# Does the growth of religious minorities transform electoral politics?

Evidence from the evangelical boom in Brazil

Appendix

Victor Araújo\*

<sup>\*</sup>Lecturer in Comparative Politics, Department of Politics & IR, University of Reading, UK. Email: v.araujosilva@reading.ac.uk.

## Contents

| A | Distribution of evangelical candidates across political parties                                  | 3  |
|---|--------------------------------------------------------------------------------------------------|----|
| B | Testing for manipulation around the cutoff                                                       | 6  |
| C | Testing for the balance of pretreatment municipal-level covariates                               | 8  |
| D | Descriptive statistics                                                                           | 9  |
| E | Measurement validity check: the estimated share of Christian evangelicals us-<br>ing census data | 10 |
| F | Fixed effects models using the estimated share of Christian evangelicals                         | 11 |
| G | Fixed effects models testing for heterogeneous effects by time                                   | 12 |
| Н | Using the Worker's Party (PT) share of votes as an alternative measure of con-<br>servatism      | 13 |
| I | First-stage and reduced form placebo estimates                                                   | 14 |
| J | The impact of the LPT and the expansion of the Evangelical Christianity                          | 15 |
| K | First-stage and reduced form estimates using the estimated share of Christian evangelicals       | 16 |
| L | Testing for the rise of other religious groups around the LPT cutoff                             | 17 |

#### A Distribution of evangelical candidates across political parties

Table 1 reports the absolute and relative number of evangelical candidates competing for a position at the local council (Câmara dos Vereadores) from 2000 to 2024. The data is disaggregated by political parties. The column *Established* informs the year of creation of any party. As described, evangelical candidates are distributed across various parties and tend to run for office with mainstream, well-established political parties, e.g., MDB, PDT, PP, PTB, and PSD.

| Party     | Other Candidates |                        |               |           | Extinguished |                      |
|-----------|------------------|------------------------|---------------|-----------|--------------|----------------------|
| AGIR      | 7030             | 97                     | 7127          | 2020      | -            | former PTdoB         |
| %         | 0.24             | 0.5                    | 0.24          | -         | -            | -                    |
| AVANTE    | 29704            | 344                    | 30048         | 2017      | -            | former PTdoB         |
| %         | 1.01             | 1.78                   | 1.02          | -         | -            | -                    |
| CIDADANIA | 21106            | 154                    | 21260         | 2019      | -            | former PPS           |
| %         | 0.72             | 0.8                    | 0.72          | -         | -            | -                    |
| DC        | 11278            | 185                    | 11463         | 2018      | -            | former PSDC          |
| %         | 0.38             | 0.96                   | 0.39          | -         | -            | -                    |
| DEM       | 98695            | 601                    | 99296         | 2007      | 2021         | current União Brasil |
| %         | 3.37             | 3.11                   | 3.36          | -         | -            | -                    |
| MDB       | 81873            | 496                    | 82369         | 2017      | -            | former PMDB          |
| %         | 2.79             | 2.57                   | 2.79          | -         | -            | -                    |
| Podemos   | 6232             | 67                     | 6299          | 2017      | -            | former PTN           |
| %         | 0.21             | 0.35                   | 0.21          | -         | -            | -                    |
| NOVO      | 7701             | 68                     | 7769          | 2011      | -            | -                    |
| %         | 0.26             | 0.35                   | 0.26          | -         | -            | -                    |
| PAN       | 4606             | 33                     | 4639          | 1996      | 2006         | current PTB          |
| %         | 0.16             | 0.17                   | 0.16          | _         | -            | -                    |
| PATRIOTA  | 22994            | 280                    | 23274         | 2017      | -            | former PEN           |
| %         | 0.78             | 1.45                   | 0.79          | -         | -            | -                    |
| PC do B   | 51868            | 178                    | 52046         | 1985      | -            | -                    |
| %         | 1.77             | 0.92                   | 1.76          | -         | -            | -                    |
| PCO       | 697              | 4                      | 701           | 1995      | -            | -                    |
| %         | 0.02             | 0.02                   | 0.02          | -         | -            | -                    |
| PDT       | 168528           | 886                    | 169414        |           | -            | -                    |
| %         | 5.75             | 4.59                   | 5.74          | -         | -            | -                    |
| PFL       | 75454            | 239                    | 75693         | 1985      | 2007         | current União Brasil |
| %         | 2.57             | 1.24                   | 2.56          | -         | -            | -                    |
| PGT       | 1507             | 9                      | 1516          | 1987      | 2002         | current PDT          |
| %         | 0.05             | 0.05                   | 0.05          | -         | -            |                      |
| PHS       | 34207            | 0.05<br>271            | 0.05<br>34478 | 1995      | 2019         | current Solidariedad |
| %         | 1.17             | 1.4                    | 1.17          | -         | -            | current Sondarieuau  |
| PL        | 104277           | 1. <del>4</del><br>963 | 1.17 105240   | - 1985    | -            | -<br>former PR       |
| %         | 3.56             | 903<br>4.99            | 3.56          | -         | -            | IOIIIIei I K         |
| PMB       | 5.56<br>11015    | 4.99<br>134            |               |           | -            | -                    |
|           |                  |                        | 11149         | 2015      | -            | -                    |
| %<br>PMDB | 0.38             | 0.69                   | 0.38          | -         | -            |                      |
|           | 211884           | 711                    | 212595<br>7.2 | 1980<br>- | 2017         | current MDB          |
|           | 7.22             | 3.69                   | 7.2<br>37790  |           | -            | -                    |
| PMN       | 37481            | 309                    |               | 1984      | -            | -                    |
| %<br>DODE | 1.28             | 1.6                    | 1.28          | -         | -            |                      |
| PODE      | 41566            | 476                    | 42042         | 2017      | -            | former PTN           |
| %<br>DD   | 1.42             | 2.47                   | 1.42          | -         | -            | -<br>(               |
| PP        | 179619           | 1040                   | 180659        | 2003      | -            | former PDS           |
| %         | 6.12             | 5.39                   | 6.12          | -         | -            | -                    |
| PPB       | 33600            | 71                     | 33671         | 1995      | 2003         | current PP           |
| %         | 1.15             | 0.37                   | 1.14          | -         | -            | -                    |
| PPL       | 5650             | 46                     | 5696          | 2011      | 2020         | current PCdoB        |
| %         | 0.19             | 0.24                   | 0.19          | -         | -            | -                    |
| PPS       | 91080            | 437                    | 91517         | 1992      | 2019         | current Cidadania    |
| %         | 3.11             | 2.26                   | 3.1           | -         | -            | -                    |
| PR        | 62833            | 387                    | 63220         | 2006      | 2019         | current PL           |
| %         | 2.14             | 2.01                   | 2.14          | -         | -            | -                    |
| PRB       | 39293            | 620                    | 39913         | 2005      | 2019         | current PL           |
| %         | 1.34             | 3.21                   | 1.35          | -         | -            | -                    |
| PRD       | 16127            | 206                    | 16333         | 1995      | 2006         | -                    |
| %         | 0.55             | 1.07                   | 0.55          | -         | -            | -                    |
| PRN       | 1170             | 3                      | 1173          | 1989      | 1993         | -                    |
| %         | 0.04             | 0.02                   | 0.04          | -         | -            | -                    |

Table 1: Distribution of evangelical candidates competing in local council elections across political parties (2000-2024)

Note: Elaborated by the author with data from the Brazilian Electoral Court (TSE).

| Party         | Other Candidates | Pastores    | Total          | Established | Extinguished   | Note                 |
|---------------|------------------|-------------|----------------|-------------|----------------|----------------------|
| PRONA         | 4064             | 25          | 4089           | 1993        | 2006           | current PL           |
| %             | 0.14             | 0.13        | 0.14           | -           | -              | -                    |
| PROS          | 21501            | 190         | 21691          | 2010        | -              | -                    |
| %             | 0.73             | 0.98        | 0.73           | -           | -              | -                    |
| PRP           | 32869            | 209         | 33078          | 1995        | 2019           | -                    |
| %             | 1.12             | 1.08        | 1.12           | -           | -              | -                    |
| PRTB          | 35439            | 312         | 35751          | 1994        | -              | -                    |
| %             | 1.21             | 1.62        | 1.21           | -           | -              | -                    |
| PSB           | 152396           | 854         | 153250         | 1985        | -              | -                    |
| %             | 5.2              | 4.43        | 5.19           | -           | -              | -                    |
| PSC           | 77263            | 1159        | 78422          | 1985        | -              | -                    |
| %             | 2.63             | 6.01        | 2.66           | -           | -              | -                    |
| PSD           | 132787           | 867         | 133654         | 2011        | _              | _                    |
| %             | 4.53             | 4.49        | 4.53           | -           | _              | _                    |
| PSDB          | 220665           | 1149        | 4.55<br>221814 | 1988        |                |                      |
| %             | 7.52             | 5.96        | 7.51           | -           | -              | -                    |
| PSDC          | 30150            | 286         | 30436          | -<br>1995   | 2018           | -                    |
| %             | 1.03             | 200<br>1.48 | 30436<br>1.03  |             | 2016           | current DC           |
|               |                  |             |                | -           | -              |                      |
| PSL           | 59480            | 493         | 59973          | 1994        | 2021           | current União Brasil |
| %             | 2.03             | 2.56        | 2.03           | -           | -              | -                    |
| PSOL          | 19397            | 64          | 19461          | 2004        | -              | -                    |
| %             | 0.66             | 0.33        | 0.66           | -           | -              | -                    |
| PST           | 5031             | 35          | 5066           | 1994        | -              | -                    |
| %             | 0.17             | 0.18        | 0.17           | -           | -              | -                    |
| PSTU          | 1653             | 3           | 1656           | 1994        | -              | -                    |
| %             | 0.06             | 0.02        | 0.06           | -           | -              | -                    |
| PT            | 213132           | 592         | 213724         | 1980        | -              | -                    |
| %             | 7.27             | 3.07        | 7.24           | -           | -              | -                    |
| PT do B       | 27768            | 198         | 27966          | 2006        | 2020           | current 2020         |
| %             | 0.95             | 1.03        | 0.95           | -           | -              | -                    |
| PTB           | 146845           | 965         | 147810         | 1981        | -              | -                    |
| %             | 5.01             | 5           | 5.01           | -           | -              | -                    |
| PTC           | 32737            | 356         | 33093          | 1990        | -              | -                    |
| %             | 1.12             | 1.85        | 1.12           | -           | -              | -                    |
| PTN           | 28148            | 243         | 28391          | 1989        | 2017           | current Podemos      |
| %             | 0.96             | 1.26        | 0.96           | -           | -              | -                    |
| PV            | 81507            | 423         | 81930          | 1986        | -              | -                    |
| %             | 2.78             | 2.19        | 2.78           | -           | -              | -                    |
| REDE          | 12234            | 95          | 12329          | 2015        | -              | -                    |
| %             | 0.42             | 0.49        | 0.42           | -           | _              | _                    |
| REPUBLICANOS  | 58253            | 802         | 59055          | 2005        | _              | former PRB           |
| %             | 1.99             | 4.16        | 2              | -           |                | ionnei i Kb          |
| SD            | 14151            | 4.10<br>120 | 2<br>14271     | 2012        | _              | _                    |
| %             | 0.48             | 0.62        | 0.48           |             | -              | -                    |
|               | 0.48<br>30223    |             |                | -<br>2012   | -              | -                    |
| SOLIDARIEDADE |                  | 280<br>1.45 | 30503          | 2012        | -              | -                    |
| %             | 1.03             | 1.45        | 1.03           | -           |                | -                    |
| União Brasil  | 33808            | 253         | 34061          | 2021        | former DEM/PSL | -                    |
| %             | 1.15             | 1.31        | 1.15           | -           | -              | -                    |
| UP            | 165              | 0           | 165            | 2019        | -              | -                    |
| %<br>Total    | 0.01             | 0           | 0.01           | -           | -              | -                    |
|               | 2932844          | 19294       | 2952138        | _           | _              | _                    |

continued Table 12

Note: Elaborated by the author with data from the Brazilian Electoral Court (TSE).

#### **B** Testing for manipulation around the cutoff

Figure 1: Histogram of the running variable



Note: Compiled by the author with data from the Brazilian Institute of Geography and Statistics (IBGE). The unit of analysis is the municipality (N = 5,564). The running variable (margins) is the percentage of households with electricity in 2000 according to the Brazilian census.



Note: Compiled by the author with data from the Brazilian Institute of Geography and Statistics (IBGE). We use the automatic manipulation test based on density discontinuity developed by Cattaneo et al. (2018). The running variable (margins) is the percentage of households with electricity in 2000 according to the Brazilian census.

| Cutoff $c = 0$ (85) | Left of c    | Right of c |
|---------------------|--------------|------------|
|                     |              |            |
| Number of obs       | 1712         | 3852       |
| Eff. Number of obs  | 119          | 137        |
| Order est. (p)      | 2            | 2          |
| Order bias (q)      | 3            | 3          |
| BW est. (h)         | 1.680        | 1.674      |
|                     |              |            |
| Method              | Т            | P >  T     |
| Robust              | 1.4530       | 0.1462     |
|                     |              |            |
| Number of obs       | 5564         |            |
| BW method           | unrestricted |            |
| Model               | comb         |            |
| Kernel              | triangular   |            |
| VCE method          | jackknife    |            |

Table 2: RD Manipulation test using local polynomial density estimation

Note: Compiled by the author with data from the Brazilian Institute of Geography and Statistics (IBGE, 2000). I use the automatic manipulation test based on density discontinuity developed by Cattaneo et al. (2018). The running variable (margins) is the percentage of households with electricity in 2000 according to the Brazilian census.

| Variable                                                       | Coef. LATE | Std. Err.     | Obs. | N. Clusters | BW est (h)                            |
|----------------------------------------------------------------|------------|---------------|------|-------------|---------------------------------------|
| Socioeconomic variables                                        |            |               |      |             |                                       |
| Fertility rate                                                 | .002       | .019          | 797  | 25          | 80 > 85 < 90                          |
| Life expectancy                                                | 209        | .142          | 797  | 25          | $80 \ge 85 \le 90$<br>80 > 85 < 90    |
| Child mortality rate                                           | .903       | .837          | 797  | 25          | $80 \ge 85 \le 90$<br>80 > 85 < 90    |
| Human development index (HDI)                                  | 003        | .003          | 797  | 25          | $80 \ge 85 \le 90$<br>80 > 85 < 90    |
| Illiteracy rate                                                | .389       | .597          | 797  | 25          | $80 \ge 85 \le 90$ $80 \ge 85 \le 90$ |
| Income inequality (measured by Gini index)                     | .002       | .002          | 797  | 25          | $80 \ge 85 \le 90$<br>80 > 85 < 90    |
| Poverty rate                                                   | 1.49*      | .738          | 797  | 25          | $80 \ge 85 \le 90$<br>80 > 85 < 90    |
| Unemployment rate                                              | .072       | .286          | 797  | 25          | $80 \ge 85 \le 90$ $80 \ge 85 \le 90$ |
| % of occupations in the formal sector                          | 0205       | .638          | 797  | 25          | $80 \ge 85 \le 90$<br>80 > 85 < 90    |
| Economically active workforce                                  | -122.1     | .000<br>191.5 | 797  | 25          | $80 \ge 85 \le 90$ $80 \ge 85 \le 90$ |
| Income per capita                                              | -8.64*     | 4.97          | 797  | 25          | $80 \ge 85 \le 90$<br>80 > 85 < 90    |
| Level of urbanization                                          | 003        | .006          | 797  | 25          | $80 \ge 85 \le 90$<br>80 > 85 < 90    |
| Population size                                                | -294.7     | 442.6         | 797  | 25          | $80 \ge 85 \le 90$ $80 \ge 85 \le 90$ |
| Political variables                                            |            |               |      |             |                                       |
| Voter turnout (Local elections, 2000)                          | 270        | .412          | 782  | 25          | 80 > 85 < 90                          |
| Is the elected mayor a member of the PT (1996)                 | 005        | .008          | 797  | 25          | 80 > 85 < 90                          |
| Is the elected mayor a member of the PT (2000)                 | .000       | .005          | 797  | 25          | $80 \ge 85 \le 90$                    |
| Number of voted parties (Local council elections, 2000)        | .070       | .133          | 782  | 25          | 80 > 85 < 90                          |
| Number of voted parties (Mayoral elections, 2000)              | 052*       | .026          | 782  | 25          | 80 > 85 < 90                          |
| Number of voted parties in state parliament elections (2002)   | 013        | .156          | 795  | 25          | 80 > 85 < 90                          |
| Number of voted parties in federal parliament elections (2002) | .003       | .166          | 795  | 25          | $80 \ge 85 \le 90$                    |
| Number of elected council members (PFL, 2000)                  | .049       | .105          | 797  | 25          | 80 > 85 < 90                          |
| Number of elected council members (PMDB, 2000)                 | .047       | .086          | 797  | 25          | $80 \ge 85 \le 90$                    |
| Number of elected council members (PPB, 2000)                  | .067       | .100          | 797  | 25          | 80 > 85 < 90                          |
| Number of elected council members (PTB, 2000)                  | .039       | .079          | 797  | 25          | 80 > 85 < 90                          |
| Number of elected council members (PT, 2000)                   | 032        | .034          | 797  | 25          | $80 \ge 85 \le 90$                    |

Table 3: Formal continuity-based analysis for pretreatment covariates (2000)

Note: \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01. Compiled by the author using data from the Brazilian Institute of Geography and Statistics (IBGE, 2000), and Brazil's Electoral Court (Tribunal Superior Eleitoral, TSE). The unit of analysis is the municipality. I estimate the the Local Average Treatment Effect (LATE) using a linear model with clustered standard errors at the level of intervention (i.e., the municipality) (Abadie et al., 2023). My LATE estimates rely on observations of the running variable (% of households with electrification in 2000) around the 85% threshold.

| Variable                                                       | Obs   | Mean  | Std.Dev. | Min   | Max       |
|----------------------------------------------------------------|-------|-------|----------|-------|-----------|
| Voter turnout (Local elections, 2000)                          | 5,504 | 86.70 | 6.64     | 57.02 | 99.11     |
| Number of voted parties (Local council elections, 2000)        | 5,504 | 8.35  | 4.31     | 1     | 30        |
| Number of voted parties (Mayoral elections, 2000)              | 5,504 | 2.695 | 1.048    | 1     | 15        |
| Number of voted parties in state parliament elections (2002)   | 5,558 | 24.15 | 3.787    | 8     | 30        |
| Number of voted parties in federal parliament elections (2002) | 5,558 | 23.34 | 4.043    | 10    | 30        |
| Number of elected council members (PFL, 2000)                  | 5,564 | 1.725 | 1.610    | 0     | 10        |
| Number of elected council members (PMDB, 2000)                 | 5,564 | 2.022 | 1.652    | 0     | 11        |
| Number of elected council members (PPB, 2000)                  | 5,564 | 1.248 | 1.504    | 0     | 12        |
| Number of elected council members (PTB, 2000)                  | 5,564 | .8927 | 1.227    | 0     | 7         |
| Number of elected council members (PT, 2000)                   | 5,564 | .4417 | .9417    | 0     | 16        |
| Is the elected mayor a member of the PT (1996)                 | 5,564 | .0210 | .1434    | 0     | 1         |
| Is the elected mayor a member of the PT (2000)                 | 5,564 | .0334 | .1797    | 0     | 1         |
| Fertility rate                                                 | 5,564 | 2.870 | 0.736    | 1.560 | 7.790     |
| Life expectancy                                                | 5,564 | 68.41 | 3.963    | 57.46 | 77.24     |
| Child mortality rate                                           | 5,564 | 39.28 | 18.71    | 12.51 | 106.3     |
| Human development index (HDI)                                  | 5,564 | 0.523 | 0.104    | 0.208 | 0.820     |
| Illiteracy rate                                                | 5,564 | 23.56 | 13.51    | 1     | 63.01     |
| Income inequality (measured by Gini index)                     | 5,564 | 0.547 | 0.0687   | 0.300 | 0.870     |
| Poverty rate                                                   | 5,564 | 41.06 | 22.78    | 0.700 | 90.76     |
| Unemployment rate                                              | 5,564 | 11.02 | 6.223    | 0     | 59.17     |
| % of occupations in the formal sector                          | 5,564 | 36.03 | 18.12    | 1.920 | 86.38     |
| Economically active workforce                                  | 5,564 | 13725 | 91633    | 280   | 5.341e+06 |
| Income per capita                                              | 5,564 | 347.2 | 188.1    | 74.95 | 1760      |
| Level of urbanization                                          | 5,564 | 0.585 | 0.237    | 0     | 1         |
| Population size                                                | 5,564 | 30149 | 183702   | 795   | 1.040e+07 |
| % of households with electrification in 2000                   | 5,564 | 86.60 | 17.03    | 10.30 | 100       |
| Targeted municipalities                                        | 5,564 | 0.308 | 0.462    | 0     | 1         |

| Table 4: Descriptive statistics - | pretreatment munic | ipal-level data |
|-----------------------------------|--------------------|-----------------|
|                                   |                    |                 |

Note: The unit of analysis is the municipality. Compiled by the author with data from the Brazilian Institute of Geography and Statistics (IBGE, 2000 and 2010) Brazil's Electoral Court (Tribunal Superior Eleitoral, TSE).

| Variable                                   | Obs    | Mean  | Std.Dev. | Min   | Max      |
|--------------------------------------------|--------|-------|----------|-------|----------|
| Voter turnout                              | 71,006 | .825  | .079     | .001  | .994     |
| Electoral competition                      | 71,004 | .147  | .154     | 0     | .994     |
| Electoral conservatism                     | 71,012 | .189  | .182     | 653   | .848     |
| Electoral polarization                     | 71,012 | 5.54  | .9451    | 0     | 9.1      |
| Worker's Party (PT) share of votes         | 46,813 | 27.94 | 15.78    | .0237 | 98.76    |
| Human development index                    | 71,000 | .606  | .132     | .165  | .929     |
| Population size                            | 70,398 | 33076 | 196647   | 652   | 1.22e+07 |
| Number of evangelical churches             | 62,194 | 10.26 | 80.85    | 0     | 6912     |
| Number of evangelical churches per 100,000 | 61,796 | 24.03 | 25.28    | 0     | 296.4    |

#### Table 5: Descriptive statistics - municipal-level panel data (1994-2018)

Note: The unit of analysis is the municipality. Compiled by the author with data from the Brazil's Electoral Court (Tribunal Superior Eleitoral, TSE), Power and Rodrigues-Silveira (2019), and Araújo (2023).

# **E** Measurement validity check: the estimated share of Christian evangelicals using

#### census data

Figure 3: Correlation between the estimated shared of Christian evangelicals and the number of evangelical churches per 100,000 inhabitants (2000-2018)



Note: Compiled by the author. The share of evangelical churches per 100,000 inhabitants was originally calculated by Araújo (2023).

|                      |                 | Turnout         |                  | (                | Competition      | n                 | (                    | Conservatis          | m                   | Polarization     |                   |                  |  |
|----------------------|-----------------|-----------------|------------------|------------------|------------------|-------------------|----------------------|----------------------|---------------------|------------------|-------------------|------------------|--|
|                      | All             | National        | Local            | All              | National         | Local             | All                  | National             | Local               | All              | National          | Local            |  |
| Churches per 100,000 | 0001<br>(.0002) | 0000<br>(.0002) | .0001<br>(.0002) | .0003<br>(.0002) | .0004<br>(.0001) | .0002*<br>(.0007) | .0039***<br>( .0009) | .0049***<br>( .0006) | .0022***<br>(.0017) | .0014<br>(.0026) | .0059**<br>(.076) | 0049**<br>(.086) |  |
| Obs.                 | 54,389          | 27,422          | 26,967           | 54,386           | 27,422           | 26,964            | 54,391               | 27,422               | 26,969              | 54,391           | 27,422            | 26,969           |  |
| N. clusters          | 27              | 27              | 27               | 27               | 27               | 27                | 27                   | 27                   | 27                  | 27               | 27                | 27               |  |
| $\mathbb{R}^2$       | 0.059           | 0.015           | 0.214            | 0.027            | 0.060            | 0.052             | 0.000                | 0.000                | 0.009               | 0.000            | 0.009             | 0.000            |  |

Table 6: Correlation between the share of Christian evangelicals and a set of electoral outcomes (2000-2018)

Note: \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01. The unit of analysis is the municipality. Table 11 reports Ordinary least-squares (OLS) models with unit and election-year fixed effects and the following controls: human development index, log of the population size, and log of the electorate size. The main explanatory variable is the estimated share of Christian evangelicals. Standard errors are clustered at the state level.

Table 7: Heterogeneous effects by time: Correlation between the share of Christian evangelicals and a set of electoral outcomes (1994-2018)

|                      |         | Turnout | ;       | C       | ompetiti | on      | С       | onservati | ism      | Polarization |         |         |
|----------------------|---------|---------|---------|---------|----------|---------|---------|-----------|----------|--------------|---------|---------|
|                      | 94-00   | 02-10   | 12-18   | 94-00   | 02-10    | 12-18   | 94-00   | 02-10     | 12-18    | 94-00        | 02-10   | 12-18   |
| Churches per 100,000 | .0001   | 0002**  | 0005*** | .0001   | .0003    | 0001    | 0003    | .0004     | .0010*** | .0022        | .0001   | 0010    |
|                      | (.0001) | (.0001) | (.0000) | (.0003) | (.0002)  | (.0001) | (.0003) | (.0003)   | (.0003)  | (.0020)      | (.0022) | (.0011) |
| Obs.                 | 18,140  | 24,207  | 19,432  | 18,140  | 24,206   | 19,432  | 18,143  | 24,209    | 19,432   | 18,143       | 24,209  | 19,432  |
| N. clusters          | 26      | 26      | 26      | 26      | 26       | 26      | 26      | 26        | 26       | 26           | 26      | 26      |
| $\mathbb{R}^2$       | 0.096   | 0.061   | 0.047   | 0.064   | 0.021    | 0.002   | 0.046   | 0.001     | 0.009    | 0.005        | 0.010   | 0.002   |

Note: \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01. The unit of analysis is the municipality. Table 11 reports Ordinary least-squares (OLS) models with unit and election-year fixed effects and the following controls: human development index, log of the population size, and log of the electorate size. The main explanatory variable is the number of evangelical churches per 100,000 inhabitants (Churches per 100,000). Standard errors are clustered at the state level.

# H Using the Worker's Party (PT) share of votes as an alternative measure of conservatism

Models 13–15 in Table 8 show the correlation between the number of evangelical churches per 100,000 inhabitants and the PT's share of votes in national (i.e., presidential) and local elections. The PT's share of votes tends to decrease as the number of evangelical churches increases. These findings align with the results reported in Models 7–9, which demonstrate that the number of evangelical churches per 100,000 has a positive impact on the conservatism index.

Table 8: Correlation between the number of evangelical churches per 100,000 inhabitants and a set of electoral outcomes (1994-2018)

|                     |                    | Turnout           |                    | (                   | Competition      |                   |                     | Conservatism        |                     |                  | Polarizatio     | า               | PT's vote share  |                  |                  |
|---------------------|--------------------|-------------------|--------------------|---------------------|------------------|-------------------|---------------------|---------------------|---------------------|------------------|-----------------|-----------------|------------------|------------------|------------------|
|                     | All                | National          | Local              | All                 | National         | Local             | All                 | National            | Local               | All              | National        | Local           | All              | National         | Local            |
|                     | 0007***<br>(.0001) | 0005***<br>(.001) | 0006***<br>(.0001) | .0003***<br>(.0002) | .0001<br>(.0000) | .0001<br>( .0000) | .0018***<br>(.0003) | .0021***<br>(.0003) | .0015***<br>(.0003) | .0000<br>(.0010) | 0010<br>(.0014) | 0015<br>(.0011) | 252***<br>(.017) | 287***<br>(.019) | 1156**<br>(.034) |
| Obs.<br>N. clusters | 61,779<br>26       | 33,560<br>26      | 28,219<br>26       | 61,778<br>26        | 33,560<br>26     | 28,218<br>26      | 61,784<br>26        | 33,560<br>26        | 28,224<br>26        | 61,784<br>26     | 33,560<br>26    | 28,224<br>26    | 41,362<br>26     | 33,543<br>26     | 7,819<br>26      |
| $\mathbb{R}^2$      | 0.0569             | 0.020             | 0.203              | 0.058               | 0.086            | 0.005             | 0.001               | 0.001               | 0.026               | 0.012            | 0.032           | 0.003           | 0.102            | 0.123            | 0.089            |

Note: \* *p* < 0.1, \*\* *p* < 0.05, \*\*\* *p* < 0.01.

The unit of analysis is the municipality. Table 11 reports Ordinary least-squares (OLS) models with district and election-year fixed effects and the following controls: human development index, log of the population size, and log of the electorate size. The main explanatory variable is the number of evangelical churches per 100,000 inhabitants (Churches per 100,000). Standard errors are clustered at the state level. The independent variables are voter turnout (turnout), electoral competition (competition), electoral conservatism (conservatism), electoral polarisation (polarization), and the share of votes for the Worker's Party (PT's vote share).

Models 13–15 in Table 9 estimate the impact of evangelical churches on the PT's share of votes in areas targeted by the LPT. The estimated reduced-form coefficients are negative across all models, although they are not statistically significant at conventional levels.

Table 9: The impact of evangelical churches on electoral politics (2004-2018)

|                      |          | Turnout  |         |         | Competitio | n        | С        | onservatisn | n       | F        | Polarization |         | PT      | ſ's vote sha | are     |
|----------------------|----------|----------|---------|---------|------------|----------|----------|-------------|---------|----------|--------------|---------|---------|--------------|---------|
|                      | All      | National | Local   | All     | National   | Local    | All      | National    | Local   | All      | National     | Local   | All     | National     | Local   |
| (A) First-stage      | -2.49*** | -2.73**  | -2.93** | -2.47** | -2.73**    | -2.91*** | -2.50*** | -2.69*      | -2.70** | -2.41*** | -2.75**      | -2.92** | -2.78** | -2.41*       | -1.75   |
|                      | (.949)   | (1.41)   | (1.22)  | (.955)  | (1.41)     | (1.23)   | (.944)   | (1.42)      | ( 1.26) | (.969)   | (1.40)       | (1.21)  | (1.20)  | (1.43)       | (1.77 ) |
| (B) Reduced form     | 007**    | 004      | 007**   | .002    | 003        | .007     | 010*     | 015         | 003     | .004     | .002         | .0341   | .780    | .881         | .723    |
| LATE                 | (.003)   | (.002)   | (.003)  | (.003)  | (.004)     | (.003)   | (.005)   | (.010)      | (.005)  | (.022)   | (.024)       | (.025)  | (.543)  | (.666)       | (1.24)  |
| Eff. N. (Left of c)  | 1583     | 892      | 895     | 1560    | 892        | 883      | 1592     | 884         | 884     | 1489     | 900          | 892     | 1096    | 872          | 555     |
| Eff. N. (Right of c) | 2136     | 1210     | 1241    | 2127    | 1210       | 1204     | 2160     | 1202        | 1122    | 2048     | 1222         | 1233    | 1440    | 1168         | 892     |
| Order loc. poly. (p) | 1        | 1        | 1       | 1       | 1          | 1        | 1        | 1           | 1       | 1        | 1            | 1       | 1       | 1            | 1       |
| BW loc. poly. (h)    | 3.63     | 4.01     | 4.11    | 3.59    | 4.01       | 4.01     | 3.66     | 3.97        | 3.79    | 3.41     | 4.05         | 4.09    | 3.88    | 3.90         | 892     |

Note: \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

The unit of analysis is the municipality. Figure 13 reports FRD local linear estimates using an optimal bandwidth selection Calonico et al. (2020). I use the percentage of households with electricity in 2000 (i.e., the running variable) to predict the number of evangelical churches per 100,000 inhabitants in targeted municipalities (panel A). This as-if random treatment assignment estimates the LATE in reduced form estimates (panel B). My outcome variables in reduced form estimates are voter turnout (turnout), electoral competition (competition), electoral conservatism (conservatism), electoral polarisation (polarization), and the share of votes for the Worker's Party (PT's vote share).

#### Ι First-stage and reduced form placebo estimates

Table 10: The impact of evangelical churches on electoral politics - Placebo estimates using pre-intervention (LPT) data (1994-2003)

|                      | Turnout |          |        |        | Competition |         |        | Conservatism |         |         | Polarization |         |  |
|----------------------|---------|----------|--------|--------|-------------|---------|--------|--------------|---------|---------|--------------|---------|--|
|                      | All     | National | Local  | All    | National    | Local   | All    | National     | Local   | All     | National     | Local   |  |
| (A) First-stage      | 826     | 822      | 580    | 781    | 952         | 408     | 860    | 924          | 411     | 753     | 871          | 477     |  |
|                      | (.669)  | (1.03)   | (1.25) | (.649) | (1.10)      | ( 1.18) | (.685) | (1.07)       | ( 1.19) | ( .644) | (1.05)       | ( 1.22) |  |
| (B) Reduced form     | 019     | 014      | 032    | .004   | 019         | .076    | .004   | .006         | .028    | .301    | .349         | .144    |  |
| LATE                 | (.018)  | (.022)   | (.073) | (.019) | (.029)      | (.224)  | (.016) | (.021)       | (.099)  | (.277)  | (.444)       | (.410)  |  |
| Eff. N. (Left of c)  | 1242    | 876      | 483    | 1332   | 771         | 573     | 1189   | 808          | 550     | 1347    | 844          | 517     |  |
| Eff. N. (Right of c) | 1722    | 1190     | 681    | 1821   | 1063        | 798     | 1646   | 1108         | 768     | 1847    | 1164         | 725     |  |
| Order loc. poly. (p) | 1       | 1        | 1      | 1      | $1\\4.84$   | 1       | 1      | 1            | 1       | 1       | 1            | 1       |  |
| BW loc. poly. (h)    | 4.85    | 5.39     | 4.98   | 5.13   |             | 5.66    | 4.64   | 5.03         | 5.55    | 5.20    | 5.24         | 5.28    |  |

Note: \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01. The unit of analysis is the municipality. Figure 13 presents FRD local linear estimates using the optimal bandwidth selection method proposed by Calonico et al. (2020). I use the percentage of households with electricity in 2000 (i.e., the running variable) to predict the number of evangelical churches per 100,000 inhabitants in targeted municipalities (Panel A). This as-if random treatment assignment estimates the LATE in reduced-form estimates (Panel B). My outcome variables in the reduced-form estimates are voter turnout (turnout), electoral competition (competition), electoral conservatism), and electoral polarization (polarization).

| Estimand       | FE                 | ITT               | SRD      |                    |                 |                  |                |                  |  |  |  |  |
|----------------|--------------------|-------------------|----------|--------------------|-----------------|------------------|----------------|------------------|--|--|--|--|
|                | 1                  | 2                 | 3        | 4                  | 5               | 6                | 7              | 8                |  |  |  |  |
| Estimate       | .0780***<br>(.032) | 1.914**<br>(.313) | 11.67*** | 2.643***<br>(.821) | .646<br>(.4486) | .0382<br>(.1198) | .100<br>(.071) | .131**<br>(.039) |  |  |  |  |
|                | (.002)             | (.010)            | (2.00)   | (.021)             | (.1100)         | (.11)0)          | (.071)         | (.007)           |  |  |  |  |
| Obs.           | 18,316             | 38,375            | 1,021    | 2,013              | 3,118           | 7,911            | 12,121         | 30,510           |  |  |  |  |
| $\mathbb{R}^2$ | 0.170              | 0.185             | -        | -                  | -               | -                | -              | -                |  |  |  |  |
| BW loc. (h)    | -                  | -                 | 1%       | 2%                 | 3%              | 7%               | 10%            | 15%              |  |  |  |  |

Table 11: The impact of the LPT on the estimated share of Christian evangelicals

J

Note: \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01. The unit of analysis is the municipality. The fixed effects (FE) model (1) employs unit and year-election fixed effects to regress the number of the LPT connections per capita against the estimated share of Christian evangelicals while controlling for human development, population size, and the electorate size. The Intention to treat (ITT) model (2) estimate the average difference in the between the share of Christian evangelicals in municipalities below the 85% cutoff (therefore, potentially targeted by the program) with those above this same threshold regardless of whether they actually participated in the program. Sharp regression discontinuity (SRD) models (3-8) estimate the local average treatment effect (LATE) by comparing municipalities just below (treated units) with those just above (non-treated units) the 85% LPT threshold. Table show my results using several bandwidths (1%, 2%, 3%, 7%, 10%, and 15%) selection, i.e., the window used to estimate the LATE. I use Ordinary Least Squares (OLS) models across all specifications reported in this table.

|                      | Turnout |          |         | Competition |          |        | Conservatism |          |         | Polarization |          |         |
|----------------------|---------|----------|---------|-------------|----------|--------|--------------|----------|---------|--------------|----------|---------|
|                      | All     | National | Local   | All         | National | Local  | All          | National | Local   | All          | National | Local   |
| (A) First-stage      | -1.08** | -1.03    | -1.22** | -1.10**     | -1.30*   | -1.07  | -1.59***     | -1.09    | -1.16** | -1.02*       | 999      | -1.23** |
|                      | (.513)  | (.868)   | (.544)  | (.506)      | (.692)   | (.665) | (.385)       | (.786)   | (.574)  | (.556)       | (.880)   | (.555)  |
| (B) Reduced form     | 014**   | 012      | 007**   | .005        | .000     | .011   | 006          | 033      | .005    | .007         | 021      | .030    |
| LATE                 | (.007)  | (.010)   | (.003)  | (.007)      | (.007)   | (.010) | (.004)       | (.027)   | (.008)  | (.048)       | (.068)   | (.043)  |
| Eff. N. (Left of c)  | 2262    | 1088     | 1686    | 2318        | 1615     | 1126   | 3803         | 1259     | 1436    | 1992         | 1060     | 1560    |
| Eff. N. (Right of c) | 2998    | 1423     | 2370    | 3126        | 2276     | 1499   | 5814         | 1719     | 2001    | 2560         | 1384     | 2196    |
| Order loc. poly. (p) | 1       | 1        | 1       | 1           | 1        | 1      | 1            | 1        | 1       | 1            | 1        | 1       |
| BW loc. poly. (h)    | 4.29    | 4.05     | 6.30    | 4.41        | 6.03     | 4.28   | 7.38         | 4.81     | 5.47    | 3.76         | 3.96     | 5.82    |

Table 12: The impact of evangelical churches on electoral politics (2004-2018)

Note: \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01. The unit of analysis is the municipality. Table 12 reports FRD local quadratic estimates using an optimal bandwidth selection Calonico et al. (2020). I use the percentage of households with electricity in 2000 (i.e., the running variable) to predict the estimated share of Christian evangelicals in targeted municipalities (panel A). This as-if random treatment assignment is used to estimate the LATE in reduced form estimates (panel B). My outcome variables in reduced form estimates are voter turnout (turnout), electoral competition (competition), electoral conservatism (conservatism), and electoral polarisation (polarization).

Table 13: The impact of LPT on the number of non-evangelical religious facilities (A) and the impact of non-evangelical religious facilities on electoral outcomes (B)

|                      | Turnout |          |        | Competition |          |        | Conservatism |          |                     | Polarization |          |        |
|----------------------|---------|----------|--------|-------------|----------|--------|--------------|----------|---------------------|--------------|----------|--------|
|                      | All     | National | Local  | All         | National | Local  | All          | National | Local               | All          | National | Local  |
| (A) First-stage      | 1.074** | .633     | .616   | 1.03*       | .293     | .932   | 1.40**       | 184      | .465                | 1.29**       | .579     | 1.20   |
|                      | (.548)  | (.795)   | (.725) | (.546)      | (.767)   | (.761) | (.591)       | (.715)   | (.697)              | (.565)       | (.791)   | (.785) |
| (B) Reduced form     | .0175*  | .024     | .031   | 011         | 023      | 016    | .0173*       | 223      | .017                | 004          | .026     | 054    |
| LATE                 | (.009)  | (.030)   | (.036) | (.009)      | (.070)   | (.015) | (.009)       | (.874)   | (.034)              | (.042)       | ( .123)  | (.067) |
| Eff. N. (Left of c)  | 1602    | 872      | 916    | 1617        | 940      | 825    | 1340         | 1144     | $1001 \\ 1414 \\ 1$ | 1484         | 880      | 760    |
| Eff. N. (Right of c) | 2129    | 1186     | 1266   | 2152        | 1312     | 1118   | 1825         | 1614     |                     | 2017         | 1210     | 1047   |
| Order loc. poly. (p) | 1       | 1        | 1      | 1           | 1        | 1      | 1            | 1        |                     | 1            | 1        | 1      |
| BW loc. poly. (h)    | 3.62    | 3.92     | 4.16   | 3.65        | 4.26     | 3.77   | 3.14         | 5.16     | 4.54                | 3.42         | 3.96     | 3.52   |

Note: \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01. The unit of analysis is the municipality. Figure 13 reports FRD local linear estimates using an optimal bandwidth selection Calonico et al. (2020). I use the percentage of households with electricity in 2000 (i.e., the running variable) to predict the number of non-evangelical religious facilities per 100,000 inhabitants in targeted municipalities (panel A). This as-if random treatment assignment is used to estimate the LATE in reduced form estimates (panel B). My outcome variables in reduced form estimates are voter turnout (turnout), electoral competition (competition), electoral conservatism), and electoral polarisation (polarization).

### References

- Abadie, A., Athey, S., Imbens, G. W., and Wooldridge, J. M. (2023). When should you adjust standard errors for clustering? *The Quarterly Journal of Economics*, 138(1):1–35.
- Araújo, V. (2023). Surgimento, trajetória e expansão das igrejas evangélicas no território brasileiro ao longo do último século (1920-2019). Technical report.
- Calonico, S., Cattaneo, M. D., and Farrell, M. H. (2020). Optimal bandwidth choice for robust biascorrected inference in regression discontinuity designs. *The Econometrics Journal*, 23(2):192–210.
- Cattaneo, M. D., Jansson, M., and Ma, X. (2018). Manipulation testing based on density discontinuity. *The Stata Journal*, 18(1):234–261.
- Power, T. J. and Rodrigues-Silveira, R. (2019). Mapping ideological preferences in brazilian elections, 1994-2018: a municipal-level study. *Brazilian Political Science Review*, 13:e0001.