
Appendix

An Alternative Approach to Calculating Second Differences

After fitting a binary choice model, it is now standard practice to present (changes in) pre-

dicted probabilities to describe the marginal effect of a given covariate. It is also now well-

understood that the magnitude of these marginal effects is a function of the values that all

other independent variables take on, since binary choice models are nonlinear. We now dis-

cuss some implications of this fact that are relevant for calculating second differences. In

our exposition and application, we discuss marginal effects after fitting a logit model, and we

consider binary covariates and so are concerned with the effects of discrete changes (or “first

differences”), but our basic argument is applicable more generally.

Fitting a logit yields the following function for calculating predicted probabilities: letting

z be the covariate of interest, x1, . . . , xn the other independent variables, α the constant, and

βi the estimated coefficients,

Pr(y = 1 |x1, . . . , xn, z) =
exp(α + β1x1 + . . .+ βnxn + βzz)

1 + exp(α + β1x1 + . . .+ βnxn + βzz)
. (1)

This function’s rate of increase increases the closer Pr(y = 1) is to 0.5; it takes on an “S-

shape.” Consider now the calculation of the discrete change in Pr(y = 1 |x1, . . . , xn) as z goes

from 0 to 1. Assuming with minimal loss of generality that βz > 0, the slope of the function

means that this discrete change will be the smallest when x1, . . . , xn is chosen such that

Pr(y = 1 |x1, . . . , xn, z = 0) is as close to 0 as possible, or when Pr(y = 1 |x1, . . . , xn, z = 1)

is as close to 1 as possible; and the discrete change will be largest when when x1, . . . , xn is

chosen such that Pr(y = 1 |x1, . . . , xn, z = 1) and Pr(y = 1 |x1, . . . , xn, z = 0) are equidistant

from 0.5. The critical point is that this discrete change is a function of the choice of x1, . . . , xn.

Now suppose one is interested in whether the effect of a covariate on Pr(y = 1) differs

across two groups—in our case, two terms of the Court. A standard approach is to fit a logit

model with an interactive term indicating group membership (e.g., Rainey 2016). Letting
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g be the binary variable indicating group membership, we have the following function for

calculating predicted probabilities:

Pr(y = 1 |x1, . . . , xn, g, z)

=
exp(α + βgg + β1x1 + . . .+ βnxn + βzz + βg1gx1 + . . .+ βgngxn + βgzgz)

1 + exp(α + βgg + β1x1 + . . .+ βnxn + βzz + βg1gx1 + . . .+ βgngxn + βgzgz)
. (2)

For any constituent term not interacted with the group variable, βgi = 0 by assumption

in (2).

An appropriate way to determine the difference in effects across groups is to calculate a

second difference:

∆∆[Pr(Y )] ≡ [Pr(y = 1 |x1, . . . , xn, g = 0, z = 1)− Pr(y = 1 |x1, . . . , xn, g = 0, z = 0)]

− [Pr(y = 1 |x1, . . . , xn, g = 1, z = 1)− Pr(y = 1|x1, . . . , xn, g = 1, z = 0)]. (3)

This is the effect in “Group 1” subtracted from the effect in “Group 0”—the difference in

effects between groups (i.e., the difference between the first differences). For brevity, we will

refer to the second term on the right hand side of (3) as the “baseline probability” for Group

0 and fourth term as the “baseline probability” for Group 1.

Simplifying from (2), the baseline probability for Group 0 is:

Pr(y = 1 |x1, . . . , xn, g = 0, z = 0) =
exp(α + β1x1 + . . .+ βnxn)

1 + exp(α + β1x1 + . . .+ βnxn)
, (4)

and the baseline probability for Group 1 is:
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Pr(y = 1 |x1, . . . , xn, g = 1, z = 0)

=
exp(α + βg + β1x1 + . . .+ βnxn + βg1x1 + . . .+ βgnxn)

1 + exp(α + βg + β1x1 + . . .+ βnxn + βg1x1 + . . .+ βgnxn)
. (5)

We present (4) and (5) to make clear that unless βg (the group intercept) and βg1, . . . , βgn

(the coefficients attending the interaction terms) are each equal to 0—or βg+βg1x1+. . .+βgnxn

otherwise sum to 0—the baseline probability for Group 0 will not equal the baseline probability

for Group 1. Thus, because of the nonlinearity of (2), the effect for Group 0 will not equal

the effect of Group 1, even if βgz = 0. More generally, the second difference depends not only

on βgz, but also on βg1, . . . , βgn—and thus, we emphasize, on the choice of x1, . . . , xn—as well

as on βg. This has some perhaps under-appreciated consequences for the choice of x1, . . . xn

when calculating second differences.

Indeed, the choice of x1, . . . xn when calculating second differences gets very little attention

in the literature. The typical approach seems to be set xi in (4), the baseline probability for

Group 0, equal to xi in (5), the baseline probability for Group 1. For example, xi may be mean

or modal value of the covariate in the estimation sample. We call this the “representative case”

approach. The representative case approach addresses the question, “how does the effect of

some covariate of interest vary across two units that have identical covariate values, but are

in different groups?” Note, though, that these two units may have very different baseline

probabilities, with the implications that we have discussed above.

An alternative to the representative case approach is the “observed-value” approach, which

has recently been defended (Hanmer and Kalkan 2013) as often the most appropriate way

to calculate first differences (i.e., for assessing non-interactive effects). The observed-value

approach involves calculating effect sizes for every observation in the sample by varying only

the covariate of interest and holding the other variables at their in-sample value, and averaging

those effects to give a summary measure. It is reasonably straightforward to extend the
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observed-value approach to calculating second differences, but we simply note here that the

(average) baseline probability may be very different across groups for this approach too. For a

more thorough discussion of the representative case and observed-value and approaches, and a

summary of current methodological advice to social scientists, see Long and Mustillo (2019).

That baseline probabilities will vary across groups for both the representative case and the

observed-value approach, and the attendant implications for calculation of second differences,

does not make these these calculations wrong. Under the assumptions of the model, they are

correct. Still, in some contexts, we suggest that the relevant question might not be “how does

some effect vary across two units with the same covariate values, but in different groups?”

but, instead, “how does some effect vary across two units with the same baseline probability

(of a positive outcome), but in different groups?” This implies calculating second differences

by setting x1, . . . xn so that βg + βg1x1 + . . .+ βgnxn ≈ 0.

Software: sdcasepick

We briefly describe the Stata program sdcasepick, which allows for convenient calculation of

effect size comparisons that follow the recommendations here.12 After the user estimates a logit

(or other binary choice) regression that includes a (binary) group indicator, the software allows

the user to specify any covariate of interest included in the previously estimated regression and

a range of baseline probabilities; within that range, the software finds the pair of observations

(one in each group) in the estimation sample that are closest in terms of baseline probability.

The software then calculates first and second differences (and associated standard errors) by

setting the other covariates at the values in this closest pair of observations. Thus, effect size

comparisons are based on cases with comparable baseline probabilities, as we recommend.

An additional advantage is that, as implemented, the cases forming the bases for comparison

are guaranteed to be present in the sample, which ameliorates concerns about out-of-sample

12sdcasepick is included with replication materials and relies on Stata’s margins command
and Long and Freese’s (2014) m* commands.
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comparisons and extreme counterfactuals.
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