Supplemental Materials: A generalized hypothesis test for community structure in networks

Technical Proofs

Upper bound on E2D2 parameter

We want to show that $\left\{\bar{p}_{\text {in }}(\boldsymbol{c})-\bar{p}_{\text {out }}(\boldsymbol{c})\right\} /(K \bar{p}) \leq 1$. Notice that for any $\boldsymbol{c}, \bar{p}=r \bar{p}_{\text {in }}+(1-r) \bar{p}_{\text {out }}$ for $r=m_{\text {in }} /\binom{n}{2}$ where $0 \leq r \leq 1$ and $r=r(K)$ depends on K, the number of communities. Thus, we equivalently want to maximize

$$
\begin{equation*}
f(x, y, r)=\frac{x-y}{r x+(1-r) y} \tag{1}
\end{equation*}
$$

where $0 \leq r, x, y \leq 1$. First, let's consider a fixed r. Then $f(x, y, r)$ will clearly be maximized when $y=0$ which yields

$$
\begin{equation*}
f(x, 0, r)=\frac{1}{r} . \tag{2}
\end{equation*}
$$

Thus, $f(x, y, r)$ is maximized when r is minimized, or, equivalently, when $m_{i n}$ is minimized for a fixed K.

Let m_{k} be the number of nodes in community $k \in\{1, \ldots, K\}$ where $m_{1}+\cdots+m_{K}=n$. Then we want to minimize $m_{i n}=\frac{1}{2} \sum_{j=1}^{K} m_{j}\left(m_{j}-1\right)$ subject to $\sum_{j=1}^{K} m_{j}=n$. We can use Lagrange multipliers:

$$
\begin{equation*}
\mathcal{L}\left(m_{1}, \ldots, m_{K}, \lambda\right)=\frac{1}{2} \sum_{j=1}^{K} m_{j}\left(m_{j}-1\right)-\lambda\left(\sum_{j=1}^{K} m_{j}-n\right) \tag{3}
\end{equation*}
$$

Take the gradient:

$$
\begin{equation*}
\nabla \mathcal{L}\left(m_{j}, \lambda\right)=\left(m_{1}-\frac{1}{2}-\lambda, \ldots, m_{K}-\frac{1}{2}-\lambda, n-\sum_{j=1}^{K} m_{j}\right) \tag{4}
\end{equation*}
$$

Setting equal to 0 means that for all $j, m_{j}=\lambda+\frac{1}{2}$ so

$$
\begin{equation*}
0=n-\sum_{j=1}^{K}\left(\lambda+\frac{1}{2}\right) \Longrightarrow \lambda=\frac{n}{K}-\frac{1}{2} \tag{5}
\end{equation*}
$$

Thus, $m_{i n}$ is minimized at $m_{1}=\cdots=m_{k}=\frac{n}{K}$ so

$$
\begin{equation*}
m_{i n} \geq \frac{1}{2} \sum_{j=1}^{K} \frac{n}{K}\left(\frac{n}{K}-1\right)=\frac{n(n-K)}{2 K} \tag{6}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
f(x, y, r) \leq \frac{1}{r} \leq \frac{\binom{n}{2}}{n(n-K) / 2 K}=K \frac{n-1}{n-K} . \tag{7}
\end{equation*}
$$

For large $n,(n-1) /(n-K) \approx 1$ so we have the desired result.

Theorem 2.1

First, note that since we assume K_{n} is known, we can ignore it during the proof and simply divide the final cutoff by K_{n}. Now, let $\gamma_{0}=\xi_{0} / \bar{p}$. Assume a rejection region of the form $R=\left\{T_{*}(n)>c(n)\right\}$ where $c(n)=\frac{\xi_{0}+k(n)}{\bar{p}(n) /(1+\epsilon)}$ and

$$
\begin{equation*}
T_{*}(n)=\frac{U_{*}(n)}{S(n)} \tag{8}
\end{equation*}
$$

where $U_{*}(n)=\max _{c}\left\{\hat{p}_{\text {in }}(\boldsymbol{c})-\hat{p}_{\text {out }}(\boldsymbol{c})\right\}$ with the max taken over all possible community assignments \boldsymbol{c}_{i} for $i=1, \ldots, N_{n, K} ; S(n)=\hat{p}(n)$ and

$$
\bar{p}(n)=\frac{1}{\binom{n}{2}} \sum_{i>j} P_{i j}(n) .
$$

From this point, we suppress the dependence on n. Using DeMorgan's Law, we can show that

$$
\begin{equation*}
P\left(T_{*}>c\right) \leq P\left(U_{*}>\xi_{0}+k\right)+P(S<\bar{p} /(1+\epsilon)) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{p}=\frac{1}{\binom{n}{2}} \sum_{i<j} P_{i j} \tag{10}
\end{equation*}
$$

Under H_{0}, we show that each term on the right-hand side goes to 0 . Assume the null model P_{0} and consider a fixed community assignment with K_{n} communities, \boldsymbol{c}_{i}, for $i \in\left\{1, \ldots, N_{n, k}\right\}$ where $N_{n, K_{n}} \leq K_{n}^{n}$ and let $U_{i}=\hat{p}_{\text {in }}\left(\boldsymbol{c}_{i}\right)-\hat{p}_{\text {out }}\left(\boldsymbol{c}_{i}\right)$. Then

$$
\begin{equation*}
U_{i}=\sum_{j<k} X_{j k} \tag{11}
\end{equation*}
$$

where $X_{j k}=m_{i n, i}^{-1}$ if $\left(\boldsymbol{c}_{i}\right)_{j}=\left(\boldsymbol{c}_{i}\right)_{k}$ and $-m_{o u t, i}^{-1}$ otherwise. From the proof of the upper bound on the E2D2 parameter, we have that $m_{\text {in,i }}=O\left(n^{2}\right)$ and $m_{\text {out }, i}=O\left(n^{2}\right)$. Thus, letting $k_{i}^{\prime}=\mathrm{E}\left(U_{i}\right)+k$ and using Hoeffding's inequality,

$$
\begin{align*}
\frac{\eta}{N_{n, K}} & =P\left(U_{i} \geq k_{i}^{\prime}\right) \tag{12}\\
& =P\left(U_{i} \geq \mathrm{E}\left(U_{i}\right)+k\right) \tag{13}\\
& \leq \exp \left(\frac{-2 k^{2}}{\binom{n}{2}\left(\frac{1}{m_{\text {in }}}+\frac{1}{m_{\text {out }}}\right)^{2}}\right) \tag{14}\\
& \leq \exp \left(-n^{2} k^{2}\right) \tag{15}\\
\Longrightarrow k & \leq\left(\frac{\log N_{n, K}-\log \eta}{n^{2}}\right)^{1 / 2} \sim\left(\frac{\log K_{n}}{n}\right)^{1 / 2} \tag{16}
\end{align*}
$$

Now, under the null hypothesis, $\mathrm{E}\left(U_{i}\right) \leq \xi_{0}$. Then we have

$$
\begin{align*}
P\left\{U_{*}>\xi_{0}+k\right\}=P(& \left.\bigcup_{i=1}^{N_{n, K}}\left\{U_{i}>\xi_{0}+k\right\}\right) \\
& \leq P\left(\bigcup_{i=1}^{N_{n, K}}\left\{U_{i}>k_{i}^{\prime}\right\}\right) \leq \sum_{i=1}^{N_{n, K}} P\left\{U_{i}>k_{i}^{\prime}\right\} \leq \sum_{i=1}^{N_{n, K}} \frac{\eta}{N_{n, K}} \leq \eta \tag{17}
\end{align*}
$$

We also have

$$
\begin{equation*}
P(S<\bar{p} /(1+\epsilon))=P\left(S<\bar{p}-\frac{\epsilon}{1+\epsilon} \bar{p}\right) \leq e^{-\epsilon^{2} \bar{p}^{2} n(n-1) /(1+\epsilon)^{2}} \rightarrow 0 \tag{18}
\end{equation*}
$$

since $n^{1 / 2} \bar{p} \rightarrow \infty$. Combining these two results we have that

$$
\begin{equation*}
P\left(T_{*}>c\right) \leq P\left(U_{*}>\xi_{0}+k\right)+P(S<\bar{p} /(1+\epsilon)) \leq \eta \tag{19}
\end{equation*}
$$

as we hoped to show.

Under H_{1}, let $\gamma_{1}=\xi_{1} / \bar{p}$ and let $T_{\text {oracle }}=T\left(\boldsymbol{c}_{\gamma}, A\right)=U_{\text {oracle }} / S$ where $\boldsymbol{c}_{\gamma}=\arg \max _{\boldsymbol{c}}\{\gamma(\boldsymbol{c}, P)\}$, i.e., \boldsymbol{c}_{γ} is the community assignment which maximizes the E2D2 parameter. This is reasonable because we assume that the algorithm finds the global maximum $\tilde{T}(A)$ so $T_{\text {oracle }} \leq \tilde{T}(A)$. We will use a similar approach to the proof of H_{0} noting that

$$
\begin{equation*}
\left\{U_{\text {oracle }}>\left(\xi_{0}+k\right) \frac{1+\epsilon}{1-\epsilon}\right\} \cap\left\{S \leq \frac{\bar{p}}{1-\epsilon}\right\} \subseteq\left\{T_{\text {oracle }}>c\right\} \tag{20}
\end{equation*}
$$

so

$$
\begin{align*}
P\left(T_{\text {oracle }}>c\right) & \left.\geq P\left\{U_{\text {oracle }}>\left(\xi_{0}+k\right) \frac{1+\epsilon}{1-\epsilon}\right\} \cap\left\{S \leq \frac{\bar{p}}{1-\epsilon}\right\}\right) \tag{21}\\
& \geq P\left\{U_{\text {oracle }}>\left(\xi_{0}+k\right) \frac{1+\epsilon}{1-\epsilon}\right\}+P\left\{S \leq \frac{\bar{p}}{1-\epsilon}\right\}-1 . \tag{22}
\end{align*}
$$

Thus, we want to show that the first two terms on the right-side go to 1 . For the first term, we note that $U_{\text {oracle }}$ is the sum of $O\left(n^{2}\right)$ independent random variables, each of which takes values between $\left[-m_{\text {out }}^{-1}, m_{\text {in }}^{-1}\right]$. Moreover, $\mathrm{E}\left(U_{\text {oracle }}\right)=\xi_{1}>\xi_{0}$. Let $1_{\epsilon}:=(1+\epsilon) /(1-\epsilon)$. Then,

$$
\begin{align*}
P\left\{U_{\text {oracle }} \leq\left(\xi_{0}+k\right) 1_{\epsilon}\right\} & =P\left\{U_{\text {oracle }} \leq \xi_{1} 1_{\epsilon}-\left(\xi_{1}-\xi_{0}-k\right) 1_{\epsilon}\right\} \tag{23}\\
& =P\{U_{\text {oracle }} \leq \xi_{1}-\underbrace{\left(\xi_{1}-\xi_{0}-\frac{2 \epsilon}{1+\epsilon} \xi_{1}-k\right)}_{z}\} . \tag{24}
\end{align*}
$$

Now, $z>0$ since $\xi_{1}-\xi_{0}>0$ and we can choose ϵ small enough such that $\xi_{1}-\xi_{0}-\frac{2 \epsilon}{1+\epsilon} \xi_{1}>0$. Additionally, $k \rightarrow 0$ by A3 so there exists an N such that for all $n \geq N, \xi_{1}-\xi_{0}-\frac{2 \epsilon}{1+\epsilon} \xi_{1}>k$. Thus, we can use Hoeffding's inequality to show

$$
\begin{align*}
P\left\{U_{\text {oracle }} \leq\left(\xi_{0}+k\right) 1_{\epsilon}\right\} & =P\left\{U_{\text {oracle }} \leq \xi_{1}-z\right\} \tag{25}\\
& \leq \exp \left(-\frac{2 z^{2}}{\sum_{i=1}^{n^{2}} \frac{1}{n^{4}}}\right) \tag{26}\\
& =\exp \left(-2 n^{2} z^{2}\right) \tag{27}\\
& \rightarrow 0, \tag{28}
\end{align*}
$$

or equivalently,

$$
\begin{equation*}
P\left\{U_{\text {oracle }}>\left(\xi_{0}+k\right) 1_{\epsilon}\right\} \rightarrow 1 \tag{29}
\end{equation*}
$$

Next, consider S. First, notice that

$$
\begin{equation*}
\frac{\bar{p}}{1-\varepsilon}=\bar{p}+\frac{\varepsilon}{1-\varepsilon} \bar{p} \tag{30}
\end{equation*}
$$

Then, by Hoeffding's inequality, we can show

$$
\begin{align*}
P(S \geq \bar{p} /(1-\varepsilon)) & =P\left(S \geq \bar{p}+\frac{\varepsilon}{1+\varepsilon} \bar{p}\right) \tag{31}\\
& \leq e^{-\varepsilon^{2}(\bar{p})^{2} /(1+\varepsilon)^{2} n(n-1)} \tag{32}\\
& \rightarrow 0 \tag{33}
\end{align*}
$$

since $n^{1 / 2} \bar{p} \rightarrow \infty$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P(\tilde{T}(A)>C) \geq \lim _{n \rightarrow \infty} P\left(T_{\text {oracle }}>C\right) \geq 1+1-1 \geq 1 . \square \tag{34}
\end{equation*}
$$

Proposition in Section 2.4

Claim: $\tilde{\gamma}(P)=0$ if and only if P is from an ER model.
Proof. The only if direction of the claim is immediate. To prove the forward direction, we first show that $\gamma(\boldsymbol{c}, P) \leq 0$ for all \boldsymbol{c} implies that $\gamma(\boldsymbol{c}, P)=0$ for all \boldsymbol{c}. Then we show that if $\gamma(\boldsymbol{c}, P)=0$ for all \boldsymbol{c}, then P is from an ER model which is equivalent to showing $\tilde{\gamma}(P)=0$.

For the first part, this is equivalent to showing that if $\gamma(\boldsymbol{c}, P)<0$ for some \boldsymbol{c}, then there exists some \boldsymbol{c}^{\prime} such that $\gamma\left(\boldsymbol{c}^{\prime}, P\right)>0$. If there exists some \boldsymbol{c} such that $\gamma(\boldsymbol{c}, P)<0$, then

$$
\frac{1}{\sum_{k=1}^{K}\binom{n_{k}}{2}} \sum_{i<j}^{K} \delta_{c_{i}, c_{j}} P_{i j}<\frac{1}{\sum_{k>l} n_{k} n_{l}} \sum_{i<j}\left(1-\delta_{c_{i}, c_{j}}\right) P_{i j} .
$$

But this means that there is some $P_{i j}$ such that $P_{i j} \geq P_{k l}$ for all $i \neq k$ or $j \neq l$ and is strictly greater for at least one $P_{k l}$. Thus, if we consider the community assignment \boldsymbol{c}^{\prime} where nodes i and j are in one community and all other nodes are in the other, then $\bar{p}_{\text {in }}\left(\boldsymbol{c}^{\prime}\right)>\bar{p}_{\text {out }}\left(\boldsymbol{c}^{\prime}\right)$ and thus $\gamma\left(\boldsymbol{c}^{\prime}, P\right)>0$.

We will prove the second part by induction. Let $n=3$ and we are given that $\gamma(\boldsymbol{c}, P)=0$ for all \boldsymbol{c}. We start by writing out the probability matrix.

$$
P=\left(\begin{array}{ccc}
- & P_{12} & P_{13} \\
& - & P_{23} \\
& & -
\end{array}\right)
$$

There are three possible community assignments: $\boldsymbol{c}_{1}=\{1,1,2\}, \boldsymbol{c}_{2}=\{1,2,1\}$ and $\boldsymbol{c}_{3}=$ $\{2,1,1\}$. From each of these assignments, we have a corresponding statement relating the
probabilities:

$$
\begin{aligned}
& \bar{p}_{\text {in }}=P_{12}=\bar{p}_{\text {out }}=\frac{1}{2}\left(P_{13}+P_{23}\right) \\
& \bar{p}_{\text {in }}=P_{13}=\bar{p}_{\text {out }}=\frac{1}{2}\left(P_{12}+P_{23}\right) \\
& \bar{p}_{\text {in }}=P_{23}=\bar{p}_{\text {out }}=\frac{1}{2}\left(P_{12}+P_{13}\right) .
\end{aligned}
$$

Plugging the first equation into the second equation we find:

$$
P_{13}=\frac{1}{2}\left(\frac{1}{2}\left(P_{13}+P_{23}\right)+P_{23}\right) \Longrightarrow P_{13}=P_{23} .
$$

Plugging this into the first equation we have $P_{12}=P_{13}=P_{23}:=p$ which means that this must be an ER model.

Now assume that the claim holds for $n-1$ and show it holds for n. For convenience, assume n is even but the proof can easily be extended if n is odd. Consider a network with n nodes such that $\gamma(\boldsymbol{c}, P)=0$. Remove an arbitrary node such that we have a network with $n-1$ nodes and apply the induction hypothesis, i.e. $P_{i j}=p$ for all i, j. We now add the removed node back to the network such that the node has probability $P_{i, n}$ of an edge between itself and node i for $i=1, \ldots, n-1$. Thus, the probability matrix is:

$$
P=\left(\begin{array}{cccccc}
- & p & p & \cdots & p & P_{1 n} \\
& - & p & \cdots & p & P_{2 n} \\
& & \ddots & & \vdots \\
& & & & P_{n-1, n} \\
& \ddots & & & -
\end{array}\right) .
$$

Since $\gamma(\boldsymbol{c}, P)=0$ for all \boldsymbol{c}, then we want to show that $P_{i, n}=p$ for $i=1, \ldots, n$. Assume for contradiction that P is not ER and we will show that $\gamma(\boldsymbol{c}, P) \neq 0$ for some \boldsymbol{c}. Without loss of generality, let $\left\{P_{1 n}, \ldots, P_{n / 2, n}\right\}$ be the smaller values of the last column and $\left\{P_{n / 2+1, n}, \ldots, P_{n-1, n}\right\}$ be the larger values and consider the community assignment where nodes $\{1, \ldots, n / 2\}$ are in one community and nodes $\{n / 2+1, \ldots, n\}$ are in the other community. Then

$$
\bar{p}_{\text {in }}=\frac{1}{2\binom{n / 2}{2}}\left(p \cdot\left(\frac{n}{2}-1\right)^{2}+\sum_{i=n / 2+1}^{n-1} P_{i, n}\right)>\bar{p}_{\text {out }}=\frac{1}{n^{2} / 4}\left(p \cdot\left(\frac{n^{2}}{4}-\frac{n}{2}\right)+\sum_{i=1}^{n / 2} P_{i, n}\right)
$$

since

$$
\sum_{i=n / 2+1}^{n-1} P_{i, n}>\sum_{i=1}^{n / 2} P_{i, n}
$$

Thus $\gamma(\boldsymbol{c}, P) \neq 0$ for this particular choice of \boldsymbol{c} and we have completed the proof.

Lemma 3.1

We follow closely the ideas of the proof of Theorem 5 in Levin and Levina (2019). Assume that $p \sim F(\cdot)$ and $A, H\left|p \sim E R(p), \hat{A}^{*}\right| \hat{p} \sim E R(\hat{p})$ where $\hat{p}=\sum_{i, j} A_{i j} /\{n(n-1)\}$. We will use the well-known property of Bernoulli random variables that if $X \sim \operatorname{Bernoulli}\left(p_{1}\right)$ and $Y \sim \operatorname{Bernoulli}\left(p_{2}\right)$, then $d_{1}(X, Y) \leq\left|p_{1}-p_{2}\right|$. Thus,

$$
P\left(\hat{A}_{i j}^{*} \neq H_{i j} \mid p, \hat{p}\right) \leq|\hat{p}-p| .
$$

Let ν be the coupling such that A and H are independent. Then

$$
W_{p}^{p}\left(\hat{A}^{*}, H\right) \leq \int d_{G M}^{p}\left(\hat{A}^{*}, H\right) d \nu\left(\hat{A}^{*}, H\right) .
$$

Using Jensen's inequality,

$$
d_{G M}^{p}\left(\hat{A}^{*}, H\right) \leq\left(\frac{1}{2}\binom{n}{2}^{-1}\left\|\hat{A}^{*}-H\right\|_{1}\right)^{p} \leq\binom{ n}{2}^{-1} \sum_{i<j}\left|\hat{A}_{i j}^{*}-H_{i j}\right|^{p}=\binom{n}{2}^{-1} \sum_{i<j}\left|\hat{A}_{i j}^{*}-H_{i j}\right| .
$$

Thus,

$$
\begin{aligned}
\int d_{G M}^{p}\left(\hat{A}^{*}, H\right) d \nu\left(\hat{A}^{*}, H\right) & \leq\binom{ n}{2}^{-1} \sum_{i<j} \int\left|\hat{A}_{i j}^{*}-H_{i j}\right| d \nu \\
& =\binom{n}{2}^{-1} \sum_{i<j} \nu\left(\left\{\hat{A}_{i j}^{*} \neq H_{i j}\right\}\right) \\
& \leq\binom{ n}{2}^{-1} \sum_{i<j}|\hat{p}-p| \\
& =|\hat{p}-p| \\
& =O\left(n^{-1}\right)
\end{aligned}
$$

Lemma 3.2

It's easy to see that the CL model falls into the Random Dot Product Graph framework where $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$ correspond to the latent positions and the dimension $d=1$. Then by Theorem 5 of Levin and Levina (2019), we have that

$$
W_{p}^{p}\left(\hat{A}^{*}, H\right)=O\left(\left(n^{-1 / 2}+n^{-1 / 1}\right) \log n\right)=O\left(n^{-1 / 2} \log n\right)
$$

since $\hat{\boldsymbol{\theta}}$ is estimated using the ASE.

Lemma 3.3

Let $t(H, \boldsymbol{c})=\sum_{i<j} C_{i j} H_{i j}$ where $C_{i j}=m_{i n}^{-1}$ if $c_{i}=c_{j}$ and $m_{\text {out }}^{-1}$ otherwise and $H_{i j} \sim$ Bernoulli (p). Define $\mathrm{E}\{t(H, \boldsymbol{c})\}=\xi(H, \boldsymbol{c})$ and

$$
s_{n}^{2}=\sum_{i<j} \operatorname{Var}\left(C_{i j} H_{i j}\right)=p(1-p) \sum_{i<j} C_{i j}^{2} .
$$

We want to invoke Lyapunov's CLT so we must check the follow condition: for some $\delta>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{s_{n}^{2+\delta}} \sum_{i=1}^{n} \mathrm{E}\left(\left|X_{i}-\mathrm{E}\left(X_{i}\right)\right|^{2+\delta}\right) \rightarrow 0
$$

Let $\delta=1$ and recall that $C_{i j}=O\left(n^{-2}\right)$. Then, ignoring constants,

$$
\begin{aligned}
\frac{1}{s_{n}^{3}} \sum_{i<j} \mathrm{E}\left(\left|C_{i j} H_{i j}-C_{i j} p\right|^{3}\right) & =\frac{1}{s_{n}^{3}} \sum_{i<j} C_{i j}^{3} \mathrm{E}\left(\left|H_{i j}-p\right|^{3}\right) \\
& =\frac{1}{s_{n}^{3}} \sum_{i<j} C_{i j}^{3} \\
& =O\left(n^{3}\right) \sum_{i<j} O\left(n^{-6}\right) \\
& =O\left(n^{-1}\right) \checkmark
\end{aligned}
$$

Thus, by Lyapunov's CLT,

$$
\begin{equation*}
\frac{1}{s_{n}} \sum_{i<j}\left(C_{i j} H_{i j}-C_{i j} p\right)=\frac{1}{s_{n}}\{t(H, \boldsymbol{c})-\xi(H, \boldsymbol{c})\} \xrightarrow{d} \mathrm{~N}(0,1) . \tag{35}
\end{equation*}
$$

Finally, note that $T(H, \boldsymbol{c})=t(H, \boldsymbol{c}) /(K \hat{p})$ and $\gamma(H, \boldsymbol{c})=\xi(H, \boldsymbol{c}) /(K p)$. Since $\hat{p} \xrightarrow{P} p$, by Slutsky's theorem,

$$
\begin{equation*}
\frac{1}{s_{n}}\{T(H, \boldsymbol{c})-\gamma(H, \boldsymbol{c})\} \xrightarrow{d} \mathrm{~N}\left(0, K^{2} p^{2}\right) . \tag{36}
\end{equation*}
$$

The results for $\tilde{T}\left(\hat{A}^{*}, \boldsymbol{c}\right)$ are the same noting that:

$$
\mathrm{E}\left(\hat{A}_{i j}^{*}\right)=\mathrm{E}\left(\mathrm{E}\left(\hat{A}_{i j}^{*} \mid \hat{p}\right)\right)=\mathrm{E}(\hat{p})=p=\mathrm{E}\left(H_{i j}\right)
$$

so $\mathrm{E}\left(t\left(\hat{A}^{*}, \boldsymbol{c}\right)=\mathrm{E}(t(H, \boldsymbol{c}))\right.$; and

$$
\operatorname{Var}\left(\hat{A}_{i j}^{*}\right)=\operatorname{Var}\left(\mathrm{E}\left(\hat{A}_{i j}^{*} \mid \hat{p}\right)\right)+\mathrm{E}\left(\operatorname{Var}\left(\hat{A}_{i j}^{*} \mid \hat{p}\right)\right)=\operatorname{Var}(\hat{p})+\mathrm{E}(\hat{p}(1-\hat{p}))=p(1-p)=\operatorname{Var}\left(H_{i j}\right)
$$

so $\operatorname{Var}\left(t\left(\hat{A}^{*}, \boldsymbol{c}\right)=\operatorname{Var}(t(H, \boldsymbol{c}))\right.$.

References

Levin, K. and Levina, E. (2019). Bootstrapping networks with latent space structure. arXiv preprint arXiv:1907.10821.

