
Figure S1 

Bootstrapped 95% confidence intervals for all edges in Network I. 

 

 

  



Figure S2 

Case-dropping bootstrap graph for centralities, strength, closeness, and betweenness for Network I 

 

 

  



Figure S3 

Bootstrapped 95% confidence intervals for all edges in Network II 

 



Figure S4 

Bridge closeness, bridge betweenness, and bridge two-step expected influence of EQ-5D dimensions and life 

factors. X-axis indicates the original scores of each centrality index. Variables are ordered from largest to smallest, 

from top to bottom as indicated in the y-axis. 

 

 

Figure S5 

Case-dropping bootstrap graph for bridge betweenness, bridge closeness, and bridge expected influence for 

Network II 

 



Figure S6 

Network III showing EQ-5D index and life and psychosocial factors. Thicker lines indicate stronger edge-weights. 

Red indicates negative edge-weights and green indicates positive edge-weights. 

 

 

  



Figure S7 

Bootstrapped 95% confidence intervals for all edges in Network III 

 



Supplementary Text S1 

Network Analysis 

As our data is cross-sectional, we estimated an undirected, weighted network using Gaussian graphical model 

(GGM), where edges represent partial correlation coefficients (Burger et al., 2022; Epskamp et al., 2018). GGM 

requires the data to have a multivariate normal property. However, in the case of ordinal data, polychoric 

correlations can be used instead (Epskamp, 2016). The polychoric correlation matrix undergoes a regularization 

process to create a parsimonious and sparse model by giving penalty for model complexity (Epskamp & Fried, 

2018). For GGM with ordinal data, a regularized estimation was conducted using the graphical least absolute 

shrinkage and selection operator (glasso) with the Extended Bayesian Information Criterion (EBIC) (Epskamp & 

Fried, 2018; Friedman et al., 2008). This regularization process is included in the qgraph package, called the 

EBICglasso function (Epskamp et al., 2012). As a result, spurious edges represented by weak partial correlation 

coefficients are removed from the network, thus improving its parsimoniousness and sparsity. 

For centrality analyses, strength, closeness, and betweenness centrality indices were computed using the 

centrality function included in the qgraph package (Epskamp et al., 2012). Strength centrality is a measure of how 

strong a node is related to each adjacent nodes by considering the absolute values of edge weights. Closeness 

refers to the inversed sum length of the shortest path of a node to all other nodes in the network. Finally, 

betweenness is the number of times a node of interest is passed through in the shortest route between every 

possible pair of nodes in the network (Bringmann et al., 2019; Opsahl et al., 2010). 

Bridge Centrality Analysis 

Bridge centralities, including bridge closeness and bridge betweenness were identified using the bridge 

function in networktools package (Jones & Jones, 2017). To account for the presence of both positive and negative 

edges in the network, we computed a two-step bridge expected influence. Expected influence is a similar measure 

to strength, but with consideration of negative relationships. A two-step expected influence takes into account not 

only the edge between focal node and its connected node, but also subsequently connected nodes (Robinaugh et 

al., 2016). Bridge centrality indices are defined similarly to extant centrality indices, but in the context of node 

communities. 

Accuracy and Stability 

For all parameters estimated, we performed bootstrapping to evaluate their accuracy and stability using the 

bootnet package (Epskamp et al., 2018). First, the accuracy of edge-weights of the network was evaluated by 

estimating the 95% confidence interval (CI) on each edge using non-parametric bootstrap method with 1000 

bootstraps. Next, centrality indices were also evaluated where applicable. Stability of centrality indices can be 

evaluated using the correlation stability coefficient (CS-coefficient). CS-coefficient is obtained by employing the 

case-dropping subset bootstrap, where portions of cases (i.e. observations from the data) are dropped from the 

data and correlation between the subset centrality indices and original centrality indices are calculated. CS-

coefficient is a measure of the maximum proportion of cases that can be dropped such that the correlation is higher 



than the chosen value. Recommended cutoff scores for CS-coefficients is 0.5, and it is advised not to interpret 

centrality indices below 0.25 (Epskamp et al., 2018).  

Network Visualization 

Network I was visualized using the qgraph function, as Figure 2a. All 10 possible edges are described by 

partial correlation coefficient regularized using the EBICglasso method, with hyperparameter set to the default 

value, 0.5 (Epskamp et al., 2012). The strongest edge is the edge connecting EQL2 (self-care) and EQL3 (usual 

activities), with partial correlation coefficient value 0.55. Nodes were placed with respect to the Fruchterman-

Reingold algorithm applied using spring layout, where strongly related nodes are placed closer together 

(Fruchterman & Reingold, 1991). The results for bootstrapped CI for each edge is supported in Supplementary 

File, Fig. S1. 

The centrality analysis revealed that overall, largest centralities were observed for EQL3, usual activities. 

Figure 2b illustrates the raw centrality scores for strength, closeness, and betweenness. CS-coefficients were 0.75, 

0.75, and 0.52, respectively. As all CS-coefficients were above 0.5, all indices were treated as accurate and were 

thus interpreted. The results for case-dropping bootstrap for the centrality indices can be accessed in 

Supplementary File, Fig. S2.  
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