
Appendices

A Experimental Instructions (Online)

This task is based on finding correct correspondences between numbers and symbols. In each round,
you will see 6 pairs of number–symbol combinations (the key) arranged in a table at the upper part
of the screen, see Figure A.1a for an example. Below the key, there will be 6 empty numbered boxes.

You will use the key to fill in the boxes with the symbols located in a column to the left of the
boxes. You will do this by dragging the symbols into the boxes. If a symbol from the column is in
the key, drag it to the corresponding numbered box. Some of the symbols will not be listed in the
key. In this case, you should not use them in any of the boxes. Some of the numbers will not have
corresponding symbols. In this case, you should leave those boxes empty. Each box, therefore, can
contain either one or no symbols. Figure A.1b shows an example of a correctly solved round.

After filling all the boxes as you see fit, click “Submit”, and you will proceed to the next round. You
can proceed with each round at your own pace, there is no time limit. We ask that you complete
all 100 rounds of the task. We will show you your score at the end of the task. You will receive
$20 for completing this task.

You will have 3 practice rounds before the actual task begins. This will give you a chance to
familiarize yourself with the interface. During the practice, you will receive feedback if you make a
mistake.

(a) Decision screen (b) Correct solution

Figure A.1: Digit-Symbol Task
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B Math Appendix (Online)

The discounted value function h(E) of the problem (2) must satisfy the following Hamiltonian-

Jacobi-Bellman (HJB) equation:

0 = −ρh− k + αh′ +
σ2

2
h′′, (B.1)

where k is the cost of a unit of effort, assumed to be equal to 1. The general solution to the HJB

equation (B.1) is

h(E) = Aeβ1E +Beβ2E − k

ρ
, (B.2)

where β1,2 are the roots of the characteristic equation

σ2

2
β2 + αβ − ρ = 0. (B.3)

The two roots are

β1,2 =
−α±

√
α2 + 2ρσ2

σ2
. (B.4)

It is worth noting that the term with the negative root β1 is explosive and thus needs to be

eliminated, hence A = 0. The HJB equation then becomes

h(E) = Beβ2E − k

ρ
. (B.5)

To determine the optimal threshold E∗, two conditions are used: the value-matching condition

h(E∗) = µp(E∗) and the smooth-pasting condition h′(E∗) = µp′(E∗). From the smooth-pasting

condition it follows that

BeβE
∗

=
µp′(E∗)

β
, (B.6)

where β ≡ β2. Plugging it into the value-matching condition yields

µp′(E∗)

β
− k

ρ
= µp(E∗), (B.7)
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which after re-arranging the terms becomes

ρ

β
p′(E∗)− ρp(E∗) =

k

µ
. (B.8)

The limiting result in the case of ρ→ 0 follows from (B.8) after noting that

lim
ρ→0

ρ

β
= lim

ρ→0

ρσ2

−α+
√
α2 + 2ρσ2

= lim
ρ→0

σ2

2σ2

2
√
α2+2ρσ2

(l’Hopital’s rule)

= lim
ρ→0

√
α2 + 2ρσ2

= α.

Equation (B.8) then becomes

p′(E∗) =
k

αµ
. (B.9)

Assuming that p(E) = 1− e−E and noting that p′(E) = e−E , one obtains from (B.9)

e−E
∗

=
k

αµ
(B.10)

or

E∗ = lnα+ ln
µ

k
. (B.11)

Consider the average response time τ̄∗ = E∗/α = ln(αµ)/α. The marginal effect of ability on

τ̄∗ is given by

τ∗α =
α 1
αµµ− lnαµ

α2

=
1− ln(αµ)

α2
.

This expression is positive if the optimal threshold is sufficiently low or when αµ < e. If the optimal

threshold is high, or αµ > e, the effect of ability is negative.
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C Additional Analysis (Online)

C.1 Monte Carlo Simulations

First, I consider the validity of the estimation procedure using a simulation exercise. Simulations

are conducted for the five different parameter vectors listed in Table C.1. Parameter values are

drawn from a uniform distribution on [1, 10]. For each parameter vector, the data (100 observations)

on outcomes and response times is simulated using the theoretical model 1000 times. The resulting

distributions of the parameter estimates are presented on Figure C.1. The vertical lines indicate

the true values of the parameters. As expected, the distributions of parameter estimates are well-

centered around the true values.

Table C.1: True Parameter Values and Mean Estimates

α µ σ

Panel A. True Values

1 3.39 4.35 6.16
2 2.66 7.32 6.16
3 2.51 8.27 4.46
4 6.27 1.08 3.64
5 2.80 7.17 9.25

Panel B. Mean Estimates

1 3.65 4.87 6.31
2 2.88 8.53 6.34
3 2.67 9.68 4.60
4 6.49 1.12 3.69
5 3.20 8.40 9.52

Notes: Panel A shows the five different true parameter
vectors drawn from a uniform distribution. Panel B
shows the corresponding mean estimates of parameters
from the simulated data.

Second, I consider the consequences of using performance as a proxy for ability. I assume that

the true data generating process for some outcome of interest y is

yi = β0 + β1αi + β2µi + εi, (C.12)

where i indexes a subject, αi is ability of a subject i, µi is motivation of a subject i, and εi is an

error term. I further assume that a researcher estimates a model in which only performance pi is

C.4



Figure C.1: Monte Carlo Simulations
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Note: The figure shows the histograms of the distributions of parameter estimates (α̂, µ̂, σ̂) for five different
values of the true vector of parameters. The vertical lines correspond to the true value of parameters.
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observed, but not ability and motivation:

yi = γ0 + γ1pi + ηi. (C.13)

I then study how the true values of β1 and β2 affect the estimates of γ1. In the simulation, the

values of αi are drawn from a truncated normal distribution with the mean 7 and the standard

deviation 1 and the lower bound of 1. The values of the logarithm of µi are drawn from a truncated

normal distribution with the mean 1, the standard deviation 1, bounded between 0 and 3. These

distributional assumption are made to roughly match the observed distributions of ability and

motivation in the experiment. Performance as a function of ability and motivation is then computed

using the model as pi = 1−(αiµi)
−1. The noise term εi is drawn from a normal distribution with the

mean 0 and the standard deviation 3. The generated data consists of 1000 observations. Table C.2

shows the true values of β1 and β2 and the corresponding estimates of γ and its standard error. The

table makes it clear that issues arise whenever sgn(β1β2) 6= 1: the sign of the estimated coefficient

on performance does not coincide with the sign of the ability coefficient in the true model, which

would lead to wrong conclusions about the effect of ability on the outcome.

Table C.2: True Parameter Values and Estimates

β1 β2 γ̂1 γ̂1se

0 1 72.52 3.30
0 −1 −71.72 3.43
1 1 78.81 3.29
1 −1 −65.43 3.69
1 0 6.69 2.79
−1 1 66.23 3.55
−1 −1 −78.01 3.39
−1 0 −5.89 2.76

Notes: The table reports the coefficients on ability
(β1) and motivation (β2) in the true model, and the
corresponding estimates of the coefficient on perfor-
mance (γ̂1) and its standard error from the estimated
model.
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C.2 Summary Statistics of the DST

Figure C.2 (Panel A) shows the distribution of the raw scores from the DST. The subjects perform

very well on the DST with 75% of the subjects scoring 87 and above. Figure C.2 (Panel B) shows

the distribution of the mean response times, averaged across all rounds for each subject. The

distribution is tightly concentrated around the median of 20.6 seconds and has a relatively fat right

tail. The actual distribution (solid line) matches closely the reference inverse Gaussian distribution

(dotted line) with the parameters matching the sample moments. In fact, one cannot reject the null

hypothesis that the sample of mean response times comes from the inverse Gaussian distribution

(Kolmogorov-Smirnov test p−value = 0.393).

Figure C.2: Distributions of Scores and Mean Response Times on DST
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Note: Panel A shows the distribution of the scores on the DST. Panel B shows the distribution of the mean
response times on the DST. The smooth solid line is the kernel density estimate, the vertical bars are the
histogram, and the vertical dashed line is the sample median. The breaks on the horizontal axis correspond
to the quintiles of the distribution. On Panel B, the dotted line is the reference density of an inverse Gaussian
distribution with the parameters matching the sample moments.
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C.3 Additional Estimates

Figure C.3 shows the quantile probability plot adopted from Ratcliff and McKoon (2007).23 The

data are pooled across all subjects. The graph shows the proportion of correct and incorrect

response (horizontal axis) against the quantiles of the distribution of response times (vertical axis).

The quantiles of response times are 0.1, 0.3, 0.5, 0.7, and 0.9. The circles represent the predicted

values from the estimated model, and the crosses represent the actual values. As is clear from the

picture, the model does a good job at jointly predicting outcomes and response times in the pooled

data.

Figure C.3: Quantile Probability Graph for Pooled Data
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Note: The figure shows the quantile probability plot from the pooled data (averaged across all subjects).
Points on the right (left) correspond to success (failure) rates. Circles represent the predicted values from
the estimated model, crosses represent the observed data.

A useful alternative way of looking at the ability differences across subjects is to convert the

ability estimates into performance. To translate the estimates of ability into performance, I compute

the probability of success at the average accumulated effective effort in tm seconds, where tm (≈

5.71 seconds) is calibrated such that it is the time for a person with median ability to reach a 0.5

23Since only one treatment was used and there was no variation in difficulty, it is not possible to draw the complete
lines as in Ratcliff and McKoon (2007).
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Figure C.4: Distributions of Raw and Transformed Ability
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Note: The figure shows the distribution of the probability of success in tm seconds. The smooth solid line is
the kernel density estimate, the vertical bars are the histogram, the dotted line is the reference density of a
normal distribution with the parameters matching the sample moments, and the vertical dashed line is the
sample median. The breaks on the horizontal axis correspond to the quintiles of the distribution.

probability of success.24 Due to variation in ability, subjects will have different levels of accumulated

effective effort in tm seconds, which will then translate into different probabilities of success. Figure

C.4 shows the distribution of the resulting performance. This distribution is more symmetric than

the distribution of raw ability estimates. In fact, one cannot reject the null hypothesis of the

distribution of performance in tm seconds being normal (Shapiro-Wilk test p-value = 0.574). A

subject at the 75th percentile would have a 1.4 times higher performance in tm seconds than a

subject at the 25th percentile. A subject with the highest ability would have a 1.5 times higher

performance than a median subject and a 3.8 times higher performance than a subject with the

lowest ability.

On Figure C.5, I address the point about whether a success on a trial of the DST is significantly

correlated with the response time in that trial. I estimate a logistic regression of the outcome of

a trial on the response time, for each subject individually. I then present the estimated regression

coefficients on the response time graphically by ordering them from lowest to highest. The graph

shows the point estimates and the 95% confidence intervals around them. As can be seen from

the graph, in the overwhelming majority of the cases, the null hypothesis about no significant

24 The resulting performance is counterfactual in the sense that it is generated using the model and ability estimates
from a hypothetical scenario. This counterfactual performance is of course different from the observed performance
on the test, which is a conventional measure of ability. The benefit of this transformation is that it converts ability
into familiar performance terms. Both the counterfactual performance and raw ability estimates can be viewed as
the same quantity (ability) expressed in different units.
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effect of the response time on the success cannot be rejected. The effect is significant only for 13

subject, which represents 7% of the sample, and even among these subjects, there is no systematic

relationship between response times and outcomes.

Figure C.5: Response Times and Success
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Note: The graph shows the regression coefficients from individual-level logistic regressions of outcomes on
response times. Each point on the graph represents an individual-level estimate, and the points are ordered
from lowest to highest. The error bars show 95% confidence intervals. Significance is determined based on
a 0.05 cutoff for the p-value.
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