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Appendix 1. Collection and Coding Instructions for Papers

We scrape Google Scholar looking for APSR, PA, and PSRM with the search string “machine

learning” in the full text of the papers after 1 January 2016 and before 20 October 2021, resulting in

137 manuscripts. We then identify those publications that use machine learning models according to

our definition (Column Applies ML? in Table 3) For example, we exclude papers where the only

mention of machine learning is in the references, e.g., in the “Journal of Machine Learning Research”

or where the authors make a quick reference to machine learning approaches but do not employ

machine learning themselves. Left with 65 manuscripts, we then annotate them with the following

coding scheme.

• Tunable HPs?: Are there any tunable hyperparameters involved in the models which are described

in the paper or appendix? We discard one other manuscript here (Ratkovic and Tingley 2017).

• Model Transparency: Are the final hyperparameter values (of all models) in the paper or appendix?

• Tuning Transparency: Are the hyperparameter search method (e.g., grid search) and search space

(range of tested values) described in the paper or appendix?

Please allow us some further remarks concerning the annotation. First, our annotation is not

a statement of the “correctness” of the approach. During the annotation process, we set the values
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for model and/or tuning transparency to FALSE for papers referencing existing work to justify

their hyperparameter choice without mentioning the actual values. Furthermore, we did not check

whether the authors included values for all available hyperparameters of an implementation. We

assume that they use the proposed default values for the remaining hyperparameters. Next, when

multiple machine learning models were used, we assigned FALSE to a category if one of these models

failed to fulfill the requirements according to our coding scheme. Like the weakest link in a chain,

the scientific rigor will be a�ected by the weakest part of its analysis. On several occasions, authors

propose a new model, only to pitch it against a baseline from machine learning models that use

default settings or even manually set values.
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Appendix 2. Overview of Papers in Our Sample

Table 3 contains all 137 papers containing “machine learning” in the full text published in PSRM,

PA, and APSR between 1 January 2016 and 20 October 2021. We coded 65 of these papers using

machine learning models. These 65 papers are the basis of our analysis.

Table 3. Overview of all papers in our sample. We retrieved 137 papers, 65 of which applied machine learning models
according to our definition. We report our coding of model transparency and tuning transparency. The symbol – indicates
that our coding scheme was not applicable.

Political Science Research and Methods

Applies Tunable Model Tuning

Article ML? HPs? Transparency Transparency

Settle et al. 2016 7 - - -

Schutte 2017 7 - - -

Bagozzi and Berliner 2018 3 3 3 3

Fariss and Jones 2018 7 - - -

Wu 2018 7 - - -

Hopkins and Pettingill 2018 7 - - -

Munger et al. 2019 3 3 3 3

Hollenbach, Montgomery, and Crespo-Tenorio 2019 7 - - -

Pan 2019 3 3 7 7

Lee, Liu, and Ward 2019 3 3 7 7

Ramey, Klingler, and Hollibaugh 2019 3 3 3 7

Kikuta 2020 3 3 7 7

Beiser-McGrath and Beiser-McGrath 2020 3 3 7 7

Baerg and Lowe 2020 7 - - -

Struthers, Hare, and Bakker 2020 7 - - -

Torres 2020 7 - - -

Herzog and Mikhaylov 2020 7 - - -

Stuckatz 2020 7 - - -

Keele, Stevenson, and Elwert 2020 7 - - -

Benedictis-Kessner 2020 3 3 7 7

Radford 2021 3 3 3 7

Muchlinski et al. 2021 3 3 7 7

Blaydes et al. 2021 7 - - -

Rice and Zorn 2021 7 - - -

Crosson 2021 7 - - -
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Minhas et al. 2021 7 - - -

Christia et al. 2021 7 - - -

Funk, Paul, and Philips 2021 3 3 3 3

Political Analysis

Applies Tunable Model Tuning

Article ML? HPs? Transparency Transparency

Imai and Khanna 2016 7 - - -

Kasy 2016 7 - - -

Samii, Paler, and Daly 2016 3 3 7 7

Muchlinski et al. 2016 3 3 7 7

Ratkovic and Tingley 2017 3 7 - -

Cranmer and Desmarais 2017 3 3 7 7

Van Atteveldt et al. 2017 7 - - -

Rozenas 2017 7 - - -

Tausanovitch and Warshaw 2017 7 - - -

Rosenberg, Knuppe, and Braumoeller 2017 7 - - -

Fafchamps and Labonne 2017 7 - - -

Grimmer, Messing, and Westwood 2017 3 3 7 7

Greene and Cross 2017 3 3 3 7

De Vries, Schoonvelde, and Schumacher 2018 3 3 3 3

Denny and Spirling 2018 3 3 3 3

Kim, Londregan, and Ratkovic 2018 7 - - -

Blackwell 2018 7 - - -

Peterson and Spirling 2018 3 3 7 7

Temporão et al. 2018 3 3 3 7

Bansak 2019 3 3 3 7

Wang 2019 3 3 7 7

Neunhoe�er and Sternberg 2019 3 3 7 7

Kaufman, Kra�, and Sen 2019 3 3 7 7

Greene, Park, and Colaresi 2019 3 3 7 7

Goet 2019 3 3 3 3

Goplerud 2019 7 - - -

Stoetzer et al. 2019 7 - - -

Hainmueller, Mummolo, and Xu 2019 7 - - -

De la Cuesta, Egami, and Imai 2019 7 - - -

Minhas, Ho�, and Ward 2019 7 - - -
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Heuberger 2019 7 - - -

Mohanty and Sha�er 2019 7 - - -

Brandenberger 2019 7 - - -

Muchlinski et al. 2019 7 - - -

King and Nielsen 2019 7 - - -

Jerzak, King, and Strezhnev 2019 7 - - -

Miller, Linder, and Mebane 2020 3 3 7 7

Mozer et al. 2020 3 3 3 3

Ornstein 2020 3 3 3 3

Rheault and Cochrane 2020 3 3 3 7

Huang, Perry, and Spirling 2020 7 - - -

Ziegler 2020 7 - - -

Bølstad 2020 7 - - -

Lu 2020 7 - - -

Ferrari 2020 7 - - -

Bussell 2020 7 - - -

Rodman 2020 3 3 7 7

Marble and Tyler 2020 7 - - -

Bustikova et al. 2020 3 3 7 7

Ghitza and Gelman 2020 7 - - -

Lall and Robinson 2020 3 3 3 7

Chang and Masterson 2020 3 3 3 7

Duch et al. 2020 3 3 7 7

Cohen and Warner 2021 3 3 7 7

Barberá et al. 2021 3 3 7 7

Acharya, Bansak, and Hainmueller 2021 3 3 7 7

Di Cocco and Monechi 2021 3 3 3 3

Torres and Cantú 2021 3 3 3 3

Porter and Velez, n.d. 7 - - -

Ying, Montgomery, and Stewart 2021 7 - - -

Kaufman and Klevs 2021 7 - - -

Erlich et al. 2021 3 3 7 3

Blackwell and Olson 2021 3 3 7 7

Timoneda and Wibbels 2021 3 3 3 7

Kim and Kunisky 2021 7 - - -

Vannoni, Ash, and Morelli 2021 7 - - -

Enamorado, López-Moctezuma, and Ratkovic 2021 7 - - -

Egami 2021 7 - - -
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Fong and Tyler 2021 3 3 7 7

Sebők and Kacsuk 2021 3 3 7 7

American Political Science Review

Applies Tunable Model Tuning

Article ML? HPs? Transparency Transparency

Benoit et al. 2016 7 - - -

Rundlett and Svolik 2016 7 - - -

Imai, Lo, and Olmsted 2016 7 - - -

King, Pan, and Roberts 2017 7 - - -

Steinert-Threlkeld 2017 7 - - -

Blackwell and Glynn 2018 7 - - -

Hall and Thompson 2018 7 - - -

Pan and Chen 2018 3 3 3 3

Mueller and Rauh 2018 3 3 3 7

Blair et al. 2019 7 - - -

Dorsch and Maarek 2019 7 - - -

Hobbs and Lajevardi 2019 7 - - -

Mitts 2019 3 3 7 7

Enamorado, Fifield, and Imai 2019 7 - - -

Barberá et al. 2019 3 3 3 3

Bisbee 2019 3 3 3 7

Katagiri and Min 2019 3 3 7 7

Cantú 2019 3 3 3 7

Park, Greene, and Colaresi 2020 3 3 7 7

Magaloni and Rodriguez 2020 3 3 3 3

Badrinathan 2021 7 - - -

Manekin and Mitts 2021 7 - - -

Goel et al. 2020 7 - - -

Challú, Seira, and Simpser 2020 7 - - -

Nyrup and Bramwell 2020 7 - - -

Yoder 2020 3 3 3 7

Peyton 2020 3 3 3 7

Anastasopoulos and Bertelli 2020 3 3 7 7

Bøggild, Aarøe, and Petersen 2021 3 3 7 7

Zubek, Dasgupta, and Doyle 2021 3 3 7 3

Jacobs et al. 2021 3 3 7 7
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Bansak, Bechtel, and Margalit 2021 3 3 7 7

Knox and Lucas 2021 7 - - -

Ballard and Curry 2021 7 - - -

Wahman, Frantzeskakis, and Yildirim 2021 3 3 3 7

Osnabrügge, Hobolt, and Rodon 2021 3 3 7 7

Appendix 3. Details on the Machine Learning Models and Hyperparameters in the Illustration

We reanalyze Muchlinski et al. (2021) to show how hyperparameter deception may lead to wrong

conclusions about machine learning models’ out-of-sample performance and, with it, ultimately also

model comparison. Muchlinski et al. (2021) introduce a Convolutional Neural Network (CNN)

to detect electoral violence with tweets. Studying three countries (Ghana, the Philippines, and

Venezuela), they compare the performance of their CNN model against a baseline from a Support

Vector Machine (SVM). Re-scraping Twitter11 based on the author’s tweet IDs, we were able to

access 58% of the Tweets in the Philippines, 74% of the Tweets in Venezuela, and 78% of the Tweets

in Ghana. We then pre-processed the Tweets as outlined in their manuscript.

Our approach di�ers in three ways. First, in line with Kim (2014), who originally proposes the

CNN architecture in Muchlinski et al. (2021), we find that self-learned embeddings underperform.12

Instead, we use word embeddings for English and Spanish that have been trained on large corpora.13

Second, we expect that machine learning models are quite sensitive in the context of medium-sized

training sets. In addition to the SVM, we train a naive base classifier and a random forest classifier.

Hyperparameters for those baseline models are found using grid search. Since the tuning of the

CNN is more involved, we decided to implement a random search strategy for its hyperparameters.

Finally, in the main part of the paper, we report the tuning based on one single split between

a 60% training set, a 20% validation set, and a 20% test set.14 For the appendix, we implement

cross-validation that avoids overfitting and generates a realistic evaluation of the generalization error

across di�erent samples (Bischl et al. 2023; Neunhoe�er and Sternberg 2019). We split our data

between a 60% training set, a 20% validation set, and a 20% test set—and repeat this using di�erent

random splits three times for the resource-intensive CNN and five times for the other machine

11. In December 2020.
12. F1 scores never exceed 0.20 in any model. The rather small corpus allows observing only a limited number of word

collocations.
13. English word embeddings: pretrained Google Word2Vec as in Gensim (�eh��ek and Sojka 2010). Spanish word

embeddings: Word2Vec model trained on the Spanish Billion Words Corpus (Cardellino 2019).
14. Random seed = 20210101.
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learning models. We optimize the respective machine learning model and its hyperparameters in

each fold and then aggregate results across all folds.

For our performance benchmarking, we implemented five models. All models except the Con-

volutional Neural Network (CNN) are based on the Python-library scikit-learn (Pedregosa et

al. 2011). For the CNN, we use keras (Chollet et al. 2015) as an underlying framework. The model

specifications, default settings, and search ranges for the hyperparameter optimization are listed below.

Additional hyperparameters not mentioned were automatically set to the default values assigned by

their package implementation. In each table, we report the Tuning F1, which is calculated based on

the validation set to allow for the choice of the best hyperparameters. The out-of-sample F1 score

is the estimate on the test set to approximate the generalization error. Remember, knowing how

well a specific hyperparameter setting will generalize to out-of-sample data is impossible in advance.

Occasionally, this results in default hyperparameter values performing better on out-of-sample data

than those selected after optimization on the validation set.
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Naive Bayes is a probabilistic classifier based on Bayes’ theorem following a strong independence

assumption of tokens. We use the implementation sklearn.naive_bayes.MultinomialNB in the

Python-library scikit-learn (Pedregosa et al. 2011). In this implementation, the classifier has

only the hyperparameter alpha (Default value: 1.0). To tune this hyperparameter, we iterate over a

grid search using five-fold cross-validation based on the following value range:

• alpha: logarithmically spaced grid from 1 to 1e – 9 with 100 steps

This means that we test 100 di�erent hyperparameter values.

Table 4. Best Naive Bayes Hyperparameters over five seeds optimized by F1

Seed alpha Tuning F1 Out-of-Sample F1

Ghana
20210101 10–9 0.512 0.538
20210102 10–9 0.457 0.522
20210103 10–9 0.452 0.415
20210104 10–9 0.444 0.632
20210105 10–9 0.456 0.468

The Philippines
20210101 10–9 0.482 0.390
20210102 10–9 0.449 0.421
20210103 10–9 0.465 0.324
20210104 10–9 0.448 0.474
20210105 10–9 0.462 0.526

Venezuela
20210101 0.002 0.331 0.308
20210102 0.002 0.321 0.358
20210103 0.004 0.347 0.344
20210104 0.019 0.290 0.480
20210105 0.004 0.340 0.333
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Random Forest is a classifier based on an ensemble of decision trees that are fitted on sub-samples

of the training dataset. It was introduced by Breiman 2001. We use the implementation

sklearn.ensemble.RandomForestClassifier in the Python-library scikit-learn (Pedregosa

et al. 2011). In this implementation, the classifier has a wide range of hyperparameters. A selection of

them are n_estimators (Default value: 100), criterion (Default value: gini), max_depth (Default

value: None), max_features (Default value: sqrt) and class_weight (Default value: None). We

tune these hyperparameters while keeping the implementations’ default values for the remainder. To

optimize the hyperparameters of our RFs, we iterate over a grid search using five-fold cross-validation

based on the following range of values:

• n_estimators: 1, 5, 15, 50, 75, 100, 150, 200, 400, 1000

• max_depth: 1, 5, 25, 50, 75, 100, 150, 200, 400, 1000, None

• max_features: sqrt, log2, None

• class_weight: balanced, None

This means we test a total of 10⇥ 11⇥ 3⇥ 2 = 660 di�erent permutations of hyperparameter values.

Table 5. Best Random Forest Hyperparameters over five seeds optimized by F1

Seed n_estimators max_depth max_features class_weight Tuning F1 Out-of-Sample F1

Ghana
20210101 100 5 sqrt balanced 0.599 0.603
20210102 200 5 sqrt balanced 0.592 0.472
20210103 150 5 sqrt balanced 0.611 0.551
20210104 150 5 sqrt balanced 0.581 0.500
20210105 400 5 sqrt balanced 0.597 0.545

The Philippines
20210101 400 1 log2 balanced 0.462 0.160
20210102 1000 5 sqrt balanced 0.472 0.417
20210103 1000 5 log2 balanced 0.517 0.256
20210104 150 5 sqrt balanced 0.459 0.458
20210105 100 5 sqrt balanced 0.466 0.372

Venezuela
20210101 1000 5 sqrt balanced 0.486 0.479
20210102 150 5 sqrt balanced 0.505 0.283
20210103 400 5 sqrt balanced 0.469 0.516
20210104 400 5 sqrt balanced 0.486 0.491
20210105 200 5 sqrt balanced 0.480 0.420
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A Support Vector Machine is an algorithm that finds a hyperplane to maximize the separation

between di�erent classes. The idea of support vectors was first introduced by Boser, Guyon, and

Vapnik 1992. We use the implementation sklearn.svm.SVC in the Python-library scikit-learn

(Pedregosa et al. 2011). Again, this implementation o�ers a wide range of hyperparameters. A

selection of them are C (Default value: 1), kernel (Default value: rbf ), gamma (Default value: scale)

and class_weight (Default value: None). We tune these hyperparameters while keeping the

implementations’ default values for the remainder. To optimize them, we iterate over a grid search

using five-fold cross-validation based on the following range of values:

• C: exp{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• kernel: linear, rbf, poly, sigmoid

• gamma: (applies only if the kernel is not linear, otherwise None) 0.0001, 0.001, 0.01, 0.1, 1, scale,

auto

• class_weight: balanced, None

This means we test a total of 11⇥ 3⇥ 7⇥ 2 + 11⇥ 2 = 484 permutations of hyperparameter values.

Table 6. Best Support Vector Machine Hyperparameters over five seeds optimized by F1

Seed C kernel gamma class_weight Tuning F1 Out-of-Sample F1

Ghana
20210101 20.086 rbf 0.01 balanced 0.674 0.727
20210102 2980.958 rbf 0.0001 balanced 0.666 0.597
20210103 2.718 sigmoid 0.1 balanced 0.657 0.595
20210104 148.413 rbf 0.001 balanced 0.671 0.560
20210105 20.086 sigmoid 0.01 balanced 0.684 0.640

The Philippines
20210101 2980.958 rbf log2 balanced 0.521 0.561
20210102 148.413 rbf sqrt None 0.551 0.424
20210103 2980.958 sigmoid log2 None 0.569 0.488
20210104 20.086 rbf sqrt balanced 0.547 0.542
20210105 20.086 rbf sqrt balanced 0.550 0.512

Venezuela
20210101 1.0 rbf 0.1 balanced 0.538 0.465
20210102 403.429 rbf 0.0001 balanced 0.541 0.446
20210103 1.0 rbf 0.01 balanced 0.558 0.500
20210104 148.413 rbf auto balanced 0.499 0.531
20210105 54.598 sigmoid 0.001 balanced 0.527 0.547
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A Convolutional Neural Network is a deep learning algorithm primarily used for the classification

of images but also text. Modern CNNs for image classification were introduced by Cun et al. 1990,

and we use the implementation o�ered by the Python framework keras (Chollet et al. 2015). As this

implementation o�ers a wide range of hyperparameters, we focus on a selection of them. These are

the number of filters (Default value: 200), kernel size (Default value: 1), dropout probability

(Default value: 0.5), L2 regularization (Default value: 0.01) and learning rate (Default value:

0.001). We tune these hyperparameters while keeping the implementations’ default values for the

remainder. To optimize the hyperparameters of our CNN, we iterate over 50 random combinations

of parameters in each fold of a three-fold cross-validation. These parameter combinations are based

on the following range of values:

• filters: 150, 200, 250

• kernel size: [1,2,3], [2,3,4], [3,4,5]

• dropout: 0.5, 0.8

• L2 regularization: 0.001, 0.01, 0.1

• learning rate: 0.01, 0.001, 0.0001

This means we test 50 randomly chosen permutations of hyperparameters out of 3⇥3⇥2⇥3⇥3 = 162

possible permutations.

Table 7. Best Convolutional Neural Network Hyperparameters over three seeds optimized by AUC

Seed filters kernel size dropout L2 regularization learning rate Out-of-Sample F1

Ghana
20210101 150 [1,2,3] 0.5 0.001 0.001 0.604
20210102 250 [1,2,3] 0.5 0.001 0.0001 0.636
20210103 200 [3,4,5] 0.5 0.001 0.001 0.583

The Philippines
20210101 200 [2,3,4] 0.5 0.01 0.0001 0.500
20210102 250 [2,3,4] 0.5 0.001 0.0001 0.512
20210103 250 [1,2,3] 0.5 0.01 0.001 0.327

Venezuela
20210101 250 [2,3,4] 0.5 0.001 0.0001 0.304
20210102 250 [2,3,4] 0.5 0.001 0.0001 0.400
20210103 250 [3,4,5] 0.5 0.001 0.001 0.357
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