Supplemental Material (not copyedited or formatted) for: Arthur Dyevre, Nicolas Lampach, Monika Glavina. 2022. "Chilling or Learning? The Effect of Negative Feedback on Inter-judicial Cooperation in Nonhierarchical Referral Regimes." Journal of Law and Courts 10(1). DOI: https://doi.org/10.1086/714704.

Chilling or Learning? Supplementary Materials

Arthur Dyevre, Nicolas Lampach, Monika Glavina

Table A1: List of Variables

Variable name	Explanation	Type of Data	Source		
$Case_{i,t}$ (Dependent variable)	Number of referrals per court i at time t	discrete	NA		
$\mathrm{Order}_{i,t}$ (Dependent variable)	Dummy variable which takes the value one if the reference submit-	NA			
	ted by referring court i in year t is disposed of by an order and zero				
	otherwise				
Lag $Order_i (t-1)$	Number of dismissals per referring court \boldsymbol{i} at time t	NA			
Type $Order_i (t-1)$	Categorical variable which takes the value 4 if the reference is dis-	categorical	NA		
	missed as manifestly inadmissible, 3 when dismissed on the ground $$				
	that the question has already been settled, 2 when dismissed for lack $$				
	of jurisdiction, 1 when rejected for other reasons and 0 if ended in				
	an preliminary ruling per court i at time j				
Peak $Court_i$	Dummy variable which takes the value 1 if the referring court i is	categorical	NA		
	in the highest hierarchical position and 0 otherwise				
ECJ Workload $_t$	Number of pending cases at time t	discrete	Eur-Lex		
Intra-EU Trade $_{i,t}$	Intra EU-trade (export plus import) per country of court i at time	continuous	Ameco macro-		
	t		economic database		
Familiarity EU $\text{Law}_{i,t}$	Difference between the request date of preliminary reference at time $$	continuous	NA		
	t and the year the country of the court i entered the European Union				
$\mathrm{EU}\ \mathrm{support}_t$	Net political support per country at time $t;$ Percentage difference	continuous	Eurobarometer		
	between respondents believing that EU membership is a good thing $$				
	and those considering that EU membership is a bad thing.				
$Monism_i$	Dummy variable which takes the value one if the status of treaties	categorical	NA		
	is superior to ordinary legislation in the country of the referring				
	court i and zero otherwise				
New Member $_i$	Dummy variable which takes the value one if the country of the	categorical	NA		
	referring court i refers to new member states (accession from 1995)				
	and zero otherwise				

 $\it Note:$ NA means that no data source is necessary to compile the variable

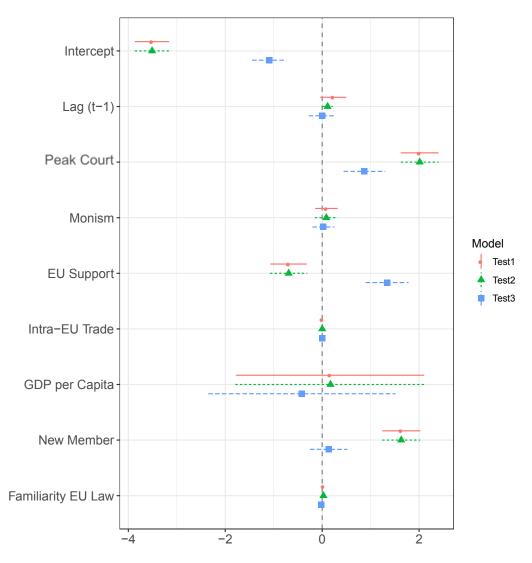


Figure A1: Assessment of the chilling hypothesis. Posterior distribution of model coefficients.

Note: Plot shows posterior estimates with 95% confidence intervals for all three tests of the chilling effect. Test

Table A2: Hierarchical Bayesian model

				D	1	1.1			
	Dependent variable:								
	Referral rate in year t								
	Test 1			Test 2			Test 3		
	Post.mean	l-95% CI	u-95% CI	Post.mean	l-95% CI	u-95% CI	Post.mean	l-95% CI	u-95% CI
Intercept	-3.514	-3.874	-3.163	-3.510	-3.869	-3.153	-1.090	-1.442	-0.731
Order $(t-1)$	0.227	-0.035	0.503	0.112	0.005	0.223	-0.002	-0.277	0.280
Peak Court	2.010	1.622	2.405	2.013	1.613	2.400	0.872	0.449	1.303
Monism	0.088	-0.145	0.322	0.085	-0.148	0.324	0.024	-0.202	0.250
EU Support	-0.691	-1.071	-0.310	-0.692	-1.075	-0.304	1.338	0.894	1.778
Intra-EU Trade	0.001	0.001	0.001	0.001	0.001	0.001	0.000	-0.001	0.000
GDP per Capita	0.163	-1.777	2.145	0.172	-1.780	2.142	-0.419	-2.350	1.519
New Member	1.631	1.243	2.019	1.631	1.242	2.019	0.133	-0.248	0.519
Familiriaty EU Law	0.026	0.018	0.034	0.026	0.018	0.034	-0.016	-0.025	-0.007
σ_{ij}	1.240	1.160	1.330	1.240	1.160	1.33	0.840	0.760	0.940
ψ	0.930	0.680	1.230	0.940	0.690	1.240	0.930	0.780	1.110
z_{ij}	0.230	0.040	0.310	0.240	0.150	0.310	0.020	0.000	0.060
WAIC		17051.95			17689.89			8554.46	
$R_{glmm(m)}^2$	0.083			0.083			0.151		
$R_{glmm(c)}^2$		0.541			0.541			0.576	
Number of iterations	16000			16000			16000		
Number of court levels	729			729			640		
Number of country levels		27		27			27		
Original sample size	22502			22502			6118		

Note: Priors have been specified based on available information of parameter and response distribution corresponding to the zero-inflated negative binomial distribution.

Table A3: Maximum Likelihood Estimation of Hierarchical Distributed Lag Model

	Dependent variable: ECJ admissibility decision						
	Learn	ing Test 1	Learning Test 2				
	Linear Model (1a)	Non-linear Model (1b)	Linear Model (2a)	Non-linear Model (2b)			
Constant	-5.862***	-6.000***	-6.932***	-6.827^{***}			
	(0.616)	(0.702)	(0.919)	(0.891)			
Delayed Order Effect $(s > 0)$	-0.016***	-14.497***	-0.013***	-5.656***			
	(0.002)	(1.676)	(0.003)	(1.223)			
Delayed Order Effect $(s^2 > 0)$		30.083***		9.424***			
		(3.762)		(3.082)			
Delayed Order Effect $(s^3 > 0)$		-18.013***		-4.519**			
		(2.422)		(2.098)			
ECJ Workload	0.006***	0.005***	0.005***	0.005***			
	(0.001)	(0.001)	(0.002)	(0.002)			
New Member	0.107	-0.219	0.723	0.293			
	(0.536)	(0.610)	(0.835)	(0.840)			
Peak Court	-0.245	-0.492	0.048	0.021			
	(0.293)	(0.319)	(0.419)	(0.377)			
Familiarity with EU Law	-0.003	-0.002	0.019	0.018			
	(0.009)	(0.010)	(0.014)	(0.014)			
Country:Court	0.176	0.117	0.852	0.470			
	(0.420)	(0.343)	(0.923)	(0.685)			
Observations	1.824	1.824	1.768	1.768			
Log Likelihood	-362.177	-282.895	-248.903	-225.667			
R_{marginal}^2	0.317	0.441	0.251	0.330			
$R_{\text{conditional}}^2$	0.358	0.463	0.439	0.433			
Akaike Inf. Crit.	742.355	587.791	515.805	473.333			
Bayesian Inf. Crit.	791.673	648.069	564.835	533.259			

Note: *p<0.1; **p<0.05; ***p<0.01

Table A4: Confusion Matrix of Table Fixed Effects Conditional Maximum Likelihood Model

		Predicted Class				
		Linear	Model (1a)	Non-linear Model (1b&1c)		
		False	True	False	True	
Observed Class	False	1643	76	1673	49	
	True	8	45	8	72	
Observations		N=1772				

		Predicted Class				
		Linear Model (2a)		Non-linear Model (2b&		
		False	True	False	True	
Observed Class	False	1641	50	1646	47	
	True	8	17	3	20	
Observations		N=1716				

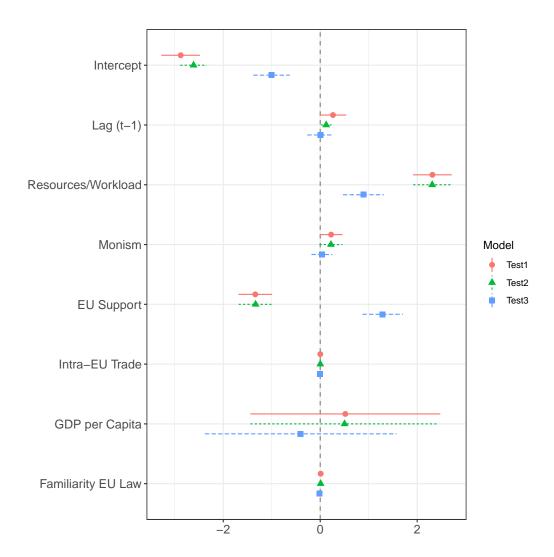


Figure A2: Alternative model specification for the test of the chilling hypothesis

Note. Plot shows posterior estimates with 95% confidence intervals for all three tests of the chilling effect.