
Supplementary Information for: Linking Datasets on
Organizations Using Half a Billion

Open-Collaborated Records ∗

Brian Libgober † Connor T. Jerzak‡

September 4, 2024

Abstract

Scholars studying organizations often work with multiple datasets lacking shared identifiers or
covariates. In such situations, researchers usually use approximate string (“fuzzy”) matching
methods to combine datasets. String matching, although useful, faces fundamental challenges.
Even where two strings appear similar to humans, fuzzy matching often struggles because it
fails to adapt to the informativeness of the character combinations. In response, a number
of machine learning methods have been developed to refine string matching. Yet, the effec-
tiveness of these methods is limited by the size and diversity of training data. This paper
introduces data from a prominent employment networking site (LinkedIn) as a massive train-
ing corpus to address these limitations. By leveraging information from the LinkedIn corpus
regarding organizational name-to-name links, we incorporate trillions of name pair examples
into various methods to enhance existing matching benchmarks and performance by explicitly
maximizing match probabilities. We also show how relationships between organization names
can be modeled using a network representation of the LinkedIn data. In illustrative merging
tasks involving lobbying firms, we document improvements when using the LinkedIn corpus in
matching calibration and make all data and methods open source.

Keywords: Record linkage; Interest groups; Text as data; Unstructured data

∗We thank Beniamino Green, Kosuke Imai, Gary King, Xiang Zhou, members of the Imai Research Workshop,
and two anonymous reviewers for valuable feedback. We would also like to thank Neil Arora, Danny Guo, Gil Tamir,
and Xiaolong Yang for excellent research assistance. We also thank Daniel Carpenter for making this project possible.

†Assistant Professor of Political Science and Law, Department of Political Science, Northwestern University.
Email: brian.libgober@northwestern.edu; URL: BrianLibgober.com; ORCID: 0000-0001-9638-0228.

‡Assistant Professor, Department of Government, The University of Texas at Austin. Email: con-
nor.jerzak@austin.utexas.edu; URL: ConnorJerzak.com; ORCID: 0000-0003-1914-8905.

mailto:jbrian.libgober@northwestern.edu
https://brianlibgober.com/
mailto:connor.jerzak@austin.utexas.edu
mailto:connor.jerzak@austin.utexas.edu
https://connorjerzak.com

Contents
Appendix I: Machine Learning Model Details . 2
Appendix II: Additional Community Detection Details 6
Appendix III: Additional Fuzzy String Distance Details 9
Appendix IV: A Task Matching English and Non-English Company Names 10
Appendix V: A LinkOrgs Package Tutorial . 12
Appendix VI: Algorithm Compute Times by Task 13
Appendix VII: Additional Empirical Results . 15
Appendix VIII: Data Availability Statement . 18

1

Appendix I: Machine Learning Model Details
We here provide details justifying the probabilistic outcome used in the machine learning approach.

A.I.1.1 Deriving Linkage Outcome Data via LinkedIn
We first assume that the alias-to-URL pairings are relevant for understanding alias-to-organization
ties. That is, we assume validity:

Validity Assumption: Pr(Oi = Oj | Ai = a, Aj = a′) = Pr(Ui = Uj | Ai = a, Aj = a′), (1)

where Oi, Oj refer to the organizations associated with index i and j, Ai, Aj refer to the aliases, and
Ui, Uj refer to the URLs. Under this assumption, the overall behavior of users linking their aliases
to organizational URLs is the same as if they were linking to actual organizations. Intuitively,
the assumption means that the LinkedIn name-to-URL patterns give us information about the
name-to-organization mapping.

Because, in linkage tasks, the organizational unit of analysis is defined by the researcher, this
assumption may be satisfied in some circumstances but not in others. For example, General Motors
has divisions called Buick and Cadillac, which were initially separate companies. A researcher might
want these entities to match each other in some datasets. Other researchers may not want these to
match, however, and for plenty of purposes, it may not make sense to make these entities connect.
Therefore, whether alias-to-URL linkage is valid for a particular alias-to-organization match will
depend on the way in which organizations are defined in the overall analysis.

Next, in order to use the LinkedIn corpus for learning about how different organizational names
are related, we assume semantic mapping, which states that the organizational match probability
is a function of the semantic content of the aliases. That is,

Semantic Mapping Assumption: Pr(Oi = Oj | Ai, Aj) = fp(fn(Ai), fn(Aj)), (2)

where fn represents a function that numericizes each alias string, and fp represents a function that
transforms the alias numeric representations into overall match probabilities. Semantic mapping,
which depends on the existence of a match function, is not insignificant given the many possi-
bilities for the researcher-defined organizational unit of analysis. It also could be questionable
for cross-language link tasks. Nevertheless, assuming that this function exists, we can attempt
to approximate it using modern machine-learning algorithms in combination with the trillions of
LinkedIn organizational alias pairs.

In clarifying the limitations of the LinkedIn data for improving linkage, we note that both the
validity and semantic mapping assumptions would be vulnerable to errors in the LinkedIn data.
Regardless of how researchers define their organizational unit of analysis, inaccuracies due to the
selection of incorrect URLs by users would limit our ability to capture the link probability using the
alias and URL information. It could introduce systematic bias as well. However, as a professional
networking site, users have an incentive to maintain accurate information about themselves on the
page, hopefully limiting the degree of systematic bias.

Finally, to generate ground truth data for the prediction model training, we assume independence
of i and j, which allows us to calculate Pr(Oi = Oj | Ai, Aj). This independence assumption would
be violated if, for example, users could coordinate so that one use of an alias linking to a given URL
gave additional information about another use. Given the wide geographic reach of the LinkedIn
network, this sort of coordination is presumably rare, yet is difficult to evaluate for all pairs of

2

indices. In any case, the assumption is important because, using it, we can calculate the overall
organizational link probability using the LinkedIn data:

Pr(Oi = Oj | Ai = a, Aj = a′) = Pr(Ui = Uj | Ai = a, Aj = a′) (by Validity) (3)
=
∑
u∈U

Pr(Ui = u, Uj = u | Ai = a, Aj = a′) (4)

=
∑
u∈U

Pr(Ui = u | Ai = a) Pr(Uj = u | Aj = a′) (by Independence)

(5)

The two terms in the final expression can be calculated using the LinkedIn network with empirical
frequencies (e.g., the fraction of times alias a and a′ link to u).
A.I.1.1.1 Modeling Approaches
There are many estimation models consistent with the core assumptions we describe above. Indeed,
as machine-learning methods continue to evolve, the future will no doubt yield improvements in
any machine-learning approach to modeling these match probabilities, as the rapid progress in large
language models has made apparent (Jiang et al., 2023; Wei et al., 2022).

We here illustrate use of the LinkedIn data using a modeling strategy that explicitly optimizes
match probabilities. For computational reasons which will soon become clear, we assume the
following functional form for the match probabilities:

Distance-to-Probability Mapping: log
(

Pr(Oi = Oj | Ai = a, Aj = a′)
1 − Pr(Oi = Oj | Ai = a, Aj = a′)

)
∝ −||fn(a) − fn(a′)||2.

(6)
Here, the match probability is a function of the Euclidean distance between the numerical repre-
sentations for aliases a and a′. This captures the intuition that intuitively close names like “apple”
and “apple inc.” are more likely to be matched than distant names like “apple” and “jp morgan”.

Besides this intuition, this distance-to-probability mapping also has important computational
benefits: if we seek to calculate the match probability between two datasets of 100 observations
each, we do not have to apply a computationally expensive non-linear fp function to all 5,050
possible pairs. Instead, we only need to apply the numericization function 200 times—once for each
alias in each dataset—after which we take the Euclidean distance between each pair of numerical
representations in a step that can be readily parallelized and optimized for speed (Assis Zampirolli
and Filipe, 2017; Hansen, 2007).

A.I.1.2 Model Implementation Details
The character vectors and neural weights are model parameters, which are jointly updated using
stochastic gradient descent to minimize prediction error on our training data computed using the
LinkedIn corpus. Specifically, we minimize the KL divergence between the true match probability,
Pr(Oi = Oj|Ai = a, Aj = a′), and the estimated probability, where the KL divergence between two
distributions, P and Q, denoted by DKL(P ||Q), is a measure of how much information Q contains
that P does not and is 0 when the two distributions contain the same information. That is, we
minimize:

minimize
∑

a,a′∈A
DKL

(
P̂r(Oi = Oj|Ai = a, Aj = a′) || Pr(Oi = Oj|Ai = a, Aj = a′)

)
, (7)

3

where A denotes the set of all aliases. In this way, we learn from data how the aliases should be
numerically represented—learning along the way the representation of characters, words, and how
these things combine together in a name—with the overall goal of predicting the organizational
link probability between each alias pair. We apply the approach here jointly to the entire LinkedIn
corpus so that name representations in many languages are learned together.

We now discuss in more detail the machine learning model used.

A.I.1.3 Step 1. Obtaining Organizational Name Representations
We first outline the machine learning modeling strategy for each organizational name.

Input: An organizational name (e.g., “j.p. morgan chase”)

1. Break each name into words.

• For each word of length lw, query the vector representation for each character to form a
lw × D-dimensional representation for that word.

• Apply a Transformer model to each word to obtain a representation for each word.

2. For each alias of la words, query the word vectors obtained from the previous step to form a
la × D-dimensional representation for the alias.

• Apply a Transformer model to each alias to obtain a representation for each sequence of
words.

3. Select a [CLS]-token representing the alias-level representation. Normalize and project to the
final output dimensionality.

Output: D-dimensional representation of the organizational name

A.I.1.4 Step 2. Transforming Name Representations into Match Prob-
abilities

With the name representations in hand, we now discuss in greater detail how we form the final
match probabilities.

Input: Numerical representations/embeddings for two organizational names

1. Take the normalized Euclidean distance between the two embeddings, ei, ej:

dij = ||ei − ej||2√
dim(ei)

.

2. Form the match probability from the distance using unidimensional logistic regression:

Pr(Oi = Oj|Ai = a, Aj = a′) = 1
1 + exp(−[β0 + β1dij])

.

Output: A match probability indicating the probability that two names refer to the same
organization

4

The normalization layers are included to avoid exploding gradients (e.g., large values are centered
and scaled) and to make the learning more robust to initialization (Santurkar et al., 2018). The
parameters used in steps 1 and 2 are updated jointly using a modified form of stochastic gradient
descent. (Future progress can likely be made here, given the development of large language models
involving billions of parameters.) We next give more details about the sampling procedure involved
in the model training.

A.I.1.5 Sampling Design for Model Training
Recall that we seek to optimize the following:

minimize
∑

a,a′∈A
DKL

(
P̂r(Oi = Oj|Ai = a, Aj = a′) || Pr(Oi = Oj|Ai = a, Aj = a′)

)
.

One challenge in performing this optimization in practice is that most a′ are very distinct semanti-
cally from a, so the learning process is slowed by the vast number of “easy” predictions (e.g., where
Pr(Oi = Oj|Ai, Aj) is clearly 0). To make matters worse, most match probabilities are 0, a kind of
imbalance that can impair final model performance (Kuhn and Johnson, 2013)

We adopt two approaches to address these challenges. First, we implement a balanced sampling
scheme: in the optimization, we ensure half of all training points have Pr(Oi = Oj|Ai = a, Aj =
a′) = 0 and half have Pr(Oi = Oj|Ai = a, Aj = a′) > 0.

Second, we select a, a′ pairs that will be maximally informative so that the model is able to
more quickly learn from semantically similar non-matches (e.g., “The University of Chicago” from
“The University of Colorado”) or semantically distinct matches (e.g., “Massachusetts Institute
of Technology” and “MIT”). In our adversarial sampling approach (which is somewhat similar
to (Kim et al., 2020)), we select, for non-matches in our training batch, alias pairs that have
Pr(Oi = Oj|Ai = a, Aj = a′) = 0 but have the largest P̂r(Oi = Oj|Ai = a, Aj = a′). Likewise,
for matches, we select pairs that have the lowest predicted probability. More formally, we find the
negative a and a′ pairs by solving:

argmaxa,a′ s.t. Pr(Oi=Oj |Ai=a,Aj=a′)=0 DKL
(
Pr(Oi = Oj|Ai = a, Aj = a′) || P̂r(Oi = Oj|Ai = a, Aj = a′)

)
,

with a similar approach applied to positive pairs.
We achieve this in practice by, at the current state of the model, finding the closest alias to a′

in the alias vector space for which Pr(Oi = Oj|Ai = a, Aj = a′) is 0. A similar approach is used
to obtain high-information positive matches. Intuitively, this process magnifies the importance of
similar aliases that refer to different organizations in the learning process so as to learn how to
model the semantic mapping of aliases into match probabilities.

We found this adaptive sampling scheme to be important in learning to quickly distinguish
similar aliases that refer to different organizations, although only use this adversarial approach to
obtain half of each training batch to mitigate against potential problems with this approach (such as
occurs if the model is fit on only high surprise mistake alias pairs that occur when users incorrectly
link to the same URL).

5

Appendix II: Additional Community Detection Details
The first approach towards organizational name community detection uses Markov clustering (Van
Dongen, 2008). The Markov clustering algorithm operates on weighted adjacency matrices that
have a probabilistic interpretation.

We denote the organization names in the source data as aliases a. These aliases constitute
nodes on our graph. Many aliases appear simultaneously with profile URLs in our source data.
One possible approach to defining links between aliases is to assume that two aliases are connected
whenever they both link to the same profile URL. However, this approach would place as strong
a connection on aliases that rarely link to the same profile URL as those that are frequently
connected. For example, the URL linkedin.com/company/university-of-michigan has been
associated with an alias 75,462 distinct times in our data. The vast majority of these connections
occur via the alias “University of Michigan”, but a link with the alias “Michigan State University”
does in fact occur a handful of times. In defining links on the network, it will help to upweight the
former but downweight the latter in a data-driven way.

While there are many possible ways to ensure more frequently made connections are weighted
higher than connections that are rarer, we adopt an approach inspired by naive Bayesian classifi-
cation methods. We define the edge weight, waa′ , between node a and a′ using Equation 8:

waa′ =
∑
u∈U

of times a co-occurs with u

of times u co-occurs with any alias × # of times u co-occurs with alias a′

of times a′ occurs with any profile URL
(8)

These edge weights then make up the full adjacency matrix, W, which captures the interrelationship
between all pairs of aliases.

The connection of this expression to naive Bayesian classifiers requires some elaboration. As a
pure formalism, one can write the law of total probability as

Pr(Ai = a | Aj = a′) =
∑
u∈U

Pr (Ai = a | U = u, Aj = a′) Pr (U = u|Aj = a′) (9)

Taking this equation as given, suppose further one were to “naively” assume conditional indepen-
dence of Ai and Aj given U (Rish et al., 2001), or more formally Pr (Ai = a | U = u, Aj = a′) =
Pr (Ai = a | U = u), which is similar to the independence assumption of Section A.I.1.1.1.1 Equa-
tion 8 is then what would result if one also replaced the true probabilities with sample proportions.

There are several benefits to using this formula, especially over the more obvious “shared link”
approach. Besides using much more of the data, the naive Bayesian calculation reweights edges
in ways that are proportionate to the actual prevalence of relationships found in the data. One
corollary is that the edge weights are asymmetric, and the specificity with which an alias and link
are shared matters a great deal. For example, ICPSR is a rare alias, but when it does occur, it is
very often entered with linkedin.com/company/university-of-michigan, which in turn usually
points to the “University of Michigan” alias. Therefore, the weight w“University of Michigan”,“ICPSR” will
be close to 1 even if w“ICPSR”,“University of Michigan” is very small. By contrast, since “Michigan State
University” and “University of Michigan” are both relatively common aliases, one spurious link

1By asserting the equation as a formalism, we do not dwell on questions about what exactly the probability of Ai

given Aj means in this context, which might distract us from the core task of showing how community detection
methods on networks can be useful for record linkage problems.

6

linkedin.com/company/university-of-michigan
linkedin.com/company/university-of-michigan

between them will not result in large weight in either direction.
Having built an adjacency matrix, W, the probabilistic network of alias-to-alias links, we next

apply the Markov clustering algorithm to it to find communities of aliases that tend to link to the
same URLs. Because our focus is on the LinkedIn data contribution, we leave details to Section
A.II.1.1.

Figure A.II.1 illustrates the clustering process on a subset of our data. Darker shades reflect
heavier weights at initialization. Some links are much stronger than others. In the initial weighting,
two cliques reflect a set of names associated with “JP Morgan Chase.” Another reflects names
associated with “Bank of America.” However, these initial links are dense, making it difficult
to distinguish one cluster of aliases from another. As the algorithm iterates, some links weaken
and disappear while others strengthen. Eventually, each node links to exactly one other node.
Notably, the final cliques contain lexicographically dissimilar nodes that do indeed belong in the
same cluster. For example, the “Chase” clique contains “Wamu”, “Paymenttech”, and “摩根大通”
which are all Chase affiliates. The “Bank of America” clique includes “Countrywide Financial” and
“MBNA,” both under the Bank of America umbrella. In this way, the semantic mapping assumption
from Section A.I.1.1.1 has been weakened; graph-theoretic information has been exploited to assist
organizational matching.

A.II.1.1 Markov Clustering Algorithmic Details
Briefly, this clustering algorithm proceeds in two steps—expansion and inflation—that are repeated
until convergence. In the expansion step, the network’s adjacency matrix is multiplied by itself
k times. This matrix multiplication simulates the diffusion of a Markov process on the nodes
(i.e. “traveling” k steps on the network, with probabilities of where to go defined by W). In
the inflation step, entries of the resulting matrix are raised to some power p, and the matrix is
renormalized into a valid Markov transition matrix. Since small probabilities shrink faster under
exponentiation than large probabilities, the inflation step causes higher probability states to stand
out (i.e. likely places are made even more likely). After alternating expansion and inflation, the
output converges: row i will have only one non-zero valued entry in column j, which defines the
representative node in the community. All rows that have a one in column j are a part of the same
community of alias linking to (hopefully) the same organizational entity.

This clustering process involves hyperparameters, in particular, the number of matrix multipli-
cations to do in the expansion step (k) and the power of exponentiation (p) in the inflation step. For
both steps, k and p are frequently set to 2. The total number of clusters is not explicitly specified
but instead controlled indirectly through p and k. We adopt the common choice of p = k = 2.2

A.II.1.2 Greedy Bipartite Clustering Details
Following Clauset et al. (2004), our modularity score for bipartite community detection via greedy
clustering is

Modularity Score = 1
2m

∑
a,u

[
Bau − kaku

2m

]
I{ca = cu

}
, (10)

where m denotes the total number of edges in the graph, Bau denotes the au-th entry in the weighted
bipartite network (i.e., the number of ties between alias a and URL u), and ka denotes the degree
of node a (i.e. ka = ∑

a∈A Bau). The indicator variable, I{·}, is 1 when the community for a equals
the community for u (these communities are denoted as ca and cu).
2Alternative choices yielded substantially similar results in the applications that follow.

7

Figure A.II.1: Illustration of Markov clustering.

The intuition in Equation 10 is that the modularity score is maximized when the number of ties
between a and u is large (i.e., Bau is big) and a, u are placed in the same cluster (so that ca = cu).
We obtain community estimates based on the greedy optimization of Equation 10 (see Clauset et al.
(2004) for details).

8

Appendix III: Additional Fuzzy String Distance Details
A.III.1.1 Fuzzy String Matching Details
Fuzzy string distances in our baseline linkage method are calculated as follows. Let ã and ã′ denote
the decomposition of organizational aliases a and a′ into all their q-character combinations (known
as q-grams). For example, if q = 2, “bank” would be decomposed into the set {“ba”,“an”,“nk”}.
The Jaccard measure is then defined to be

d(a, a′) = 1 − |ã ∩ ã′|
|ã ∪ ã′|

.

If all q-grams co-occur within a and a′, this measure returns 0. If none co-occur, the measure returns
1. If exactly half co-occur, the measure returns 0.5. Following (Navarro and Salmela, 2009), we set
q = 2.

9

Appendix IV: A Task Matching English and Non-English
Company Names
In this supplementary evaluation task, we examine the performance of our approach in a partic-
ularly challenging case where we seek to match organizational entities using their names written
in English and in Mandarin Chinese. This matching task is especially challenging because English
and Mandarin Chinese are based on two entirely different kinds of writing systems (i.e., alphabetic
and logographic).

The data for this task is from FluentU, an organization focusing on language learning (FluentU
2022). The organization has provided a directory of 76 companies with their English names paired
with their Chinese names. Table A.IV.1 displays some of the companies found in this dataset, which
is composed primarily of large multinational corporations.

English Name Chinese Name
amazon 亚马逊

coca cola 可口可乐
jp morgan 摩根
marlboro 万宝路

Table A.IV.1: A sample of the organizational entities in the cross-language dataset. We attempt
to match the pool of English names to their associated names in Mandarin Chinese.

We compare linkage performance using our community detection algorithms based on the
LinkedIn network and using our character-based machine learning and the baseline fuzzy matching
approach. The fuzzy matching approach gives no matches (except when the fuzzy distance thresh-
old is set to 1 so that all English names are matched with all Chinese names). This occurs because
none of the English names share any Latin character combinations with any of the Chinese names.

The machine learning linkage approach based on the LinkedIn network fares somewhat better—
yielding a true positive rate of 0.2 when the matched dataset size approaches 1,000. In contrast to
fuzzy matching, it also achieves a non-zero F2 score. However, the community detection approaches
using the LinkedIn network fare better, successfully picking out 33 of the 76 matches with only
five false positives. The left panel of Figure A.IV.1 shows how the Markov clustering approach
somewhat outperforms the bipartite clustering, although both approaches achieve similar maximum
true positive rates and F2 scores just above 0.4. In this way, the network information present in
the LinkedIn corpus allows us to find almost half of the true matches, even though the names to be
matched are written in entirely different language systems.

Still, it is once again instructive to examine names for which the community detection ap-
proaches succeed and fail in this cross-language matching task. The approach succeeds in cases
where an organization has employees who use both English and non-English organizational names
while linking to the same company URL. For example, we successfully match the “Coca-cola” to
“可口可乐” match, as Coca-cola has at least six Chinese offices, and employees in these offices often
use Coca-Cola’s Chinese name in their LinkedIn URL. However, we do not find the “lamborghini”
to “兰博基尼” match. Lamborghini does operate offices in China, but its employees use the name
“Lamborghini” in their LinkedIn profiles. In this way, the community-detection algorithms based

10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Size of Matched Dataset

Tr
ue

 P
os

iti
ve

 R
at

e

101 102 103

0.
0

0.
1

0.
2

0.
3

0.
4

Size of Matched Dataset
F

2 S
co

re
101 102 103

Bipartite
Bipartite−ML
DeezyMatch
Fuzzy
Lookup
ML

Figure A.IV.1: In the left panel, we see that the LinkedIn-based community detection algorithms
find a significant fraction of the true positive matches between the English and non-English aliases.
In the right panel, we see that these true positive matches are found without introducing numerous
false positives (so that the F2 scores for the community detection algorithms approach 0.5). The
machine learning approach yields some true positive matches; fuzzy matching yields none.

on the LinkedIn network are, for cross-language merge tasks, best suited for the matching of or-
ganizational entities that have many employees across linguistic contexts and where non-English
names are commonly used on LinkedIn.

11

Appendix V: A LinkOrgs Package Tutorial
The package can be downloaded via GitHub:

Download package via github
devtools::install_github("cjerzak/LinkOrgs-software/LinkOrgs")

load it into your R session
library(LinkOrgs)

There are several major functions in the package. The first is FastFuzzyMatch, which performs
traditional string distance matching using all available CPU cores. This offers a substantial time
speedup compared to the sequential application of a fuzzy distance calculator. The second function,
LinkOrgs, is the main estimation function used in this paper to calculate the match probabilities.
We also have a function, AssessMatchPerformance, that computes performance metrics of interest.
To get help with any of these functions, one can run the following:

To see package documentation, enter
?LinkOrgs::LinkOrgs
?LinkOrgs::AssessMatchPerformance
?LinkOrgs::FastFuzzyMatch

Here is the syntax for how to use the package using synthetic data:

Create synthetic data to try everything out
x_orgnames <- c("apple","oracle","enron inc.","mcdonalds corporation")
y_orgnames <- c("apple corp","oracle inc","enron","mcdonalds co")
x <- data.frame("orgnames_x"=x_orgnames)
y <- data.frame("orgnames_y"=y_orgnames)

Perform a simple merge with the package
linkedOrgs <- LinkOrgs(x = x,

y = y,
by.x = "orgnames_x",
by.y = "orgnames_y",
algorithm = "bipartite")

Print results
print(linkedOrgs)

An up-to-date tutorial for the LinkOrgs package is available at

GitHub.com/cjerzak/LinkOrgs-software/blob/master/README.md

12

Appendix VI: Algorithm Compute Times by Task
A.VI.1.1 Matching Execution Times by Algorithm by Task in Minutes

Table A.VI.1: Run time on the meetings data analysis.

Algorithm Run Time (mins)
Bipartite 13.12

Bipartite-ML 251.38
DeezyMatch 0.24

Fuzzy 0.27
Lookup 1.35
Markov 8.61

Markov-ML 113.00
ML 1.63

Table A.VI.2: Run time on the company lobbying data analysis.

Algorithm Run Time (mins)
Bipartite 13.40

Bipartite-ML 318.44
DeezyMatch 0.32

Fuzzy 0.33
Lookup 1.36
Markov 9.47

Markov-ML 142.50
ML 2.09

Table A.VI.3: Run time on the cross-language merge task.

Algorithm Run Time (mins)
Bipartite 0.70

Bipartite-ML 6.17
DeezyMatch 0.15

Fuzzy 0.02
Lookup 1.11
Markov 0.29

Markov-ML 3.52
ML 1.39

13

Table A.VI.4: Run time on the Y Combinator task.

Algorithm Run Time (mins)
Bipartite 7.63

Bipartite-ML 142.84
DeezyMatch 0.33

Fuzzy 0.15
Lookup 1.26
Markov 4.41

Markov-ML 66.16
ML 1.22

14

Appendix VII: Additional Empirical Results
0.

0
0.

2
0.

4
0.

6
0.

8

Size of Matched Dataset

Tr
ue

 P
os

iti
ve

 R
at

e

101 102 103 104

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Size of Matched Dataset

F
2 S

co
re

101 102 103 104

Bipartite
Bipartite−ML
DeezyMatch
Fuzzy
Lookup
Markov
Markov−ML
ML

Figure A.VII.1: We find that dataset linkage using any one of the approaches using the LinkedIn
network obtains favorable performance relative to fuzzy string matching both when examining only
the raw percentage of correct matches obtained (left panel) and when adjusting for the rate of false
positives and false negatives in the F2 score (right panel). In both figures, higher values along
the Y -axis are better. The “Bipartite” and “Markov” refer to two network-based approaches to
linkage. “ML” refers to the machine learning approach introduced above. “Fuzzy”, “DeezyMatch”,
and “Lookup” refer to the string distance, machine learning, and network method baseline methods.
“Markov-ML” and “Bipartite-ML” refer to the ensemble approaches.

15

0.
0

0.
2

0.
4

0.
6

Size of Matched Dataset

F
2 S

co
re

101 102 103 104

Bipartite
Bipartite−ML
DeezyMatch
Fuzzy
Lookup
Markov
Markov−ML
ML

Figure A.VII.2: In this YCombinator example, we see that the network-based approaches offer
no relative benefit in terms of true positives when adjusting for false positives, yet the machine-
learning-assisted approaches using the LinkedIn corpus perform well over fuzzy matching. Higher
values along the Y -axis are better.

16

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Size of Matched Dataset

E
st

im
at

ed
 C

oe
ffi

ci
en

t

101 102 103 104

|

Coefficient Using Correct Matches
 (From Human Coding)

Bipartite
Bipartite−ML
DeezyMatch
Fuzzy
Lookup
Markov
Markov−ML
ML

Figure A.VII.3: The coefficient on log(Assets) for predicting log(1+Expenditures) using the
ground truth data is about 2.5 (bold gray line, 95% confidence interval displayed using dotted gray
lines). At its best point, fuzzy matching underestimates this quantity by about half. The LinkedIn-
based matching algorithms better recover the coefficient.

17

Appendix VIII: Data Availability Statement
The LinkedIn data corpus is available in a Harvard Dataverse:

doi.org/10.7910/DVN/EHRQQL

as well as a Hugging Face repository:

HuggingFace.co/datasets/cjerzak/LinkOrgs.

All methods are accessible in an open-source codebase available at

GitHub.com/cjerzak/LinkOrgs-software.

18

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EHRQQL
doi.org/10.7910/DVN/EHRQQL
https://huggingface.co/datasets/cjerzak/LinkOrgs
HuggingFace.co/datasets/cjerzak/LinkOrgs
https://github.com/cjerzak/LinkOrgs-software
GitHub.com/cjerzak/LinkOrgs-software

References
Assis Zampirolli, Francisco de and Leonardo Filipe (2017): “A Fast CUDA-based Implementation

for the Euclidean Distance Transform”. In: 2017 International Conference on High Performance
Computing & Simulation (HPCS). IEEE, pp. 815–818.

Clauset, Aaron et al. (2004): “Finding Community Structure in Very Large Networks”. In: Physical
Review E, no. 6, vol. 70, p. 066111.

FluentU (2022). https://www.fluentu.com/blog/chinese/business-chinese-vocabulary-
list-foreign-companies-in-chinese/. Accessed: 2022-01-01.

Hansen, Ben B (2007): “Optmatch: Flexible, Optimal Matching for Observational Studies”. In: New
Functions for Multivariate Analysis, no. 2, vol. 7, pp. 18–24.

Jiang, Albert Q et al. (2023): “Mistral 7B”. In: arXiv preprint arXiv:2310.06825.
Kim, Jaekyeom et al. (2020): “Model-agnostic Boundary-adversarial Sampling for Test-time Gen-

eralization in Few-shot Learning”. In: European Conference on Computer Vision. Springer,
pp. 599–617.

Kuhn, Max and Kjell Johnson (2013): “Remedies for Severe Class Imbalance”. In: Applied Predictive
Modeling. Springer, pp. 419–443.

Navarro, Gonzalo and Leena Salmela (2009): “Indexing Variable Length Substrings for Exact and
Approximate Matching”. In: International Symposium on String Processing and Information
Retrieval, pp. 214–221.

Rish, Irina et al. (2001): “An Empirical Study of the Naive Bayes classifier”. In: IJCAI 2001 Work-
shop on Empirical Methods in Artificial Intelligence. Vol. 3. 22, pp. 41–46.

Santurkar, Shibani et al. (2018): “How Does Batch Normalization Help Optimization?” In: Advances
in Neural Information Processing Systems, vol. 31.

Van Dongen, Stijn (2008): “Graph Clustering Via a Discrete Uncoupling Process”. In: SIAM Journal
on Matrix Analysis and Applications, no. 1, vol. 30, pp. 121–141.

Wei, Jason et al. (2022): “Emergent Abilities of Large Language Models”. In: arXiv preprint
arXiv:2206.07682.

19

https://www.fluentu.com/blog/chinese/business-chinese-vocabulary-list-foreign-companies-in-chinese/
https://www.fluentu.com/blog/chinese/business-chinese-vocabulary-list-foreign-companies-in-chinese/

	Title Page
	Appendix I: Machine Learning Model Details
	Appendix II: Additional Community Detection Details
	Appendix III: Additional Fuzzy String Distance Details
	Appendix IV: A Task Matching English and Non-English Company Names
	Appendix V: A LinkOrgs Package Tutorial
	Appendix VI: Algorithm Compute Times by Task
	Appendix VII: Additional Empirical Results
	Appendix VIII: Data Availability Statement

