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Technical Proofs

Upper bound on E2D2 parameter

We want to show that {p̄in(c)−p̄out(c)}/(Kp̄) ≤ 1. Notice that for any c, p̄ = rp̄in+(1−r)p̄out
for r = min/

(
n
2

)
where 0 ≤ r ≤ 1 and r = r(K) depends on K, the number of communities.

Thus, we equivalently want to maximize

f(x, y, r) =
x− y

rx+ (1− r)y
(1)

where 0 ≤ r, x, y ≤ 1. First, let’s consider a fixed r. Then f(x, y, r) will clearly be maximized
when y = 0 which yields

f(x, 0, r) =
1

r
. (2)

Thus, f(x, y, r) is maximized when r is minimized, or, equivalently, when min is minimized
for a fixed K.

Let mk be the number of nodes in community k ∈ {1, . . . , K} where m1 + · · ·+mK = n.
Then we want to minimize min = 1

2

∑K
j=1 mj(mj − 1) subject to

∑K
j=1mj = n. We can use

Lagrange multipliers:

L(m1, . . . ,mK , λ) =
1

2

K∑
j=1

mj(mj − 1)− λ

(
K∑
j=1

mj − n

)
(3)

Take the gradient:

∇L(mj, λ) =

(
m1 − 1

2
− λ, . . . ,mK − 1

2
− λ, n−

K∑
j=1

mj

)
(4)

Setting equal to 0 means that for all j, mj = λ+ 1
2
so

0 = n−
K∑
j=1

(λ+ 1
2
) =⇒ λ =

n

K
− 1

2
. (5)

Thus, min is minimized at m1 = · · · = mk =
n
K

so

min ≥ 1

2

K∑
j=1

n
K
( n
K
− 1) =

n(n−K)

2K
. (6)

Thus,

f(x, y, r) ≤ 1

r
≤

(
n
2

)
n(n−K)/2K

= K
n− 1

n−K
. (7)

For large n, (n− 1)/(n−K) ≈ 1 so we have the desired result.
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Theorem 2.1

First, note that since we assume Kn is known, we can ignore it during the proof and simply
divide the final cutoff by Kn. Now, let γ0 = ξ0/p̄. Assume a rejection region of the form

R = {T∗(n) > c(n)} where c(n) = ξ0+k(n)
p̄(n)/(1+ϵ)

and

T∗(n) =
U∗(n)

S(n)
(8)

where U∗(n) = maxc{p̂in(c) − p̂out(c)} with the max taken over all possible community
assignments ci for i = 1, . . . , Nn,K ; S(n) = p̂(n) and

p̄(n) =
1(
n
2

)∑
i>j

Pij(n).

From this point, we suppress the dependence on n. Using DeMorgan’s Law, we can show
that

P (T∗ > c) ≤ P (U∗ > ξ0 + k) + P (S < p̄/(1 + ϵ)). (9)

where

p̄ =
1(
n
2

)∑
i<j

Pij. (10)

Under H0, we show that each term on the right-hand side goes to 0. Assume the null model
P0 and consider a fixed community assignment withKn communities, ci, for i ∈ {1, . . . , Nn,k}
where Nn,Kn ≤ Kn

n and let Ui = p̂in(ci)− p̂out(ci). Then

Ui =
∑
j<k

Xjk (11)

where Xjk = m−1
in,i if (ci)j = (ci)k and −m−1

out,i otherwise. From the proof of the upper bound
on the E2D2 parameter, we have that min,i = O(n2) and mout,i = O(n2). Thus, letting
k′
i = E(Ui) + k and using Hoeffding’s inequality,

η

Nn,K

= P (Ui ≥ k′
i) (12)

= P (Ui ≥ E(Ui) + k) (13)

≤ exp

(
−2k2(

n
2

)
( 1
min

+ 1
mout

)2

)
(14)

≤ exp
(
−n2k2

)
(15)

=⇒ k ≤
(
logNn,K − log η

n2

)1/2

∼
(
logKn

n

)1/2

(16)
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Now, under the null hypothesis, E(Ui) ≤ ξ0. Then we have

P{U∗ > ξ0 + k} = P

Nn,K⋃
i=1

{Ui > ξ0 + k}


≤ P

Nn,K⋃
i=1

{Ui > k′
i}

 ≤
Nn,K∑
i=1

P{Ui > k′
i} ≤

Nn,K∑
i=1

η

Nn,K

≤ η. (17)

We also have

P (S < p̄/(1 + ϵ)) = P (S < p̄− ϵ
1+ϵ

p̄) ≤ e−ϵ2p̄2n(n−1)/(1+ϵ)2 → 0 (18)

since n1/2p̄ → ∞. Combining these two results we have that

P (T∗ > c) ≤ P (U∗ > ξ0 + k) + P (S < p̄/(1 + ϵ)) ≤ η (19)

as we hoped to show.

UnderH1, let γ1 = ξ1/p̄ and let Toracle = T (cγ, A) = Uoracle/S where cγ = argmaxc{γ(c, P )},
i.e., cγ is the community assignment which maximizes the E2D2 parameter. This is reason-
able because we assume that the algorithm finds the global maximum T̃ (A) so Toracle ≤ T̃ (A).
We will use a similar approach to the proof of H0 noting that

{Uoracle > (ξ0 + k)1+ϵ
1−ϵ

} ∩ {S ≤ p̄
1−ϵ

} ⊆ {Toracle > c} (20)

so

P (Toracle > c) ≥ P{Uoracle > (ξ0 + k)1+ϵ
1−ϵ

} ∩ {S ≤ p̄
1−ϵ

}) (21)

≥ P{Uoracle > (ξ0 + k)1+ϵ
1−ϵ

}+ P{S ≤ p̄
1−ϵ

} − 1. (22)

Thus, we want to show that the first two terms on the right-side go to 1. For the first term,
we note that Uoracle is the sum of O(n2) independent random variables, each of which takes
values between [−m−1

out,m
−1
in ]. Moreover, E(Uoracle) = ξ1 > ξ0. Let 1ϵ := (1 + ϵ)/(1 − ϵ).

Then,

P{Uoracle ≤ (ξ0 + k)1ϵ} = P{Uoracle ≤ ξ11ϵ − (ξ1 − ξ0 − k)1ϵ} (23)

= P{Uoracle ≤ ξ1 − (ξ1 − ξ0 − 2ϵ
1+ϵ

ξ1 − k)︸ ︷︷ ︸
z

}. (24)

Now, z > 0 since ξ1− ξ0 > 0 and we can choose ϵ small enough such that ξ1− ξ0− 2ϵ
1+ϵ

ξ1 > 0.

Additionally, k → 0 by A3 so there exists an N such that for all n ≥ N , ξ1 − ξ0 − 2ϵ
1+ϵ

ξ1 > k.
Thus, we can use Hoeffding’s inequality to show

P{Uoracle ≤ (ξ0 + k)1ϵ} = P{Uoracle ≤ ξ1 − z} (25)

≤ exp

(
− 2z2∑n2

i=1
1
n4

)
(26)

= exp
(
−2n2z2

)
(27)

→ 0, (28)
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or equivalently,
P{Uoracle > (ξ0 + k)1ϵ} → 1. (29)

Next, consider S. First, notice that

p̄

1− ε
= p̄+

ε

1− ε
p̄ (30)

Then, by Hoeffding’s inequality, we can show

P (S ≥ p̄/(1− ε)) = P (S ≥ p̄+ ε
1+ε

p̄) (31)

≤ e−ε2(p̄)2/(1+ε)2n(n−1) (32)

→ 0 (33)

since n1/2p̄ → ∞. Then

lim
n→∞

P (T̃ (A) > C) ≥ lim
n→∞

P (Toracle > C) ≥ 1 + 1− 1 ≥ 1.□ (34)

Proposition in Section 2.4

Claim: γ̃(P ) = 0 if and only if P is from an ER model.
Proof. The only if direction of the claim is immediate. To prove the forward direction,

we first show that γ(c, P ) ≤ 0 for all c implies that γ(c, P ) = 0 for all c. Then we show
that if γ(c, P ) = 0 for all c, then P is from an ER model which is equivalent to showing
γ̃(P ) = 0.

For the first part, this is equivalent to showing that if γ(c, P ) < 0 for some c, then there
exists some c′ such that γ(c′, P ) > 0. If there exists some c such that γ(c, P ) < 0, then

1∑K
k=1

(
nk

2

) K∑
i<j

δci,cjPij <
1∑

k>l nknl

∑
i<j

(1− δci,cj)Pij.

But this means that there is some Pij such that Pij ≥ Pkl for all i ̸= k or j ̸= l and
is strictly greater for at least one Pkl. Thus, if we consider the community assignment
c′ where nodes i and j are in one community and all other nodes are in the other, then
p̄in(c

′) > p̄out(c
′) and thus γ(c′, P ) > 0.

We will prove the second part by induction. Let n = 3 and we are given that γ(c, P ) = 0
for all c. We start by writing out the probability matrix.

P =

− P12 P13

− P23

−

 .

There are three possible community assignments: c1 = {1, 1, 2}, c2 = {1, 2, 1} and c3 =
{2, 1, 1}. From each of these assignments, we have a corresponding statement relating the
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probabilities:

p̄in = P12 = p̄out =
1

2
(P13 + P23)

p̄in = P13 = p̄out =
1

2
(P12 + P23)

p̄in = P23 = p̄out =
1

2
(P12 + P13).

Plugging the first equation into the second equation we find:

P13 =
1

2
(1
2
(P13 + P23) + P23) =⇒ P13 = P23.

Plugging this into the first equation we have P12 = P13 = P23 := p which means that this
must be an ER model.

Now assume that the claim holds for n − 1 and show it holds for n. For convenience,
assume n is even but the proof can easily be extended if n is odd. Consider a network with
n nodes such that γ(c, P ) = 0. Remove an arbitrary node such that we have a network
with n − 1 nodes and apply the induction hypothesis, i.e. Pij = p for all i, j. We now add
the removed node back to the network such that the node has probability Pi,n of an edge
between itself and node i for i = 1, . . . , n− 1. Thus, the probability matrix is:

P =


− p p · · · p P1n

− p · · · p P2n

. . .
...

Pn−1,n

. . . −

 .

Since γ(c, P ) = 0 for all c, then we want to show that Pi,n = p for i = 1, . . . , n. As-
sume for contradiction that P is not ER and we will show that γ(c, P ) ̸= 0 for some c.
Without loss of generality, let {P1n, . . . , Pn/2,n} be the smaller values of the last column and
{Pn/2+1,n, . . . , Pn−1,n} be the larger values and consider the community assignment where
nodes {1, . . . , n/2} are in one community and nodes {n/2 + 1, . . . , n} are in the other com-
munity. Then

p̄in =
1

2
(
n/2
2

)
p · (n

2
− 1)2 +

n−1∑
i=n/2+1

Pi,n

 > p̄out =
1

n2/4

p · (n2

4
− n

2
) +

n/2∑
i=1

Pi,n


since

n−1∑
i=n/2+1

Pi,n >

n/2∑
i=1

Pi,n.

Thus γ(c, P ) ̸= 0 for this particular choice of c and we have completed the proof. □

5



Lemma 3.1

We follow closely the ideas of the proof of Theorem 5 in Levin and Levina (2019). Assume
that p ∼ F (·) and A,H|p ∼ ER(p), Â∗|p̂ ∼ ER(p̂) where p̂ =

∑
i,j Aij/{n(n− 1)}. We will

use the well-known property of Bernoulli random variables that if X ∼ Bernoulli(p1) and
Y ∼ Bernoulli(p2), then d1(X, Y ) ≤ |p1 − p2|. Thus,

P (Â∗
ij ̸= Hij|p, p̂) ≤ |p̂− p|.

Let ν be the coupling such that A and H are independent. Then

W p
p (Â

∗, H) ≤
∫

dpGM(Â∗, H)dν(Â∗, H).

Using Jensen’s inequality,

dpGM(Â∗, H) ≤

(
1

2

(
n

2

)−1

||Â∗ −H||1

)p

≤
(
n

2

)−1∑
i<j

|Â∗
ij −Hij|p =

(
n

2

)−1∑
i<j

|Â∗
ij −Hij|.

Thus, ∫
dpGM(Â∗, H)dν(Â∗, H) ≤

(
n

2

)−1∑
i<j

∫
|Â∗

ij −Hij|dν

=

(
n

2

)−1∑
i<j

ν({Â∗
ij ̸= Hij})

≤
(
n

2

)−1∑
i<j

|p̂− p|

= |p̂− p|
= O(n−1). □

Lemma 3.2

It’s easy to see that the CL model falls into the Random Dot Product Graph framework
where θ = (θ1, . . . , θn) correspond to the latent positions and the dimension d = 1. Then by
Theorem 5 of Levin and Levina (2019), we have that

W p
p (Â

∗, H) = O((n−1/2 + n−1/1) log n) = O(n−1/2 log n)

since θ̂ is estimated using the ASE.

Lemma 3.3

Let t(H, c) =
∑

i<j CijHij where Cij = m−1
in if ci = cj and m−1

out otherwise and Hij ∼
Bernoulli(p). Define E{t(H, c)} = ξ(H, c) and

s2n =
∑
i<j

Var(CijHij) = p(1− p)
∑
i<j

C2
ij.
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We want to invoke Lyapunov’s CLT so we must check the follow condition: for some δ > 0,

lim
n→∞

1

s2+δ
n

n∑
i=1

E(|Xi − E(Xi)|2+δ) → 0.

Let δ = 1 and recall that Cij = O(n−2). Then, ignoring constants,

1

s3n

∑
i<j

E(|CijHij − Cijp|3) =
1

s3n

∑
i<j

C3
ijE(|Hij − p|3)

=
1

s3n

∑
i<j

C3
ij

= O(n3)
∑
i<j

O(n−6)

= O(n−1) ✓.

Thus, by Lyapunov’s CLT,

1

sn

∑
i<j

(CijHij − Cijp) =
1

sn
{t(H, c)− ξ(H, c)} d→ N(0, 1). (35)

Finally, note that T (H, c) = t(H, c)/(Kp̂) and γ(H, c) = ξ(H, c)/(Kp). Since p̂
P→ p, by

Slutsky’s theorem,
1

sn
{T (H, c)− γ(H, c)} d→ N(0, K2p2). (36)

The results for T̃ (Â∗, c) are the same noting that:

E(Â∗
ij) = E(E(Â∗

ij|p̂)) = E(p̂) = p = E(Hij)

so E(t(Â∗, c) = E(t(H, c)); and

Var(Â∗
ij) = Var(E(Â∗

ij|p̂)) + E(Var(Â∗
ij|p̂)) = Var(p̂) + E(p̂(1− p̂)) = p(1− p) = Var(Hij)

so Var(t(Â∗, c) = Var(t(H, c)). □
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