Online Appendix I to "Economic Evaluation under Ambiguity and Structural Uncertainties" [Supplemental Information]

Author: Brendon P. Andrews

A. Omitted Proofs

Proof of Theorem 1: Suppose that the alternative is the dominant strategy under CBA in all possible states of the world. The result is straightforward to show for the alternative: $g(\Delta Q) - \Delta C > 0 \ \forall (g, \Delta Q, \Delta C) \in (\mathbb{G}, \mathbb{Q}, \mathbb{C}) \Leftrightarrow g > \frac{\Delta C}{\Delta Q} \ \forall (g, \Delta Q, \Delta C) \in (\mathbb{G}, \mathbb{Q}, \mathbb{C})$ because $\underline{Q} > 0$. The proof for the status quo follows by reversing the inequality.

Proof of Theorem 2: The welfare under the status quo is $W_s = 0$ for CBA and $V_s = 0$ for CEA. The welfare under the alternative is $W_a = g(\Delta Q) - \Delta C$ under CBA and $V_a = g - \frac{\Delta C}{\Delta Q}$ under CEA.

- i. Under CBA, a Bayesian planner puts a prior π on g and selects the alternative if and only if $E_{\pi}[W_a] > E_{\pi}[W_s]$. Consequently, the Bayesian selects the alternative if and only if $E_{\pi}[g] > \frac{\Delta C}{\Delta Q}$. Under CEA, the Bayesian planner uses the same prior π on g and selects the alternative if and only if $E_{\pi}[V_a] > E_{\pi}[V_s]$. Therefore, the Bayesian selects the alternative if and only if $E_{\pi}[g] - \frac{\Delta C}{\Delta Q} > 0$. These rules are exactly the same.
- ii. Under CBA, a MM planner selects the alternative if and only if $\min_{g \in \mathbb{G}} W_a > \min_{g \in \mathbb{G}} W_s$. Consequently, the MM planner selects the alternative if and only if $g_L \Delta Q - \Delta C > 0$ or equivalently $g_L > \frac{\Delta C}{\Delta Q}$. Under CEA, the MM planner selects the alternative if and only if $\min_{g \in \mathbb{G}} V_a > \min_{g \in \mathbb{G}} V_s$. Therefore, the MM planner selects the alternative if and only if $g_L - \frac{\Delta C}{\Delta Q} > 0$. These rules are exactly the same.
- iii. Under CBA, a MMR planner selects the alternative if and only if it has lower maximum regret than the status quo. The regret of the status quo is $R_s = \max\{W_a, W_s\} - W_s$ and the regret of the alternative is $R_a = \max\{W_a, W_s\} - W_a$. It follows that the maximum regret of the status quo is $g_H(\Delta Q) - \Delta C$ and that the maximum regret of the alternative

is $-(g_L(\Delta Q) - \Delta C)$. Consequently, the planner selects the alternative if and only if $-(g_L(\Delta Q) - \Delta C) < g_H(\Delta Q) - \Delta C$ or $\frac{\Delta C}{\Delta Q} < \frac{g_L + g_H}{2}$. Under CEA, the regret of the status quo is $R_s = \max\{V_a, V_s\} - V_s$ and the regret of the alternative is $R_a = \max\{V_a, V_s\} - V_a$. It follows that the maximum regret of the status quo is $g_H - \frac{\Delta C}{\Delta Q}$ and that the maximum regret of the alternative is $-(g_L - \frac{\Delta C}{\Delta Q})$. Consequently, the planner selects the alternative if and only if $-(g_L - \frac{\Delta C}{\Delta Q}) < g_H - \frac{\Delta C}{\Delta Q}$ or $\frac{\Delta C}{\Delta Q} < \frac{g_L + g_H}{2}$. These rules are exactly the same.

Proof of Theorem 3: The welfare under the status quo is $W_s = 0$ for CBA and $V_s = 0$ for CEA. The welfare under the alternative is $W_a = g(\Delta Q) - \Delta C$ under CBA and $V_a = g - \frac{\Delta C}{\Delta Q}$ under CEA. Under CBA, a Bayesian planner will place a distribution π on the state space $(\mathbb{G}, \mathbb{Q}, \mathbb{C})$ and select the alternative if and only if $E_{\pi}[W_a] > E_{\pi}[W_s]$. Consequently, the planner will select the alternative if and only if $E_{\pi}[g(\Delta Q) - \Delta C] = E_{\pi}[g\Delta Q] > E_{\pi}[\Delta C]$. Under CEA, a Bayesian planner selects the alternative if and only if $E_{\pi}[g] > E_{\pi}[V_a] > E_{\pi}[V_s]$. Consequently, the planner will select the alternative if and only if $E_{\pi}[g] > E_{\pi}[\Delta C]$. These are not generally equivalent rules.

For (a), if the marginal distributions on \mathbb{G} and \mathbb{Q} are independent under π , then $E_{\pi}[g(\Delta Q) - \Delta C] = E_{\pi}[g]E_{\pi}[\Delta Q] - E_{\pi}[\Delta C]$ and so the planner using CBA selects the alternative if and only if $E_{\pi}[g] > E_{\pi}\left[\frac{\Delta C}{\Delta Q}\right]$. For (b), if the marginal distributions on \mathbb{Q} and \mathbb{C} are independent under π , then $E_{\pi}\left[\frac{\Delta C}{\Delta Q}\right] = E_{\pi}[\Delta C]E_{\pi}\left[\frac{1}{\Delta Q}\right]$ and so the planner using CEA selects the alternative if and only if $E_{\pi}[g] > E_{\pi}[\Delta C]E_{\pi}\left[\frac{1}{\Delta Q}\right]$. For (c), if the Bayesian planner selects the alternative under CEA, $E_{\pi}[g] > E_{\pi}[\Delta C]E_{\pi}\left[\frac{1}{\Delta Q}\right] > \frac{E_{\pi}[\Delta C]}{E_{\pi}[\Delta Q]}$ by Jensen's inequality. Consequently, the Bayesian planner also selects the alternative under CBA.

Proof of Theorem 4: The welfare under the status quo is $W_s = 0$ for CBA and $V_s = 0$ for CEA. The welfare under the alternative is $W_a = g(\Delta Q) - \Delta C$ under CBA and $V_a = g - \frac{\Delta C}{\Delta Q}$ under CEA. Under CBA, a MM planner selects the alternative if and only if we have $\min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} W_a > \min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} W_s$. Thus, the planner selects the alternative if $\min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} [g(\Delta Q) - \Delta C] > 0$. When $(g,\underline{Q},\overline{C}) \in (\mathbb{G},\mathbb{Q},\mathbb{C})$, this reduces to $g_L > \frac{\overline{C}}{\underline{Q}}$.

Under CEA, a MM planner selects the alternative if and only if $\min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} V_a > \min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} V_s$. Thus, the planner selects the alternative if $\min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} [g - \frac{\Delta C}{\Delta Q}] > 0$. If the expression in either (i) or (ii) holds then the alternative is a dominant strategy. Consequently, if there is no dominant strategy, a MM planner selects the status quo and a MM planner selects the alternative if and only if it is a dominant strategy.

Proof of Theorem 5: Under CBA, the maximum regret from selecting the status quo is

$$\max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \{g\Delta Q - \Delta C\}$$

The maximum regret from selecting the alternative is

$$-\min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \{g\Delta Q - \Delta C\}$$

The planner therefore chooses the alternative if and only if $-\min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})}\{g\Delta Q - \Delta C\} < \max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})}\{g\Delta Q - \Delta C\}$ or equivalently

$$\max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \{g\Delta Q - \Delta C\} + \min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \{g\Delta Q - \Delta C\} > 0$$

If $\{(g_H, \overline{Q}, \underline{C}), (g_L, \underline{Q}, \overline{C})\} \in (\mathbb{G}, \mathbb{Q}, \mathbb{C})$ then the maximum regret from selecting the status quo is $g_H \overline{Q} - \underline{C}$ and the maximum regret from choosing the alternative is $-[g_L \underline{Q} - \overline{C}]$. Therefore, the planner chooses the alternative if and only if $-g_L \underline{Q} + \overline{C} < g_H \overline{Q} - \underline{C}$ or equivalently $(\overline{C} + \underline{C}) < (g_H \overline{Q} + g_L \underline{Q}).$

Under CEA, $\max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \left[g - \frac{\Delta C}{\Delta Q}\right]$ is the maximum regret from selecting the status quo. The maximum regret from choosing the alternative is $\max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \left[\frac{\Delta C}{\Delta Q} - g\right]$. The planner therefore selects the alternative if and only if

$$\max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \left[\frac{\Delta C}{\Delta Q} - g\right] < \max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \left[g - \frac{\Delta C}{\Delta Q}\right]$$

or equivalently $\max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \left[g - \frac{\Delta C}{\Delta Q}\right] + \min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \left[g - \frac{\Delta C}{\Delta Q}\right] > 0.$

If $\{(g_H, \overline{Q}, \underline{C}), (g_L, \underline{Q}, \overline{C})\} \in (\mathbb{G}, \mathbb{Q}, \mathbb{C})$ then the maximum regret from selecting the status quo is $g_H - \frac{\underline{C}}{\overline{Q}}$ and the maximum regret from the alternative is $\frac{\overline{C}}{\underline{Q}} - g_L$. The planner therefore chooses the alternative if and only if $\frac{\overline{C}}{\underline{Q}} - g_L < g_H - \frac{\underline{C}}{\overline{Q}}$ or equivalently $\frac{\overline{CQ} + \underline{CQ}}{2\underline{Q}\overline{Q}} < \frac{g_L + g_H}{2}$.

Proof of Theorem 6: Statement (i). By Theorem 5, a MMR planner using CEA selects the alternative if and only if $\max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \left[g - \frac{\Delta C}{\Delta Q}\right] + \min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \left[g - \frac{\Delta C}{\Delta Q}\right] > 0$. Then because $(\mathbb{G},\mathbb{Q},\mathbb{C}) \equiv \mathbb{G} \times (\mathbb{Q},\mathbb{C})$ this expression becomes $\max_{(\Delta Q,\Delta C)\in(\mathbb{Q},\mathbb{C})} \left[g_H - \frac{\Delta C}{\Delta Q}\right] + \min_{(\Delta Q,\Delta C)\in(\mathbb{Q},\mathbb{C})} \left[g_L - \frac{\Delta C}{\Delta Q}\right] > 0$ and we can rewrite the statement $\exists (g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C}) \in (\mathbb{G},\mathbb{Q},\mathbb{C}) : \Delta Q = \overline{Q} \wedge (g,\Delta Q,\Delta C) \in \arg\max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})} \left[g - \frac{\Delta C}{\Delta Q}\right]$ as:

$$\exists (\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C}) : \Delta Q = \overline{Q} \land (\Delta Q, \Delta C) \in \operatorname*{argmax}_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[g_H - \frac{\Delta C}{\Delta Q} \right]$$

Then using this fact, $\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[g_H - \frac{\Delta C}{\Delta Q} \right] + \min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[g_L - \frac{\Delta C}{\Delta Q} \right] > 0$ can be rewritten: $\max_{\Delta C \in \mathbb{C}: (\overline{Q}, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[g_H - \frac{\Delta C}{\overline{Q}} \right] + \min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[g_L - \frac{\Delta C}{\Delta Q} \right] > 0$. Multiplying all terms by $\overline{Q} > 0$ then yields the following condition which must hold:

$$\max_{\Delta C \in \mathbb{C}: (\overline{Q}, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[g_H \overline{Q} - \Delta C \right] + \overline{Q} \left(\min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[g_L - \frac{\Delta C}{\Delta Q} \right] \right) > 0$$

We wish to show that this implies an MMR planner selects the alternative under CBA, which occurs if and only if $\max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})}\{g\Delta Q - \Delta C\} + \min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q},\mathbb{C})}\{g\Delta Q - \Delta C\} > 0$ by Theorem 5. Then using the facts that $(\mathbb{G},\mathbb{Q},\mathbb{C}) \equiv \mathbb{G} \times (\mathbb{Q},\mathbb{C})$ and $\Delta Q > 0 \ \forall \Delta Q \in \mathbb{Q}$ we can rewrite the left-hand side of this condition as $\max_{(\Delta Q,\Delta C)\in(\mathbb{Q},\mathbb{C})}\{g_H\Delta Q - \Delta C\} + \min_{(\Delta Q,\Delta C)\in(\mathbb{Q},\mathbb{C})}\{g_L\Delta Q - \Delta C\}$. It remains to show that:

$$\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{g_H \Delta Q - \Delta C\} + \min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{g_L \Delta Q - \Delta C\}$$
$$\geq \max_{\Delta C \in \mathbb{C}: (\overline{Q}, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[g_H \overline{Q} - \Delta C\right] + \overline{Q} \left(\min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[g_L - \frac{\Delta C}{\Delta Q}\right]\right)$$

to establish that $\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{g_H \Delta Q - \Delta C\} + \min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{g_L \Delta Q - \Delta C\} > 0$. This holds if both: (a) $\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{g_H \Delta Q - \Delta C\} \ge \max_{\Delta C \in \mathbb{C}: (\overline{Q}, \Delta C) \in (\mathbb{Q}, \mathbb{C})} [g_H \overline{Q} - \Delta C]$ and (b) $\min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{g_L \Delta Q - \Delta C\} \ge \overline{Q} \left(\min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[g_L - \frac{\Delta C}{\Delta Q}\right] \right).$

Using the fact that $\Delta Q > 0 \ \forall \Delta Q \in \mathbb{Q}$, we can rewrite (b) as:

$$-\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{\Delta C - g_L \Delta Q\} \ge \overline{Q} \left(-\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[\frac{\Delta C}{\Delta Q} - g_L\right]\right)$$
$$\overline{Q} \left(\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[\frac{\Delta C}{\Delta Q} - g_L\right]\right) \ge \max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{\Delta C - g_L \Delta Q\}$$
$$\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[\frac{\Delta C}{\Delta Q} - g_L\right] \ge \max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[\frac{\Delta Q}{\overline{Q}} \left\{\frac{\Delta C}{\Delta Q} - g_L\right\}\right]$$

Next, note that $\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[\frac{\Delta C}{\Delta Q} - g_L \right] \ge 0$. Suppose not. Then:

$$0 < \min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[g_L - \frac{\Delta C}{\Delta Q} \right] = \min_{(g, \Delta Q, \Delta C) \in (\mathbb{G}, \mathbb{Q}, \mathbb{C})} \left[g - \frac{\Delta C}{\Delta Q} \right]$$

because $(\mathbb{G}, \mathbb{Q}, \mathbb{C}) \equiv \mathbb{G} \times (\mathbb{Q}, \mathbb{C})$. Then approving the alternative is a dominant strategy, and we have a contradiction. Consider now that $0 < (\Delta Q/\overline{Q}) \le 1 \quad \forall \Delta Q \in \mathbb{Q}$ by construction and $\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[\frac{\Delta C}{\Delta Q} - g_L \right] \ge 0$. Consequently: $\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[\frac{\Delta C}{\Delta Q} - g_L \right] = \max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[(1) \left\{ \frac{\Delta C}{\Delta Q} - g_L \right\} \right] \ge \max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \left[\frac{\Delta Q}{\overline{Q}} \left\{ \frac{\Delta C}{\Delta Q} - g_L \right\} \right]$ and condition (b) holds.

For condition (a), the result is almost immediate: $\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{g_H \Delta Q - \Delta C\} = \max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{g_H \overline{Q} - \Delta C\}, \quad \max_{(\Delta Q, \Delta C) : \{\Delta Q \neq \overline{Q} \land (\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})\}} \{g_H \Delta Q - \Delta C\} \ge \max_{\Delta C \in \mathbb{C}: (\overline{Q}, \Delta C) \in (\mathbb{Q}, \mathbb{C})} [g_H \overline{Q} - \Delta C].$

Statement (ii). By Corollary B2, if an MMR planner under CEA will select the alternative, they would have selected in the context of Theorem B2 where $g = (g_L + g_H)/2$ under CEA. Then by Corollary O.B1 in the Online Appendix, the MMR planner using CBA in the context of Theorem B2 where $g = (g_L + g_H)/2$ would also have selected the alternative. The result follows by applying Corollary B3.

Proof of Theorem 7: For (a), consider the statement of Theorem 3(i) and note that

 $E_{\pi}[g\Delta Q] > E_{\pi}[\Delta C] \text{ becomes } E_{\pi}[g] > \frac{E_{\pi}[\Delta C]}{\Delta Q}.$ Further, the expression in 3(ii) reduces to this same inequality. Consequently, the Bayesian planner selects the alternative if and only if $E_{\pi}[g] > \frac{E_{\pi}[\Delta C]}{\Delta Q}$ under both CBA and CEA. For (b), CBA and CEA solutions are generally equivalent by Theorem 4. For (c), consider the statement of Theorem 5(ii) and note that $\max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q}=\{\Delta Q\},\mathbb{C})} \left[g - \frac{\Delta C}{\Delta Q}\right] + \min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q}=\{\Delta Q\},\mathbb{C})} \left[g - \frac{\Delta C}{\Delta Q}\right] > 0$ is satisfied if and only if $\max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q}=\{\Delta Q\},\mathbb{C})} \{g\Delta Q - \Delta C\} + \min_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q}=\{\Delta Q\},\mathbb{C})} \{g\Delta Q - \Delta C\} > 0$ is satisfied (obtained through multiplication of both sides of the inequality by $\Delta Q > 0$). Thus, the MMR planner selects the alternative if and only if $\max_{(g,\Delta Q,\Delta C)\in(\mathbb{G},\mathbb{Q}=\{\Delta Q\},\mathbb{C})} \{g\Delta Q - \Delta C\} > 0$ under both CBA and CEA. \blacksquare

B. Additional Results

Theorem B1 If there is no dominant strategy, $\mathbb{G} = \{g\}$, $\Delta Q \in \mathbb{Q}$, and $\Delta C \in \mathbb{C}$, then the solutions used by a Bayesian with distribution π on (\mathbb{Q}, \mathbb{C}) planner are not generally equivalent under CBA and CEA:

- i. Under CBA, a Bayesian planner selects the alternative if and only if $g > \frac{E_{\pi}[C]}{E_{\pi}[Q]}$.
- ii. Under CEA, a Bayesian planner selects the alternative if and only if $g > E_{\pi} \left[\frac{\Delta C}{\Delta Q} \right]$.

If the marginal distributions on \mathbb{Q} and \mathbb{C} are independent under π , then under CEA a Bayesian planner selects the alternative if and only if $g > E_{\pi} [\Delta C] E_{\pi} \left[\frac{1}{\Delta Q} \right]$. Using CBA, the solution still takes the form in (i).

Proof: The welfare under the status quo is $W_s = 0$ for CBA and $V_s = 0$ for CEA. The welfare under the alternative is $W_a = g(\Delta Q) - \Delta C$ under CBA and $V_a = g - \frac{\Delta C}{\Delta Q}$ under CEA. Under CBA, a Bayesian planner will place a distribution π on the state space (\mathbb{Q}, \mathbb{C}) and select the alternative if and only if $E_{\pi}[W_a] > E_{\pi}[W_s]$. Consequently, the planner will select the alternative if and only if $E_{\pi}[g(\Delta Q) - \Delta C] = gE_{\pi}[Q] - E_{\pi}[C] > 0$ or equivalently $g > \frac{E_{\pi}[C]}{E_{\pi}[Q]}$. Under CEA, a Bayesian planner selects the alternative if and only if $E_{\pi}[V_a] > E_{\pi}[V_s]$. Consequently, the planner will select the alternative if and only if $g > E_{\pi} \left[\frac{\Delta C}{\Delta Q} \right]$. These are not generally equivalent rules. If the marginal distributions on \mathbb{Q} and \mathbb{C} are independent under π , then $E_{\pi} \left[\frac{\Delta C}{\Delta Q} \right] = E_{\pi} [\Delta C] E_{\pi} \left[\frac{1}{\Delta Q} \right] > \frac{E_{\pi}[C]}{E_{\pi}[Q]}$ by Jensen's inequality.

Corollary B1 If there is no dominant strategy, $\mathbb{G} = \{g\}$, $\Delta Q \in \mathbb{Q}$, and $\Delta C \in \mathbb{C}$, and the marginal distributions on \mathbb{Q} and \mathbb{C} are independent under π , then a Bayesian planner with a distribution π on (\mathbb{Q}, \mathbb{C}) selects the alternative under CBA if they select the alternative under CEA.

Proof: If the Bayesian DM selects the alternative under CEA, $g > E_{\pi}[\Delta C]E_{\pi}\left[\frac{1}{\Delta Q}\right] > \frac{E_{\pi}[C]}{E_{\pi}[Q]}$ by Jensen's inequality. The Bayesian DM thus also selects the alternative under CBA.

Theorem B2 If there is no dominant strategy, $\mathbb{G} = \{g\}$, $\Delta Q \in \mathbb{Q}$, and $\Delta C \in \mathbb{C}$, then the solutions used by a MMR planner are not generally equivalent under CBA and CEA:

i. Under CBA, a MMR planner selects the alternative if and only if

$$\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{ g \Delta Q - \Delta C \} + \min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{ g \Delta Q - \Delta C \} > 0$$

ii. Under CEA, a MMR planner selects the alternative if and only if

$$\frac{\min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \frac{\Delta C}{\Delta Q} + \max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \frac{\Delta C}{\Delta Q}}{2} < g$$

If the state space is "rectangular" such that $\{(\overline{Q}, \underline{C}), (\underline{Q}, \overline{C})\} \in (\mathbb{Q}, \mathbb{C})$ then:

a. Under CBA, a MMR planner selects the alternative if and only if $\frac{\underline{C}+\overline{C}}{\overline{Q}+\underline{Q}} < g$ b. Under CEA, a MMR planner selects the alternative if and only if $\frac{\overline{CQ}+\underline{CQ}}{2\underline{Q}\overline{Q}} < g$

Proof: Under CBA, $\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{g \Delta Q - \Delta C\}$ is the maximum regret from selecting the status quo. The maximum regret from selecting the alternative is $-\min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{g \Delta Q - \Delta C\}$

 ΔC }. The planner therefore chooses the alternative if and only if $-\min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{g \Delta Q - \Delta C\}$ $< \max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{g \Delta Q - \Delta C\}$ or equivalently:

$$\max_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{ g \Delta Q - \Delta C \} + \min_{(\Delta Q, \Delta C) \in (\mathbb{Q}, \mathbb{C})} \{ g \Delta Q - \Delta C \} > 0$$

If $\{(\overline{Q},\underline{C}),(\underline{Q},\overline{C})\} \in (\mathbb{Q},\mathbb{C})$ then the maximum regret from selecting the status quo is $g\overline{Q}-\underline{C}$ and the maximum regret from choosing the alternative is $-[g\underline{Q}-\overline{C}]$. Therefore, the planner chooses the alternative if and only if $-g\underline{Q} + \overline{C} < g\overline{Q} - \underline{C}$ or $\frac{C+\overline{C}}{\overline{Q}+\underline{Q}} < g$. Under CEA, the maximum regret from selecting the status quo is $g - \min_{(\Delta Q, \Delta C)\in(\mathbb{Q},\mathbb{C})} \frac{\Delta C}{\Delta Q}$. The maximum regret from choosing the alternative is $\max_{(\Delta Q, \Delta C)\in(\mathbb{Q},\mathbb{C})} \frac{\Delta C}{\Delta Q} - g$. The planner therefore selects the alternative if and only if $\max_{(\Delta Q, \Delta C)\in(\mathbb{Q},\mathbb{C})} \frac{\Delta C}{\Delta Q} - g < g - \min_{(\Delta Q, \Delta C)\in(\mathbb{Q},\mathbb{C})} \frac{\Delta C}{\Delta Q}$ or equivalently $\frac{\min_{(\Delta Q, \Delta C)\in(\mathbb{Q},\mathbb{C})} \frac{\Delta C}{\Delta Q} + \max_{(\Delta Q, \Delta C)\in(\mathbb{Q},\mathbb{C})} \frac{\Delta C}{\Delta Q}}{2} < g$. If $\{(\overline{Q}, \underline{C}), (\underline{Q}, \overline{C})\} \in (\mathbb{Q}, \mathbb{C})$ then the maximum regret from selecting the status quo is $g - \frac{C}{\overline{Q}}$ and the maximum regret from the alternative is $\frac{\overline{C}}{\overline{Q}} - g$. The DM therefore chooses the alternative if and only if $\frac{\overline{C}}{\overline{Q}} - g < g - \frac{C}{\overline{Q}}$ or $\frac{\overline{CQ}+\underline{CQ}}{2\underline{QQ}} < g$.

Corollary B2 If there is no dominant strategy, $g \in \mathbb{G}$, $\Delta Q \in \mathbb{Q}$, and $\Delta C \in \mathbb{C}$ and the state space is "rectangular" as defined in the statement of Theorem 5, then the solution used by a MMR planner under CEA is equivalent to the solution used by an MMR planner under CEA when there is no dominant strategy, $\mathbb{G} = \left\{\frac{g_L + g_H}{2}\right\}$, $\Delta Q \in \mathbb{Q}$, $\Delta C \in \mathbb{C}$, and the state space is "rectangular" as defined in the statement of Theorem B2.

Proof: Follows from Theorems B2(b) and 5(b). \blacksquare

Lemma B1 Part (a) of Theorem 5 can be rewritten as follows: Under CBA, a MMR planner selects the alternative if and only if $\frac{\overline{C}+\underline{C}}{\overline{Q}+\underline{Q}} < \frac{g_L+g_H}{2} + \phi$, where $\phi \equiv \frac{g_H-g_L}{2} \left(\frac{\overline{Q}-\underline{Q}}{\overline{Q}+\underline{Q}}\right) \geq 0$

Proof of Lemma B1: Expand and then simplify the RHS of the inequality:

$$g_{H}\overline{Q} + g_{L}\underline{Q} = \frac{g_{H}}{2}\overline{Q} + \frac{g_{L}}{2}\underline{Q} + \frac{g_{H}}{2}\overline{Q} + \frac{g_{L}}{2}\underline{Q} + \frac{g_{L}}{2}\overline{Q} + \frac{g_{H}}{2}\underline{Q} - \frac{g_{L}}{2}\overline{Q} - \frac{g_{H}}{2}\underline{Q} - \frac{g_$$

$$= \frac{g_H + g_L}{2} (\overline{Q} + \underline{Q}) + \frac{g_H - g_L}{2} \overline{Q} + \frac{g_L - g_H}{2} \underline{Q}$$
$$= \frac{g_H + g_L}{2} (\overline{Q} + \underline{Q}) + \frac{g_H - g_L}{2} (\overline{Q} - \underline{Q})$$

Dividing both sides by $(\overline{Q} + \underline{Q})$, the inequality can be rewritten as in the statement of the Lemma. The fact that $\phi \ge 0$ follows from $g_H \ge g_L$, $\overline{Q} \ge \underline{Q}$, and $\underline{Q} > 0$.

Corollary B3 If there is no dominant strategy, $g \in \mathbb{G}$, $\Delta Q \in \mathbb{Q}$, and $\Delta C \in \mathbb{C}$, then an MMR planner using CBA will select the alternative if an MMR planner under CBA selects the alternative when there is no dominant strategy, $\mathbb{G} = \left\{\frac{g_L + g_H}{2}\right\}$, $\Delta Q \in \mathbb{Q}$, and $\Delta C \in \mathbb{C}$.

Proof of Corollary B3: Follows from Lemma B1 and Theorems 5(a) and B2(a). ■