
a box-and-whisker plot using the points and arrows functions.
plot(NA,

xlab = "Period",
ylab = expression(italic(Bos) ~ "spp. bones"),
xlim = c(0.5,6.5), #number of categories with buffer
ylim = c(0, max(inv_link.glm_nb(bos_pred$fit))+20), #max value plus buffer
xaxt = "n" #turn off the axis to plot periods later
)

axis(side = 1, at = 1:6, levels(Manning.sub$Period)) #add time period labels

points(1:6, inv_link.glm_nb(bos_pred$fit), pch = 19)

#use arrows to make the whiskers as 95% confidence intervals
arrows(x0 = 1:6,

x1 = 1:6,
y0 = inv_link.glm_nb(bos_pred$fit + (2*bos_pred$se.fit)),
y1 = inv_link.glm_nb(bos_pred$fit - (2*bos_pred$se.fit)),
angle = 90, #90 degree angle for flat arrowhead
code = 3, #heads on y0 (1), y1 (2), or or both (3)
length = 0.1 #length of arrowhead in in inches
)
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This shows the predicted number of Bos bones for each time period from the Late Mesolithic to Early Bronze
Age with 95% confidence intervals as if each sample size (NISP) was the median (n = 40).

For an example of how predictions would vary with different sample sizes, let’s plot this again but hold NISP
at the maximum value (n = 3249):
bos_pred <- predict(glm_negb.bos_period,

newdata = data.frame(
Period = levels(Manning.sub$Period), #for each level of period
NISP = max(Manning.sub$NISP) #for the median NISP

),
type = "link",
se = TRUE
)

plot(NA,
xlab = "Period",
ylab = expression(italic(Bos) ~ "spp. bones"),
xlim = c(0.5,6.5), #number of categories with buffer
ylim = c(0, max(inv_link.glm_nb(bos_pred$fit))+1500), #max value plus buffer
xaxt = "n" #turn off the axis to plot periods later
)

axis(side = 1, at = 1:6, levels(Manning.sub$Period)) #add time period labels
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points(1:6, inv_link.glm_nb(bos_pred$fit), pch = 19)

#use arrows to make the whiskers as 95% confidence intervals
arrows(x0 = 1:6,

x1 = 1:6,
y0 = inv_link.glm_nb(bos_pred$fit + (2*bos_pred$se.fit)),
y1 = inv_link.glm_nb(bos_pred$fit - (2*bos_pred$se.fit)),
angle = 90, #90 degree angle for flat arrowhead
code = 3, #heads on y0 (1), y1 (2), or or both (3)
length = 0.1 #length of arrowhead in in inches
)
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Note that their relative position remains the same, but the absolute predicted count is inflated.

For another example, consider repeating the above using the Snodgrass data (Price and Griffin 1979; Cogswell
et al. 2001) in the archdata package (Carlson 2017) to see how “prestige” items such as earplugs and effigies
vary by excavation section while controlling for household size.
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Multiple Regression

Figure 2: Flowchart outlining recommended procedures for fitting and evaluating count models with multiple
predictors. For other examples with mixed effects models, see Bolker et al. (2009).
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5 Count regression with multiple predictors: Texas point types
Question: Does environmental stress and risk of resource shortfall influence technological intensification and
innovation?

In order to assess the “risk hypothesis” for technological complexity – that populations under risk of resource
stress or shortfall will invest more in specialized tools leading to greater technological types (see Torrence
1983) – Buchannan et al. (2016: Table 1) compile data on the number of projectile point types by time period
in Texas relative to proxies of environmental “risk”.
Buchannan

## Time.period Number.of.point.types Start End Duration
## 1 Early Paleoindian 2 13060 11910 1150
## 2 Late Paleoindian 19 11910 8854 3056
## 3 Early Archaic 27 8854 5142 3712
## 4 Middle Archaic 30 5142 3185 1957
## 5 Late Archaic 32 3185 1523 1662
## 6 Transitional Archaic 16 1523 1174 349
## 7 Late Prehistoric 40 1174 404 770
## Regional_risk_C13 Global_risk_O18
## 1 -4.035 -3.486
## 2 -7.985 -1.540
## 3 -6.360 0.347
## 4 -5.960 0.116
## 5 -8.190 -0.043
## 6 -6.770 -0.184
## 7 -3.730 -0.163

The data include:

• Time.period = Categorical name of each time period: “Early Paleoindian”, “Late Paleoindian”, “Early
Archaic”, “Middle Archaic”, “Late Archaic”, “Transitional Archaic”, “Late Prehistoric”.

• Number.of.point.types = The number of projectile point types in Texas per period.
• Start = Beginning year of the time period (calibrated years BP).
• End = Ending year of the time period (calibrated years BP).
• Duration = Total duration of the time period.
• Regional_risk_C13 = Stable carbon-13 ratio from a sediment cores in Denton County (north-central

Texas) as a proxy for precipitation. Higher values equate to drier conditions.
• Global_risk_O18 = Average ratio of oxygen-18 to oxygen-16 stable isotopes in the atmosphere derived

from the Vostok (Antarctica) ice core as a measure of global temperature. Higher values equate to
higher global temperatures.

They note that, “[f]or the purposes of testing the risk hypothesis, we assumed that decreasing precipitation
and increasing temperature coincided with increasing risk because drier and hotter environments in Texas,
such as large areas of southwestern Texas, have less biomass available, which translates into less subsistence
resources available for human foragers.” One question they ask is whether regional precipitation or global
temperature has a stronger influence on point types.
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5.1 Exploratory data analysis

par(pty = "s")

with(Buchannan,
hist(Number.of.point.types,

xlab = "Number of Projectile Point Types",
main = NA)

)
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Create bivariate plots of the response and predictors (note, the expression and paste functions are used to
include Greek symbols, subscript, and superscript type).
par(pty = "s", mfrow = c(1,2))

with(Buchannan,
plot(Number.of.point.types ~ Regional_risk_C13,

ylab = "Number of Projectile Point Types",
xlab = expression(paste("Regional Precipitation (", delta ˆ{13},"C)")),
)

)

with(Buchannan,
plot(Number.of.point.types ~ Global_risk_O18,

ylab = "Number of Projectile Point Types",
xlab = expression(paste("Global Temperature (", delta ˆ{18},"O",''[atm],")")),
)

)
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As the duration of time periods varies, our model will need to account for this:
par(pty = "s")

with(Buchannan,
plot(Number.of.point.types ~ Duration,

ylab = "Number of Projectile Point Types",
xlab = "Duration of Period (years)")

)
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5.1.1 Multicollinearity

Importantly, as we want to assess multivariate relationships, we need to check for multicollinearity. This can
be done with a bi-variate plot and a simple correlation test.
par(pty = "s")

with(Buchannan,
plot(Global_risk_O18 ~ Regional_risk_C13,

ylab = expression(paste("Global Temperature (", delta ˆ{18},"O",''[atm],")")),
xlab = expression(paste("Regional Precipitation (", delta ˆ{13},"C)"))
)

)
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#correlation test
with(Buchannan,

cor.test(Global_risk_O18, Regional_risk_C13)
)

##
## Pearson's product-moment correlation
##
## data: Global_risk_O18 and Regional_risk_C13
## t = -0.79018, df = 5, p-value = 0.4652
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8683649 0.5605065
## sample estimates:
## cor
## -0.3331884

While the two predictors have a correlation coefficient of -0.33, that should not be strong enough to inflate
model coefficients – though we will double-check below. We should feel comfortable using both predictors.
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5.2 Fit a Poisson GLM

glm_pois.point_multi <- glm(Number.of.point.types ~ Global_risk_O18 +
Regional_risk_C13,

offset = log(Duration),
data = Buchannan,
family = poisson
)

5.2.1 Model diagnostics

overdisp_fun(glm_pois.point_multi)

5.2.1.1 Overdispersion

## chisq ratio rdf p
## 9.023024e+01 2.255756e+01 4.000000e+00 1.176511e-18

Meaningful overdispersion. Refit with negative binomial GLM.

5.3 Fit negative binomial GLM

glm_nb.point_multi <- glm.nb(Number.of.point.types ~ Global_risk_O18 +
Regional_risk_C13 +

offset(log(Duration)),
data = Buchannan
)

5.3.1 Model diagnostics

overdisp_fun(glm_nb.point_multi)

5.3.1.1 Overdispersion

## chisq ratio rdf p
## 5.6935509 1.4233877 4.0000000 0.2232328

The negative binomial model adequately handles overdispersion.

zeroinfl_fun(glm_nb.point_multi, response = Buchannan$Number.of.point.types)

5.3.1.2 Zero-inflation

## obs_0 mod_0 ratio
## 0 0 NaN

No zero values.

5.3.1.3 Variance inflation factor While it was not apparent a priori, multicollinearity may still influence
the model result. As such, we need to assess the influence of multicollinearity on the model result. We can
rely on the vif function in the car package (Fox and Weisberg 2019). For more, see ?car::vif.
library(car)
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car::vif(glm_nb.point_multi)

## Global_risk_O18 Regional_risk_C13
## 1.04068 1.04068

If the VIF value is near 1, then there is no concern. If the value is close to 5, then there is moderate correlation.
If the value is well above 5, then the predictors are highly correlated.

5.3.1.4 Residuals Plot the residuals.
resid.point_multi <- residuals(glm_nb.point_multi, type = "deviance")

par(pty = "s", mfrow = c(1,2))

hist(resid.point_multi, main = NA)

plot(resid.point_multi ~ glm_nb.point_multi$fitted.values,
xlab = "Fitted",
ylab = "Residuals")

abline(h=0, col="gray")
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The model does a fairly good job, but note the high outlier. We can examine this further by plotting the
observed by fitted values and labeling them to see which time period is not predicted well by the model.
par(pty = "s")

plot(Buchannan$Number.of.point.types ~ glm_nb.point_multi$fitted.values,
ylab = "Observed",
xlab = "Fitted",
xlim = c(-10,125),
ylim = c(-10,125)
)

abline(a=0, b = 1, col="gray")

#label by time period
text(x = glm_nb.point_multi$fitted.values,

y = Buchannan$Number.of.point.types,
Buchannan$Time.period,
pos = c(4,3,2,1,2,4,4), #custom placement
cex = 0.65 #smaller labels
)
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The model predicts way more point types than observed for the “Early Archaic” period. Why might this be?

Technically these data are a time series, so it would be good to assess the residuals for temporal autocorrelation.
This is beyond our scope here, but see Simpson (2018b)
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5.3.2 Results

Examining the results of multivariate models follow bivariate models, with a few additions.

5.3.2.1 Goodness of fit Compare to a null model:
glm_nb.point_null <- glm.nb(Number.of.point.types ~ 1 +

offset(log(Duration)),
data = Buchannan
)

anova(glm_nb.point_null,
glm_nb.point_multi,
test = "Chisq"
)

## Likelihood ratio tests of Negative Binomial Models
##
## Response: Number.of.point.types
## Model theta
## 1 1 + offset(log(Duration)) 1.235997
## 2 Global_risk_O18 + Regional_risk_C13 + offset(log(Duration)) 2.626179
## Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)
## 1 6 -61.52922
## 2 4 -55.53585 1 vs 2 2 5.993371 0.04995236

A slight improvement on a null model with only the offsets.

How much deviance in projectile point type count is explained by both predictors?
with(glm_nb.point_multi, (null.deviance-deviance)/null.deviance)

## [1] 0.5450301

About 55% of the variation in the number of projectile point types is accounted for by the combination of
local precipitation and global temperature.

5.3.2.2 Coefficients Let’s evaluate the model coefficients.
summary(glm_nb.point_multi)

##
## Call:
## glm.nb(formula = Number.of.point.types ~ Global_risk_O18 + Regional_risk_C13 +
## offset(log(Duration)), data = Buchannan, init.theta = 2.62617933,
## link = log)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.5839 1.0853 -2.381 0.01727 *
## Global_risk_O18 0.7692 0.2358 3.262 0.00111 **
## Regional_risk_C13 0.1699 0.1637 1.038 0.29944
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(2.6262) family taken to be 1)
##
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## Null deviance: 15.3273 on 6 degrees of freedom
## Residual deviance: 6.9735 on 4 degrees of freedom
## AIC: 63.536
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 2.63
## Std. Err.: 1.47
##
## 2 x log-likelihood: -55.536

The global measure of temperature seems to have more influence over the number of projectile point types,
but how much more important is it than regional precipitation? Determining this requires that each variable
be scaled so they vary by the order of magnitude and are centered on the mean, which also has the added
benefit of making the intercept parameter represent the expected count under average conditions.

5.3.2.3 Variable importance Refit the model with scaled variables so that each vary by the same order
of magnitude and are centered on their mean. This can be done using the scale function:
glm_nb.point_multi_s <- glm.nb(Number.of.point.types ~ scale(Global_risk_O18) +

scale(Regional_risk_C13) +
offset(log(Duration)),
data = Buchannan
)

Note how the coefficients are different than above:
coeff.point_multi_s <- summary(glm_nb.point_multi_s)$coefficients

coeff.point_multi_s

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.1723183 0.2576743 -16.192220 5.722598e-59
## scale(Global_risk_O18) 1.0516325 0.3223692 3.262199 1.105515e-03
## scale(Regional_risk_C13) 0.2968273 0.2860595 1.037642 2.994368e-01

Note, to plot these below, we will use some standard indexing to select specific rows and columns. This is
done with a square bracket following the object. For example, if we wanted only the estimates corresponding
to the predictor variables, we’d want to drop the first row and select only the first column:
coeff.point_multi_s[-1,1]

## scale(Global_risk_O18) scale(Regional_risk_C13)
## 1.0516325 0.2968273

Note that when one coefficient is negative and one is positive, indicating a different directional response, it
may be useful to aid comparison of the magnitude of effect by taking the absolute value (abs) of the scaled
coefficients. If this is done, be sure to note so.
abs(coeff.point_multi_s[-1,1])

## scale(Global_risk_O18) scale(Regional_risk_C13)
## 1.0516325 0.2968273
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Plot the value of the scaled coefficients and their standard error:
par(pty = "s", oma = c(0,1,0,0)) #square plot, add outer margin to left side

plot(NA,
xlab = "Coefficients",
ylab = NA,
xlim = c(0, 6),
ylim = c(0.5, 2.5),
yaxt = "n"
)

#points can plot the scaled coefficients
points(x = exp(coeff.point_multi_s[-1,1]), #select predictor coeffs

y = 1:2,
pch = 19)

#the arrows function can draw "whiskers" representing the 95% confidence intervals
arrows(x0 = exp(coeff.point_multi_s[-1,1] + (2*coeff.point_multi_s[-1,2])),

x1 = exp(coeff.point_multi_s[-1,1] - (2*coeff.point_multi_s[-1,2])),
y0 = 1:2,
y1 = 1:2,
length = 0.1,
code = 3,
angle = 90
)

axis(side = 2,
at = 1:2,
rev(c(expression(paste("Local Precip. (", delta ˆ{13},"C)")),

expression(paste("Global Temp. (", delta ˆ{18},"O",''[atm],")")))),
las = 1
)

abline(v = 1, col = "grey")
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Both variables have positive effects, as predicted, but the local precipitation proxy has confidence intervals
that overlap with 1 (meaning no response) while global temperature has only values above 1.

5.3.2.4 Prediction We can examine the effect of each variable on the response while holding the other
constant. These are called partial or marginal response plots.

For interpretive purposes, we are going to return back to the un-scaled model and make predictions for each
variable. As above, we will make predictions across the range of each focal variable, though here we need to
specify the value at which we want to hold the other variable constant. Often it is recommended to go with
the mean or median value, though other values can allow the investigator to explore different scenarios.

In this case, let’s explore how the number of projectile point types varies with each predictor while holding
the other constant at their minimum value so to evaluate the scenario where “environmental risk” is lowest
for one predictor across the range of the other. In other words, this will allow us to assess how investment in
specialized technology varies with temperature when precipitation is high (i.e., when precipitation induced
risk is low), and with precipitation when temperature is low (i.e., when temperature induced risk is low).
#a sequence across the range regional risk
reg.seq <- seq(min(Buchannan$Regional_risk_C13),

max(Buchannan$Regional_risk_C13),
length.out = 100) #arbitrary 100 values

con_pred.reg <- predict(glm_nb.point_multi,
newdata = data.frame(

#predict across the range of precip
Regional_risk_C13 = reg.seq,
#hold temp at the min value
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Global_risk_O18 = min(Buchannan$Global_risk_O18),
#hold at the median duration
Duration = median(Buchannan$Duration)
),

type = "link",
se = TRUE
)

#a sequence across the range global risk
glo.seq <- seq(min(Buchannan$Global_risk_O18),

max(Buchannan$Global_risk_O18),
length.out = 100) #arbitrary 100 values

con_pred.glo <- predict(glm_nb.point_multi,
newdata = data.frame(

#hold precip at the min value
Regional_risk_C13 = min(Buchannan$Regional_risk_C13),
#predict across the range of temp
Global_risk_O18 = glo.seq,
#hold at the median duration
Duration = median(Buchannan$Duration)
),

type = "link",
se = TRUE
)

Plot the predicted values side-by-side with 95% confidence intervals.
#pdf("Figure6.pdf", height = 4, width = 7)

par(mfrow = c(1,2), pty = "s")

#blank plot
with(Buchannan,

plot(NA,
ylim = c(0,100),
xlim = c(min(reg.seq), max(reg.seq)),
xlab = expression(paste("Regional Precipitation (", delta ˆ{13},"C)")),
ylab = "Projectile Point Types"
)

)

#add 95% CI
polygon(x = c(reg.seq, rev(reg.seq)),

y = c(inv_link.glm_Pois(con_pred.reg$fit + (2*con_pred.reg$se)),
rev(inv_link.glm_Pois(con_pred.reg$fit - (2*con_pred.reg$se)))
),

border = NA,
col = "lightgrey"
)

#add model fit
lines(exp(con_pred.reg$fit) ~ reg.seq)
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#add the data points
with(Buchannan,

points(Number.of.point.types ~ Regional_risk_C13)
)

#add a panel label for publication
mtext("a)", side = 3, adj = -0.2, line = 1.5)

#add text in the margin of the plot to aid interpretation
mtext(text = c("wetter", "drier"),

at = c(min(reg.seq), max(reg.seq)),
side = 3,
line = 0.5
)

#blank plot
with(Buchannan,

plot(NA,
ylim = c(0,100),
xlim = c(min(glo.seq), max(glo.seq)),
xlab = expression(paste("Global Temperature (", delta ˆ{18},"O",''[atm],")")),
ylab = "Projectile Point Types"
)

)

#add 95% CI
polygon(x = c(glo.seq, rev(glo.seq)),

y = c(inv_link.glm_Pois(con_pred.glo$fit + (2*con_pred.glo$se)),
rev(inv_link.glm_Pois(con_pred.glo$fit - (2*con_pred.glo$se)))
),

border = NA,
col = "lightgrey"
)

#add model fit
lines(exp(con_pred.glo$fit) ~ glo.seq)

#add points
with(Buchannan,

points(Number.of.point.types ~ Global_risk_O18)
)

#add a panel label for publication
mtext("b)", side = 3, adj = -0.2, line = 1.5)

#add text in the margin of the plot to aid interpretation
mtext(text = c("cooler", "warmer"),

at = c(min(glo.seq), max(glo.seq)),
side = 3,
line = 0.5
)
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The results illustrate that even holding global temperature to cooler conditions, an increase in regional
precipitation does not lead to a increase in projectile point types, while an increase in global temperature
even holding regional precipitaiton to wetter conditions does lead to an increase in projectile point types.
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7 Session Information

version

## _
## platform x86_64-w64-mingw32
## arch x86_64
## os mingw32
## crt ucrt
## system x86_64, mingw32
## status
## major 4
## minor 3.0
## year 2023
## month 04
## day 21
## svn rev 84292
## language R
## version.string R version 4.3.0 (2023-04-21 ucrt)
## nickname Already Tomorrow
names(sessionInfo()$otherPkgs)

## [1] "car" "carData" "MASS" "mgcv" "nlme"
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