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We are interested in how the back-transfer of the SM changes in the continuation probability 

p. Within a given treatment characterized by p there is a single information set where the SM  

is called upon to make a move – the information set that is reached when (i) the FM has 

decided to send the amount of $3 to the SM and (ii) nature has decided to continue the game. 

Consider the treatment with continuation probability p and denote the SM’s choice at her 

unique information set in that game by x(p). By design x(p) ∈ [0, 15] for all values of p. Let 

b1(p) denote the FM’s (initial) belief on x(p) and let b2(p) denote the SM’s estimate of b1(p) 

conditional on the FM having decided to send the $3 to the SM and on nature having chosen 

to continue the game.1 

Sequential Reciprocity 

We start by assuming that the SM has reciprocity concerns as modeled by Dufwenberg and 

Kirchsteiger (2004) and extended – by allowing for chance moves – by Sebald (2010). In line 

with the sequential reciprocity model presented in those papers we assume that at her unique 

information set the SM decides according to the utility function  

(A1) USM(x(p), b2(p), p) = πSM(x(p)) + YSM κSM(x(p)) λSM(b2(p), p), 

where the first term on the RHS, πSM(.), is the SM’s material payoff and the second term,  

YSM κSM(.) λSM(.), is her expected psychological payoff. Since the SM has the last move in the 

game, her material payoff depends only on her own behavior. Specifically, we have πSM(x(p)) 

= 25 - x(p). The SM’s psychological payoff is the result of the multiplication of three terms, 

the strictly positive reciprocity parameter, YSM , which ‘measures’ the SM’s sensitivity to the 

(un)kindness of the FM, the SM’s perception of the kindness of the own behavior, κSM(x(p)), 

and the SM’s perception of the kindness of the sending behavior of the FM, λSM(b2(p), p).2 In 

the sequential reciprocity theory by Dufwenberg and Kirchsteiger (2004) and its extension by 

Sebald (2010) the SM’s perception of the own kindness (as assessed at her unique information 

set) is defined as the material payoff the SM intends to give to the FM by her transfer minus a 

reference payoff (the ‘equitable payoff’), which is the average between the maximum and the 

minimum material payoff the SM could give to the FM by varying her back-transfer. 

Specifically, κSM(x(p)) =  πFM(x(p)) – πe
FM, where πFM(x(p)) = 7 + x(p) is the payoff the SM 

gives to the FM and where πe
FM = (7 + 22)/2 =14.5 is the SM’s perception of the equitable 

payoff for the FM. Thus, κSM(x(p)) =  x(p) – 7.5, implying that the SM perceives herself as 

unkind if she gives less than 7.5 and kind if she gives more and that her “kindness increases in 

the size of the gift”. Turning to the last term in the psychological payoff, the SM’s perception 

of the kindness of the sending decision of the FM, λSM(b2(p), p), it is defined similarly. 

Specifically, λSM(b2(p), p) = πSM(b2(p)) – πe
SM, where πSM(b2(p)) = 25 – pb2(p) is the payoff 

the SM expects that the FM intends to give to her (by sending the $3) and πe
SM = [10 + 25 – 

                                                
1 Our focus throughout is on pure strategies and point beliefs. In the experiment the SM can choose only integer 
amounts between 0 and 15. Here, in the theory part, we allow her to choose from the interval [0, 15] to keep the 
exposition simple. As is easily seen, our main points do not depend on this simplification. 
2 The mathematical functions in the theory papers by Dufwenberg and Kirchsteiger (2004) and  Sebald (2010) 
are slightly more complex but lead to a utility with the same best response correspondence. Also, the theory 
papers allow for Y=0 which represents the special case of selfish preferences. Since our aim is to compare the 
behavioral consequences of the theories of sequential reciprocity and simple guilt it does not make any sense to 
allow for selfish preferences in any of the models. 

1 Theoretical predictions

1



2 
 

pb2(p)]/2 is the average between the minimum and the maximum the SM believes the FM 

believes he can assign to the SM (the minimum is reached when the FM decides to keep the 

$3 and the maximum is reached when the FM decides to send the $3; only in the latter case 

does the payoff depend on the SM’s second order belief). Thus, λSM(b2(p), p) = 7.5 – pb2(p)/2. 

Here it is important to note that the SM’s perception of the kindness of the sending move by 

the FM depends on the continuation probability p: For a given second-order belief of the SM, 

the sending move by the FM is perceived as kinder if the continuation probability is lower.3 

Combining all the elements yields the function  

(A2) USM(x(p), b2(p), p) = πSM(x(p)) + YSM κSM(x(p)) λSM(b2(p), p)  

= 25 – x(p) + YSM [x(p) – 7.5][7.5 – pb2(p)/2]. 

 

Guilt Aversion 

Consider now the alternative scenario where the SM is motivated by a desire to avoid ‘simple 

guilt’ as introduced by Charness and Dufwenberg (2006) and generalized and extended by 

Battigalli and Dufwenberg (2007). In the theory of simple guilt players experience a utility 

loss if they believe that they let others’ payoff expectations down. Using the same notation as 

before we assume – in line with the mentioned papers – that at her unique information set the 

SM decides according to the utility function  

(A3) USM(x(p), b2(p), p) = πSM(x(p)) – θSMDFM(x(p), b2(p), p), 

where the first term on the RHS, πSM(.), is again the SM’s material payoff and the second 

term, θSMDFM(.), is her expected psychological payoff which now results from guilt from 

letting the FM’s payoff expectations down. The SM’s material payoff is again πSM(x(p)) = 25  

– x(p). The SM’s psychological payoff is now the result of the multiplication of two terms, the 

strictly positive guilt-sensitivity parameter θSM , which ‘measures’ the SM’s sensitivity to 

letting the FM’s payoff expectations down,  and the expression DFM(.), which measures the 

damage done to the FM by the other players (the SM and nature). This latter term is defined 

as DFM(x(p), b2(p), p) = max {0, E[πFM | b2(p), p]} – πFM(x(p))}, where E[πFM | b2(p), p] is the 

SM’s belief regarding the FM’s payoff expectation (conditional on sending the $3) for a given 

p and πFM(x(p)) is the FM’s actual payoff given the SM’s actual back-transfer. Now, E[πFM | 

b2(p), p] = 7 + pb2(p) and πFM(x(p)) = 7 + x(p). Thus, DFM(x(p), b2(p), p) = max {0, pb2(p) – 

x(p)}, implying that (3) becomes  

(A4) USM(x(p), b2(p), p) = πSM(x(p)) – θSMDFM(x(p), b2(p), p) = 

= 25 – x(p) – θSM[pb2(p) - x(p)]+, 

where [x]+ is x for x > 0 and 0 otherwise.  

                                                
3 Here it is important to note that – in line with the extension by Sebald (2010) of the sequential reciprocity 
concept by Dufwenberg and Kirchsteiger (2004) – at the SM’s unique information set we let her evaluate the 
kindness of the sending move by the FM on the basis of her belief that the FM believes that nature will continue 
the game with probability p and not with probability 1. That is, in line with Sebald (2010) the SM does not 
update her belief about the FM’s belief regarding the move by nature. 
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Predictions: 

On the basis of the motivation functions (2A and 4A) we get to the following predictions: 

Observation 1 (Common Knowledge that the SM is Motived by Sequential Reciprocity): 

Consider two games (as displayed in Figure 1) characterized by their continuation 

probabilities p1 and p2, with 1 > p2 > p1 >0. Assume that it is common knowledge that the SM 

behaves in accordance with the sequential reciprocity theory as introduced by Dufwenberg 

and Kirchsteiger (2004) and extended by Sebald (2010), with known reciprocity parameter 

YSM. Further assume that the equilibrium involves x(pi) ∈ (0, 15) for at least one pi. Then 

p2b2(p2) > p1b2(p1) and x(p1) > x(p2). 

Proof: The proof is by contradiction. Consider two continuation probabilities p1 and p2, with 

p2 > p1 and assume that the back-transfer in the SRE of the game induced by p2 is weakly 

larger than the back-transfer in the SRE of the game induced by p1. As in any SRE beliefs of 

all orders are correct, it must be the case that b2(p1) = x(p1) and b2(p2) = x(p2). But then b2(p1) 

≤ b2(p2) and hence [7.5 – p1b2(p1)/2] > [7.5 – p2b2(p2)/2]. As a consequence, the SM perceives 

the transfer of $3 by the FM as kinder in the SRE of the game with the smaller continuation 

probability p1 than in the SRE of the game with the larger continuation probability p2. But 

then the SM cannot return weakly more in the SRE of the game with the larger continuation 

probability because this is inconsistent with maximizing the function (2) which requires that 

x(p) increases in the SM’s perception of the kindness of the FM.    ▄ 

Discussion of Observation 1: Observation 1 tells us that for the special case where it is 

common knowledge that the SM is motivated by sequential reciprocity à la Dufwenberg and 

Kirchsteiger (2004) and Sebald (2010), the SM’s second-order belief is increasing and her 

back-transfer is decreasing in the continuation probability. The requirement x(pi) ∈ (0, 15) for 

at least one pi is needed for the result to exclude ‘corner solutions’ where the back-transfer is 

either 0 or 15 for both values of pi. This happens if either YSM ≤ 2/15 (in this case x(p1) = x(p2) 

= 0) or YSM ≥ 2/15(1–p2) (in this case x(p1) = x(p2) = 15). This can be shown by deriving the 

conditions for the existence of the two ‘corner solutions’ and for the existence of an interior 

equilibrium with x(pi) ∈ (0, 15). A necessary and sufficient condition for a corner solution 

with x(pi) = 0 is that the weight on x(p) in the psychological term in (A2) is weakly smaller 

than 1 when b2(pi) is set to 0. This condition translates to YSM ≤ 2/15 for all pi ∈ (0, 1]. The 

necessary and sufficient condition for a corner solution with x(pi) = 15 is that the weight on 

x(p) in the psychological term in (2) is weakly larger than 1 when b2(pi) is set to 15. This 

condition translates to YSM ≥ 2/15(1–pi) for all pi ∈ (0, 1). The necessary and sufficient 

condition for an interior equilibrium is that the weight on x(p) in the psychological term in 

(A2) is exactly 1 when b2(pi) is set to x(p). This yields the condition x(pi) = (15YSM – 2)/ piYSM. 

These considerations together imply that the SRE is unique for any combination of YSM  > 0 

and pi ∈ (0, 1].  

Now consider the other extreme where it is common knowledge that the SM is motived by simple 

guilt. For this special case we immediately get the following result: 

Observation 2 (Common Knowledge that the SM is Motived by Guilt Aversion): 

Consider the game displayed in Figure 1. Assume that it is common knowledge that the SM 
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behaves in accordance with the theory of simple guilt as introduced by Charness and 

Dufwenberg (2006) and generalized and extended by Battigalli and Dufwenberg (2007). Then 

equilibrium necessarily involves x(p) = 0 for any p < 1. Indeed, common knowledge of 

rationality alone already implies that x(p) = 0 for any p <1. 

Proof: First note that in game p the term DFM(x(p), b2(p), p) is equal to zero for x(p) ≥ 15p 

independently of b2(p). This follows from the fact that a FM who decides to send the $3 

cannot have a payoff expectation large than 7 + 15p. Thus, in game p any back-transfer larger 

than 15p is dominated for the SM by the back transfer of 15p (because the higher back-

transfer causes a material cost without yielding any benefit in terms of reduced guilt). If the 

FM correctly anticipates that in game p any back transfer larger than 15p is dominated, then 

he cannot have a payoff expectation large than 7 + 15p2, implying that the expectation of DFM 

is zero for any x(p) ≥ 15p2 independently of b2(p). Proceeding with the same argument we see 

that common knowledge of rationality plus aversion against simple guilt together yield the 

prediction that x(p) = 0 for any p <1 and any arbitrary θSM!    ▄ 

Discussion of Observation 2: Observation 2 tells us that with ‘simple guilt’ à la Charness 

and Dufwenberg (2006) and Battigalli and Dufwenberg (2007) the back-transfer is zero for 

any arbitrary value of pi. This is somewhat counterintuitive because one would expect that 

guilt aversion has some bite in this context and because intuition suggests that the bite should 

increase in the continuation probability simply because the payoff expectation increases in the 

continuation probability. Why does guilt aversion exactly nothing in the context under 

consideration? The problem seems to be that when the SM is actually deciding, she knows 

that nature has already been ‘nice’ to the FM. She does therefore not feel guilty for giving him 

less than what the FM initially expected her to give him (because even with a lower back 

transfer the payoff expectation of the FM is still met). One could argue that this is against the 

spirit of guilt aversion as introduced by Charness and Dufwenberg (2006) and generalized and 

extended by Battigalli and Dufwenberg (2007), and that the SM should feel guilty if she sends 

back less than what the FM expected her to send back. However, our aim here is not to 

develop an alternative theory of guilt aversion. 

Discussion of Observations 1 and 2: Observations 1 and 2 consider two extreme cases, in 

one of them it is common knowledge that the SM is motivated by reciprocity concerns, in the 

other it is common knowledge that she is motivated by simple guilt. None of these scenarios 

is in line with the core assumption of the present paper, which is the assumption that SMs are 

heterogeneous in their reactions to second-order beliefs: Some SM are assumed to have 

preferences in line with equation (A2), others are assumed to have preferences in line with 

equation (A4), still others are assumed to be selfish (x(p) = 0 for all p) or altruistic (x(p) = k > 

0 for all p).  Let us now consider such a framework. 

Heterogeneous Preferences: To keep the analysis simple suppose that it is common 

knowledge that there are exactly four types of SMs in the population, selfish (S) SMs who 

never send money back (xS(p) = 0 for all p), altruistic (A) SMs who send a fixed amount k for 

any p (xA(p) = k for all p), guilt averse (G) SMs who behave according to the utility function 

(A4) with known θSM  > 1, and reciprocal (R) SMs who behave according to the utility 

function (A2) with known YSM  > 2/15. Further suppose that the four types of agents have 
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known relative frequencies αS, αA, αG and αR in the population. What are the requirements for 

equilibrium in this case? Since the FM does not know whether he is paired with a S, an A, a G 

or a R type, correct expectation means that b1(p) is the probability-weighted average of the 

back-transfers of the different SM types. Since the SM knows that the FM does not know 

which SM type he faces, b2(p) = b1(p) for all SM types. This implies that in equilibrium the 

b2(p) for a given SM is no longer equal to the x(p) of that SM. What does this imply for the 

(equilibrium) reaction of second-order beliefs and behavior to an exogenous change in the 

continuation probability? Proposition 1 addresses this question: 

Proposition 1 (Common Knowledge that there is Heterogeneity in SM Preferences): 

Consider two games (as displayed in Figure 1) characterized by their continuation 

probabilities p1 and p2, with 1 > p2 > p1 >0. Assume that it is common knowledge that there 

are four types of SMs in the population appearing with known strictly positive frequencies, 

selfish SMs who never send money back, altruistic SMs who send a fixed amount k for any p, 

guilt averse SMs who behave according to the utility function (A4) with known θSM >1, and 

reciprocal SMs who behave according to the utility function (A2) with known YSM >2/15. 

Then the equilibrium involves p2b2(p2) > p1b2(p1). 

Proof: First note that xS(p1) = xS(p2) = 0 and  xA(p1) = xA(p2) = k. Next note that θSM >1 

implies that xG(pi) = pib2(pi).  Also note that xR(pi) = 0 if YSM[7.5 - pib2(pi)/2] < 1, xR(pi) ∈ [0, 

15]  if YSM[7.5 - pib2(pi)/2] = 1, and xR(pi) = 15 if YSM[7.5 - pib2(pi)/2] > 1. Finally note that in 

equilibrium b2(pi) is equal to b1(pi) and b1(pi) is equal to the probability-weighted average of 

the x(pi)s of the different SM types. That is, b2(pi) = b1(pi) = αAk + αGpib2(pi) + αRxR(pi). Now 

it is easy to see that for each pi there are three possible cases to consider, the case where xR(pi) 

= 0, the case where xR(pi) ∈ (0, 15) and the case where xR(pi) = 15. For the case where xR(pi) = 

0 we get b2(pi) = b1(pi) =  αAk/(1- αGpi) and the condition for the existence of such an 

equilibrium is YSM[7.5 - piαAk/(2 - 2αGpi)] < 1. For the case where xR(pi) = 15 we get b2(pi) = 

b1(pi) =  (αAk + 15αR)/(1- αGpi) and the condition for the existence of such an equilibrium is 

YSM[7.5 - pi(αAk + 15αR)/(2 - 2αGpi)] > 1. For values of the reciprocity parameter YSM  between 

1/[7.5 - piαAk/(2 - 2αGpi)] and 1/[7.5 - pi(αAk + 15αR)/(2 - 2αGpi)] the equilibrium involves 

xR(pi) ∈ (0, 15) and in this case xR(pi) is determined by the equation YSM[7.5 - pi(αAk + 

αRxR(pi))/(2 - 2αGpi)] = 1. From these considerations it follows that for each combination of 

YSM and pi the equilibrium is unique. Keeping YSM fixed and comparing two games 

characterized by their continuation probabilities p1 and p2, with 1 > p2 > p1 >0, and taking into 

account the conditions for the existence of each of the three kinds of equilibria, we then get    

p1xS(p1) = p2xS(p2), p1xA(p1) < p2xA(p2), p1xG(p1) < p2xG(p2), and p1xR(p1) ≤ p2xR(p2). The result 

then follows from the fact that pib2(pi) = αApixA(pi) + αGpixG(pi) + αRpixR(pi).  ▄ 

Discussion of Proposition 1: Proposition 1 tells us that for the case where it is common 

knowledge that there are four types of SMs in the population appearing with known strictly 

positive frequencies, equilibrium necessarily involves that the second-order belief of the SM 

is increasing in the continuation probability. No further conditions are needed to exclude 

corner solutions in this case because the fact that selfish and altruistic agents have positive 

probability mass alone already guarantees that b2(pi) ∈ (0, 15) for each pi. 



General Instructions

General Remarks
Thank you for participating in this experiment on decision-making. During the experiment you and the other
participants are asked to make a series of decisions.
Please do not communicate with other participants. If you have any questions after we finish reading the instructions
please raise your hand and an experimenter will approach you and answer your question in private. Please consider
all expressions as gender neutral.

Three Roles
There are three roles in this experiment: Player 1, Player 2 and the Observer. At the start of the experiment
you will be assigned to one of these three roles through a random procedure. Your role will then remain the same
throughout the experiment. Your role will only be known to you.

Earnings
Depending on your decisions, the outcomes of some random moves and the decisions of other participants you will
receive money according to the rules explained below. All payments will be made confidentially and in cash at the
end of the experiment.

Privacy
This experiment is designed such that nobody, including the experimenters and the other participants, will ever be
informed about the choices you or anyone else will make in the experiment. Neither your name nor your student
ID will appear on any decision form. The only identifying label on the decision forms will be a number that is only
known to you. At the end of the experiment, you are asked to collect your earnings in an envelope one-by-one from
a person who has no involvement in and no information about the experiment.
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Decisions Per Period

The experiment is divided into three periods. You are asked to choose your preferred option in each of these
periods. Only one period will be randomly selected for cash payments; thus you should decide which option you
prefer in the given period independently of the choices you make in the other periods.

There are three roles in the experiment: Player 1, Player 2 and an Observer.

Player 1 and Player 2

In each period, Player 1 is randomly matched with one Player 2 but none of the participants will interact with the
same other participant twice and no one will ever be informed about the identity of the participant he was paired
with. Both players receive an endowment of $10 in each period.

The first move is made by Player 1. He is asked to choose whether he wants to send $3 of his endowment to Player
2 or not.

If Player 1 decides to transfer $3 to Player 2, his transfer will be multiplied by 5 while being sent. After Player 2
has received the $15, it is randomly determined whether the round is stopped at this point of time or if Player 2
has the opportunity to send money back to Player 1:

• With the probability 1 − p, the round continues.
In this case, Player 2 can decide how much money he wants to send back to Player 1. He can choose
any amount between $0 and $15. Player 1 then receives his remaining $7 plus Player 2’s back-transfer as a
payment. Player 2 earns his initial endowment ($10) plus the multiplied transfer ($15) minus the amount he
has chosen to send back to Player 1.

• With a probability p, the round is stopped.
In this case, Player 1 receives the $7 that are left from his initial endowment and Player 2 receives his initial
endowment ($10) plus the by five multiplied transfer of Player 1 ($15).

If Player 1 decides not to transfer the $3 to Player 2, nothing happens and both players receive their initial endow-
ment of $10.

The stopping probability p can take values of 10%, 30% or 50%. The realization of p will be stated to all players
at the beginning of each period.

The decision procedure for Player 1 and Player 2 is illustrated by the graph on the following page.

Decision Task Player 1
If you are assigned the role of Player 1, you are asked to choose – in each of the three periods – whether or not to
transfer $3 to Player 2.

Decision Task Player 2
If you are assigned the role of Player 2, you do not know what decision Player 1 is about to make nor what the
outcome of the random draw will be. You are therefore asked to decide on how much money you would like to
back-transfer to Player 2 assuming Player 1 transferred the $3 to you and the game was not stopped by the random
draw. In each of the three periods, you can choose any amount between $0 and $15.

Information Disclosure
At the end of the experiment, one of the periods will be chosen randomly to calculate the cash payments. For this
particular period, both players learn whether Player 1 made the transfer of $3. If he did, it is determined whether
the round stops according to the stopping probability p of the chosen period. If the round is not stopped, both
players also learn Player 2’s decision about his back-transfer.
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Decision Stages Player 1 and Player 2

Player 1

KEEPS $3 SENDS $3
$3 are multiplied by 5

Player 1: $10
Player 2: $10

Player 2
receives $15

ROUND STOPS
with a probability of p

ROUND CONTINUES
with a probability of 1 − p

Player 1: $7
Player 2: $25

Player 2
can send money back to Player 1:
amount x between $0 and $15

Player 1: $7 + x
Player 2: $25 - x

The Observer

In each period, the Observer is asked to guess how much money the participants in the role of Player 2 send on
average back to Player 1 assuming that Player 1 transferred the $3 and the random draw allows Player 2 to send
money back (the round is not stopped).
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Earnings

At the end of the experiment, only one of the periods will be chosen randomly to calculate the cash payments. The
exact payments are determined according to the choices that were made and the stopping probability.

Earnings – Player 1 and Player 2
The table below summarizes the payoffs for Player 1 and Player 2 depending on their respective choices.

Choice Player 1 Random Draw Choice Player 2 Payoff Player 1 Payoff Player 2

no transfer - - $10 $10

transfer game continues back-transfer $x $7 + $x $25 - $x
game stops - $7 $25

Earnings – Observer
The Observer earns money depending on the accuracy of his guess. His payment depends on how much his guess
differs from the (rounded) average of all Player 2s’ actual choices on the back-transfer in the randomly selected
period. The payoffs are summarized in the table below.

Deviation from the average Observer’s Payoffstated back-transfers

$0 $15
$1 $14.5
$2 $13
$3 $10.5
$4 $7
$5 $2.5
>$5 $0
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