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Supplemental Material: A brief Monte Carlo illustration of the problem

	Simulated data sets for this brief Monte Carlo analysis of several estimation methods are based on the experimental design of Gonzalez and Wu (1999). Certainty equivalents were elicited from their subjects for  distinct two-outcome prospects . These were constructed by fully crossing fifteen distinct pairs of high and low outcomes  with eleven distinct probabilities  of receiving the high outcome  (and corresponding probabilities  of receiving the low outcome ). The eleven probabilities are ; and the fifteen high and low outcome pairs are 
. These same 165 prospects (88 simple prospects and 77 non-simple prospects) are the “input” to the simulated subjects I create in the Monte Carlo data sets. Let  denote the set of the nine distinct outcomes found in these 165 prospects.
	Each simulated subject  in the first data set is given a random EU certainty equivalent for each of the 165 prospects. Each subject  is endowed with parameters  and  of the Gamma distribution p.d.f. as given in Example 1 of Section 2. The parameter  is drawn once for each subject from a Lognormal distribution with mean  and variance V. The parameter  is then chosen (given the drawn ) so that . This endows each simulated subject  with a random EU c.e.f. having the fixed point , as is characteristic of the 1-parameter Prelec (1998) weighting function, but also creates heterogeneity in the degree of curvature of subjects’ c.e.f.s. Then for each subject ,  values  are independently drawn from the Gamma distribution with that subject’s parameters  and . These create the 165 simulated elicited certainty equivalents  for each subject s. Repeating this 1000 times yields the “random EU” data set.
	For comparison, I create a second data set of 1000 simulated subjects who are given standard EU certainty equivalents for each of the 165 prospects. Each simulated subject s is endowed with a fixed value , drawn once for each subject from a Gamma distribution with the parameters  and . For each subject , this  then creates 165 expected certainty equivalents : These are standard EU c.e.f.s, and one must somehow add standard model errors to them. To do this, notice that each expected certainty equivalent may be rewritten as a proportion of the interval , that is as . One may then interpret this proportion as the mean of a Beta distribution on the interval  and define parameters of that Beta distribution as  and . (Beta distributions may be parameterized in terms of their mean  and an inverse dispersion parameter , from which their more usual parameterization  and  may be had. I chose  to give the resulting simulated certainty equivalents  in this simulated Standard EU data conditional variances resembling those found in the simulated Random EU data.) Then one may draw a beta variate  on  using these parameters, and the simulated certainty equivalents with their standard model error become  .
	 I consider four estimation methods. The first two methods use a standard RDU model of the c.e.f. of the , that is ; the corresponding empirical model is then . I make the standard assumptions about the error, those being , but also adopt the assumption of Bruhin, Fehr-Duda and Epper (2010) that  is proportional to  for each subject. (This assumption happens to be true for the simulated Standard EU data.) This implies a “weighted error” , and the first two estimation methods optimize a function of these weighted errors. 
	The first estimation method combines a nonlinear least squares estimator with lean 1-parameter forms of the functions  and ,  and . This is the estimation method of Tversky and Kahneman (1992): I’ll call it NLS-M-L (for “nonlinear least squares, money errors, lean parameterization”). The second estimation method combines a maximum likelihood estimator with the same , but a more expansive 2-parameter weighting function . The weighted error  is assumed to have a Normal distribution with zero mean and constant variance. This estimation method is inspired by Bruhin, Fehr-Duda and Epper (2010), but I will always estimate at the individual subject level whereas they estimated finite mixture models of the subject population and included prospect-specific error variance terms (which cannot be done in the case of subject-level estimation). I’ll call this method ML-M-C (for “maximum likelihood, money errors, common parameterization”). The power utility function, combined with some 2-parameter weighting function, is quite common in the literature on risk preference estimation.
	The third method writes an estimating equation in utility rather than money terms, and the parameterizations of  and  are maximally expansive. There are nine distinct outcomes in , so there are nine distinct values of . Since the RDU value function is an interval scale, one can choose  and , leaving seven unique and distinct values of  as seven parameters to estimate. Similarly, the eleven distinct probabilities in the experiment become eleven distinct parameters  to estimate. Now linearly interpolate  from the parameters  in the following manner. Let  and  be the least upper bound and greatest lower bound (among the nine outcomes in the experiment) on , with values given by the parameter values  and . Then define
,
a linear interpolation of . 
	This estimation method then assumes that the c.e.f. of  is the RDU of prospect , that is , and one may then think of  as a “utility error.” Following Wilcox (2011), assume the variance of these utility errors is proportional to . Then  is a weighted utility error that becomes the object of nonlinear least squares estimation. I call this the NLS-U-E estimation (for “nonlinear least squares, utility errors, expansive parameterization”). It is inspired by Gonzalez and Wu’s (1999) estimation method, though there are several differences between their method and this one (see Gonzalez and Wu 1999, pp.146-148, for details).
	Finally, I consider an estimation method that may sidestep the issue identified in the text. Rather than taking  to be the conditional mean of , this last estimation method takes this to be the conditional median of : That is, let , and let weighted money errors be . Although these errors have exactly the same form as the errors in the first two methods, the fact that we wish to estimate a conditional median function (rather than a c.e.f.) implies that least squares is not the appropriate estimator: Rather, we want a least absolute deviation or LAD estimator. Combined with the same lean parameterization used for the first method, I call this the LAD-M-L estimation (for “least absolute deviation, money errors, lean parameterization”).
With the exception of the NLS-U-E estimation method, the well-known simplex algorithm of Nelder and Mead (1965) was used to optimize objective functions. For the NLS-U-E estimation method, I imposed monotonicity constraints on the estimated  and  (one difference versus Gonzalez and Wu 1999) and this requires a different optimization algorithm: Powell’s (1992) COBYLA algorithm is used for this estimation instead. All estimations were performed using the SAS procedure “NLP” (nonlinear programming) in the SAS 9.4 version of the SAS/OR software.
	Rather than providing tabular results of these four estimation methods as applied to the two data sets, I provide a sequence of eight figures. The features of each figure are identical. Estimated weighting functions for the first 250 subjects in each data set are plotted as quite thin, light greyscale lines on a black background: This has the effect of representing the behavior of each method as a light cloud of lines. A heavy light grey identity line shows the (linear, identity) weighting function of an EU subject; deviations from this line represent both sampling variability and possible bias in the estimations. Finally, a heavy dashed white line plots the mean estimated probability weight (across all 1000 subjects in each simulated data set) at each of the eleven values of  in the experimental design: Since all simulated subjects in both data sets are EU subjects with identity weighting functions, deviations of this heavy dashed white line from the identity line illustrate the bias of each estimation method in each data set.
	The figures come in pairs on each page that follows. Each page presents the results for one estimation method, with the top and bottom figures showing results for the Standard EU and Random EU data sets, respectively. The pair of Figures A1-a and A1-b show results for the NLS-M-L estimation method; Figures A2-a and A2-b show results for the ML-M-C method; Figures A3-a and A3-b show results for the NLS-U-E method; and Figures A4-a and A4-b show results for the LAD-M-L method. 
	None of these four estimation methods are bias-free for both the Standard EU and Random EU data sets, and this is the primary finding of this appendix. The method NLS-U-E is biased towards finding inverse-s probability weighting for both data sets: In the case of the Standard EU data I suspect this is because this method is just too parametrically expansive for the sample size. By contrast, the NLS-M-L and ML-M-C methods are virtually unbiased for Standard EU data, while they show the predicted bias when applied to the Random EU data. As speculated, the LAD-M-L method provides unbiased (and astonishingly tight) estimates for the Random EU data, but displays a quite noticeable bias in the Standard EU data in a direction opposite to inverse-s probability weighting. The latter finding (unexpected by me) may occur because the standard EU errors are drawn from Beta distributions: Though those errors have a zero mean by construction, beta distributions are generally skewed so that these errors would not usually have zero median (as required for proper LAD estimation). In sum, none of these four estimation methods are robust to the underlying source of randomness in the data generating process. 
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image1.emf
00.10.20.30.40.50.60.70.80.9100.10.20.30.40.50.60.70.80.91Estimated Weight on High OutcomeProbability of High OutcomeFigure A1-a: NLS-M-L Weighting Estimates, Standard EU Data
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