
Hindawi Template version: Apr19

1

ML Models Optimization Hyperparameters: 1

Table S1: DecisionTreeClassifier for DT and its optimization hyperparameters. 2

Hyperparameter attributes Description

1 'criterion': ['gini', 'entropy'] Measures the quality of a split in the tree. Where ‘gini’ is for the

Gini impurity and ‘entropy’ is for the information gain.

2 'splitter': ['best', 'random'] Strategy used to choose the split at each node. The two options

chosen for the DT model are ‘best’ to choose the best split and

‘random’ to choose the best random split.

3 'max_depth': [1, 30] Defines the maximum depth of the tree.

4 'min_samples_split': [2, 50] Describes the minimum number of samples required to split an

internal node.

5 'min_samples_leaf': [1, 50] Reviews the minimum number of samples required to be at each

leaf node. A split point at any depth is only considered if it

leaves at least the defined min_samples_leaf training samples in

each of the left and right branches.

6 'max_features': [None,

'auto','log2']

Maximum number of features to consider when looking for the

best split. It first of all considers ‘None’ for 𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =
𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, followed by ‘auto’ for 𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =
𝑠𝑞𝑟𝑡(𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), and finally considers ‘log2’ for

𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑙𝑜𝑔2(𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠).

7 'class_weight': [None,

'balanced']

Helps in computing the weights associated with the classes. For

None, all classes are supposed to have a weight of 1. The

‘balanced’ mode uses the values of the outcome to automatically

adjust weights inversely proportional to the class frequencies in

the input data.

 3

Table S2: RandomForestClassifier for RF and its optimization hyperparameters. 4

Hyperparameter attributes Description

1 'criterion': ['gini', 'entropy'] Measures the quality of a split in the tree. Where ‘gini’ is for the

Gini impurity and ‘entropy’ is for the information gain.

2 'splitter': ['best', 'random'] Strategy used to choose the split at each node. The two options

chosen for the DT model are ‘best’ to choose the best split and

‘random’ to choose the best random split.

Hindawi Template version: Apr19

2

3 'max_depth': [1, 30] Defines the maximum depth of the tree.

4 'min_samples_split': [2, 50] Describes the minimum number of samples required to split an

internal node.

5 'min_samples_leaf': [1, 50] Reviews the minimum number of samples required to be at each

leaf node. A split point at any depth is only considered if it

leaves at least the defined min_samples_leaf training samples in

each of the left and right branches.

6 'max_features': [None,

'auto','log2']

Maximum number of features to consider when looking for the

best split. It first of all considers ‘None’ for 𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =
𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, followed by ‘auto’ for 𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =
𝑠𝑞𝑟𝑡(𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), and finally considers ‘log2’ for

𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑙𝑜𝑔2(𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠).

7 'bootstrap': [True] Allows the algorithm to use the bootstrap resampling method

while building (growing) trees, as opposed to using the entire

dataset in each tree built.

8 'oob_score': [False, True] A conditional hyperparameter that only holds if and only if the

bootstrap has been enabled. It permits the algorithm to use out-

of-bag samples to estimate the generalization score.

9 'class_weight': [None,

'balanced']

Maintains the same attributes as the DT built earlier that is being

extended.

 5

Table S3: SVC (support vector classifier) for SVM and its optimization hyperparameters. 6

Hyperparameter attributes Description

1 'kernel': ['linear','poly','rbf'] Specifies type of kernel to be used in the algorithm. The three

options chosen include: ‘linear’, ‘poly’, and ‘rbf’. From which

the hyperparameter optimization sweep will choose the best

option that will yield the best performing model.

2 'C': [0.1, 1000] A regularization parameter whose strength is inversely

proportional to C. This value was kept strictly positive and

corresponds to the penalty of the square of 12.

3 'gamma': ['scale'] Specifies the kernel coefficient to be used for ‘rbf’, ‘poly’ in

their use, such that the ‘scale’ is default passed in order to use

the value 1/((𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗ 𝑋. 𝑣𝑎𝑟())).

4 'degree': [1,6] Defines the degree of the polynomial kernel function ‘poly’.

Hindawi Template version: Apr19

3

5 'probability': [True] Enables use of probability estimates.

6 'class_weight': [None,

'balanced']

Set to two possible options, ‘None’ for assigning all other classes

to the weight of one, or ‘balanced’ mode to enable outcome

values to automatically adjust weights inversely proportional to

the class frequencies in the input data.

 7

Table S4: LogisticRegression classifier for LR and its optimization hyperparameters. 8

Hyperparameter attributes Description

1 'penalty': ['l2','l1'] Specifies the norm used in the penalization. Two options L1 and

L2 have been set and the hyperparameter sweep will choose the

option that yields the best results.

2 'C': [1e-5, 1e5] Defines the inverse of regularization strength, the two options set

give the model ability to try both a smaller value 1𝑒 − 5 for

stronger regularization and a larger as an alternative.

3 'solver': ['newton-cg','lbfgs',

'liblinear', 'sag','saga']

Determines which algorithm is chosen in the optimization

problem. The hyperparameter sweep attempts multiple options;

‘liblinear’ for small datasets, ‘sag’ and ‘saga’ for large datasets

since they are faster, including ‘newton-cg’ and ‘lbfgs’, for

handling the penalty of L2.

4 'class_weight': [None,

'balanced']

Set to two possible options, ‘None’ for assigning all other classes

to the weight of one, or ‘balanced’ mode to enable outcome

values to automatically adjust weights inversely proportional to

the class frequencies in the input data.

5 'max_iter': [10, 1000] Sets the maximum number of iterations taken for the solver to

converge.

 9

Table S5: GradientBoostingClassifier for GB and its optimization hyperparameters. 10

Hyperparameter attributes Description

1 'loss': ['deviance',

'exponential']

Describes the loss function to be optimized. ‘deviance’ refers to

deviance (= LR) for classification with probabilistic outputs. For

loss ‘exponential’ GB recovers the AdaBoost algorithm.

2 'learning_rate': [1e-2, 1] Shrinks the contribution of each tree to learning_rate. There is a

trade-off between learning_rate and n_estimators (which has

been left to run with default attributes (n_estimatorsint=100)).

Hindawi Template version: Apr19

4

3 'min_samples_leaf': [1,200] Reviews the minimum number of samples required to be at each

leaf node. A split point at any depth is only considered if it

leaves at least the defined min_samples_leaf training samples in

each of the left and right branches.

4 'max_depth': [1,10] Defines the maximum depth of the individual regression

estimators. The maximum depth also limits the number of nodes

in the tree.

5 'max_leaf_nodes': [None] Helps to grow trees with unlimited number of leaf nodes.

6 'validation_fraction': [0.01,

0.31, 0.01]

Defines the proportion of training data to set aside as the

validation set for early stopping. The value is kept between 0 and

1, and only used if n_iter_no_change is set to an integer.

7 'n_iter_no_change': [1,20] Decides if early stopping will be used to terminate training when

the validation score is not improving. The number to which it is

set, determines a set aside the validation_fraction size of the

training data as validation and terminate the training when

validation score is not improving in all of the previous

n_iter_no_change numbers of iterations, while keeping the split

as stratified.

8 'tol': [1e-7] Gives tolerance for the early stopping of the learning process

when the loss is not improved by at least the given tol for

n_iter_no_change iterations (if set to a number), the training

stops.

 11

Table S6: XGBClassifier for XGB and its optimization hyperparameters. 12

Hyperparameter attributes Description

1 'booster': ['gbtree'] This parameter specifies that the booster to be used should be

tree-based models.

2 'objective': ['binary:logistic'] This parameter refers to logistic regression for binary

classification in output probability.

3 'verbosity': [0] This parameter describes the degree of verbosity of printing

messages, it is set to 0 for silent.

4 'reg_lambda': [1e-8, 1.0] This describes the L2 regularization (ridge regression) term on

weights for determining how conservative the model should be.

5 'alpha': [1e-8, 1.0] This describes the L1 regularization (lasso regression) term on

weights for determining how conservative the model should be.

Hindawi Template version: Apr19

5

6 'eta': [1e-8, 1.0] Step size shrinkage used in update to prevent overfitting. After

each boosting step, weights of new features can directly be

obtained, and eta shrinks the feature weights to make the

boosting process more conservative.

7 'gamma': [1e-8, 1.0] Minimum loss reduction required to make a further partition on a

leaf node of the tree.

8 'max_depth': [1, 30] This parameter determine the maximum tree depth for base

learners to manage the complexity of the model and avoid

overfitting and also manage memory consumption by XGBoost

classifier while training a deep tree.

9 'grow_policy': ['depthwise',

'lossguide']

This parameter determines the tree growing policy, or how new

nodes are added to the tree. The depthwise choice splits at nodes

closest to the root, while lossguide splits at nodes with highest

loss change.

10 'n_estimators': [10,1000] This determines the number of boosting rounds.

11 'min_samples_split' : [2, 50] Describes the minimum number of samples required to split an

internal node.

12 'min_samples_leaf': [1, 50] Reviews the minimum number of samples required to be at each

leaf node. A split point at any depth is only considered if it

leaves at least the defined min_samples_leaf training samples in

each of the left and right branches.

13 'subsample': [0.5, 1.0] This determines the subsample ratio of the training instances.

Setting it to 0.5 means that XGBoost would randomly sample

half of the training data prior to growing trees. and this will

prevent overfitting so that subsampling occurs once in every

boosting iteration.

14 'min_child_weight': [0.1, 10] This is the minimum sum of instance weight (hessian) needed in

a child tree. If the tree partition step results in a leaf node with

the sum of instance weight less than min_child_weight, then the

building process will give up further partitioning. Higher value

of this parameter leads to a more conservative model.

15 'colsample_bytree': [0.1, 1.0] This is the subsample ratio of columns when constructing each

tree so that subsampling occurs once for every tree constructed.

 13

