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SI.1 Literature Review

Article only direction? % increase? Qol? Qol-plot on original scale?  Qol plot on log-scale?
Kriner and Reeves (2015) X v First Difference v X
Dynes and Huber (2015) X v First Difference* X X
Xu and Yao (2015) X v X X v
Rogowski (2016) X v X X X
Laitin and Ramachandran (2016) v X X X X
Gulzar and Pasquale (2017) X v X X X
Hainmueller, Hangartner and Pietrantuono (2017) X v X X X
Nellis and Siddiqui (2018) v X X X X
Hyytinen et al. (2018) X v First Difference” X X
Grossman and Michelitch (2018) v X X X X
Szakonyi (2018) X v X X X
Gordon and Simpson (2018) X v X X X
Guardado (2018) X v First Difference* X v
Ch et al. (2018) X v X X v
Kim (2018) v X X X X
Li (2018) X v Predicted Values* v X
Fouka (2019) X v X X X
Lipscy (2015) X v X X X
Shepherd and You (2020) X v First Difference* X X
Grumbach and Sahn (2020) X v X X X
Gulzar, Haas and Pasquale (2020) X v First Difference* X X
Earle and Gehlbach (2015) X v X X X
Coleman and Mwangi (2015) X v X X X
Beazer and Woo (2016) X v X X X
Berry and Fowler (2016) X v X X X
Zhu (2017) X v X X X
Carnegie and Marinov (2017) X v First Difference X X
Goldstein and You (2017) X v X X X
Fouirnaies and Hall (2018) X v First Difference* X X
Fouirnaies (2018) X v X X X
Hollibaugh and Rothenberg (2018) X X Expected Values v X
Beazer and Blake (2018) v X X X X
Distelhorst and Locke (2018) X v First Difference X v
Jiang (2018) X X X X X
Paglayan (2019) X v X X X
Mohr et al. (2019) X v First Difference* X v
Schultz and Mankin (2019) X v First Difference* X X
Pond and Zafeiridou (2020) X v X X X
Jensen, Findley and Nielson (2020) v X X X X

* without uncertainty
Table Al: Results of a content analysis of all research articles published in the American Political
Science Review and the American Journal of Political Science between 2015 and 2020.



SI.2 Coverage Rate: Monte Carlo Evidence

We present Monte Carlo evidence to show that our approach to simulate confidence intervals
produces confidence intervals with a proper coverage rate. The Monte Carlo study is set up as
follows: We simulate data based on the data generating process described in the main paper,

and introduced by Rainey (2017). We restate the DGP here:

In(INCOME) = Beons + BeduEDUCATION + €, and € ~ N (0, 02) (2)

The true values of the coefficients are given by Beons = 2.5, Bedqu = 0.1, and o2 = 1. Further,
N = 10 with the set of observed values for EpucaTtion € {10, 11, 12,13, 14,16, 17, 18, 19, 20}.
We set up a Monte Carlo algorithm that generates data, fits a linear regression, and derives
the 95%-confidence intervals for a range of quantities of interest, including conditional median
values, conditional mean values, first differences of mean values, first differences of median
values, the ratio of median values, and the ratio of mean values. Precisely, the Monte Carlo

algorithm takes the following steps:

1. Draw € ~ N(0, ?) and compute In(INcoME) using equation 2 forall N = 10 observations.
2. Regress In(IncomE) on EpucaTtion via OLS.
3. Use the regression result to simulate the 95%-Confidence Intervals of
* Med(yledu=1)
* Med(y|edu = 20)
* E(yledu=1)
* E(yledu =20)
* Med(y|edu = 20) — Med(y|edu = 1)
* E(yledu=20) — E(yledu=1)
* Med(y|edu = 20)/Med(y|edu = 1)
* E(yledu=20)/E(yledu=1)
following the simulation algorithm presented in the main text with 10,000 simulations.

4. Report whether the true quantity is within the 95%-Confidence Interval.

We repeat this simulation algorithm 10, 000 times. Table A2 reports the coverage rate of

the quantities of interest. As expected, the coverage rate of all quantities is close to 95%.



Estimand Coverage

Med(yledu = 1) 0.9475
Med(y|edu = 20) 0.9479
E(yledu=1) 0.9478
E(yledu = 20) 0.9447
Med(yledu = 20) — Med(yledu = 1) 0.9489
E(yledu =20) — E(yledu = 1) 0.9507
Med(yledu = 20)/Med(y|edu = 1) 0.9482
E(yledu =20)/E(yledu=1) 0.9482

Table A2: Monte Carlo Results for the coverage rate of simulated 95%-Confidence Intervals.



SI.3 A simple example with code

install _github("mneunhoe/simloglm")

library(simloglm)

# Estimating the model

df <- simloglm:::example_df(n = 10)

ml <- Im(log(income) “educ, data = df)

# Calculating QoI and simulating Confidence Intevals with
simloglm
set.seed (220609)

resl <- simloglm(ml, scenario = list(educ = c(1, 20)))

# Summarize results for median

get_summary (resl, which_qoi = "median")

# Summarize results for mean

get_summary (resl, which_qoi = "mean"

# Or get first difference between the two scenarios
get_first_difference(resl, which_qoi = "median")

# Calculating QoI and simulating Confidence Intervals by hand
# Function to sample from inverse gamma distribution

rinvgamma <- function (n,

shape,



rate = 1,

scale = 1 / rate)

if (missing(rate) && !'missing(scale))
rate <- 1 / scale

1 / stats::rgamma(n, shape, rate)

# Set up informal posterior of coefficients

# Set number of draws

nsim <- 1000

beta_hat <- coef (ml)
sigma_hat <- summary(ml)$sigma

X_prime_X <- summary(ml)$cov.unscaled

set.seed (220609)

# First sigma“~2

sigma2_tilde <- rinvgamma (
nsim,
shape = m1$df.residual / 2,

rate = (sigma_hat =~ 2 * mi1$df.residual) / 2

# Then the betas



beta_tilde <- matrix(NA, nrow = nsim, ncol = length(beta_hat)

)

for (sim in 1:nsim) {
beta_tilde[sim, ] <-
MASS::mvrnorm (1, beta_hat, X_prime_X * sigma2_tildel[sim

D

# Set your scenarios as a matrix (don’t forget the intercept)
X_c <- rbind(c(1, 1),

c(1, 20))

# Calculate the linear predictor on the log scale

X_beta <- beta_tilde %*% t(X_c)

# Now transform back to original scale using the appropriate

formula

# Expected Values/Conditional Mean
# First add the draws of 1/2*sigma2_tilde to each column
X_beta_sigma_tilde <- apply(X_beta, 2, function(x) x + 1/2%

sigma2_tilde)

# Transform

E_Y_c <- exp(X_beta_sigma_tilde)

# Summarize to get Confidence Intervals

CI_E_Y_c <- apply(E_Y_c, 2, quantile, c(0.025, 0.975))



# Use beta_hat and sigma_hat for point estimates
X_beta_hat <- beta_hat %x*% t(X_c)

X_beta_sigma_hat <- X_beta_hat + 1/2*sigma_hat~2

# Point estimate

E_Y_c_hat <- exp(X_beta_sigma_hat)

# Conditional Median

# First add the draws of 1/2*sigma2_tilde to each column

# Transform

Med_Y_c <- exp(X_beta)

# Summarize to get Confidence Intervals

CI_Med_Y_c <- apply(Med_Y_c, 2, quantile, c(0.025, 0.975))

# Point estimate

Med_Y_c_hat <- exp(X_beta_hat)

# Or get first difference of the medians between the two

scenarios

# Point estimate

fd_Med_hat <- Med_Y_c_hat[,2] - Med_Y_c_hat[,1]

# Confidence Intevals

fd_Med <- Med_Y_c[,2] - Med_Y_cl[,1]



CI_fd_Med <- quantile(fd_Med, c(0.025, 0.975))



SI.4 A Reanalysis of Shepherd and You (2020)

We present here a second reanalysis of a prominently published article to show that
correctly interpreting effects in regression models is substantively important. Shepherd and
You (2020) study the influence of career paths of congressional staffers on the legislative
output. In particular they are interested in what happens when staffers later become lobbyists.
Shepherd and You (2020, 270) conclude: “Using comprehensive data on congressional staffers,
we find that employing staffers who later become lobbyists is associated with higher legislative
productivity for members of Congress, especially in staffers final terms in Congress.”

They run several OLS models with transformed dependent variables.® One of the three
dependent variables to measure legislative productivity is the legislative effectiveness score
(LES) introduced by Volden and Wiseman (2014, 2018). We focus on the LES since this is the
dependent variable that Shepherd and You (2020) offer a substantive interpretation for. With the
provided replication data we can reproduce the results in the original regression table exactly.
Yet, following our guidelines the substantive results using quantities of interest differ. Again,
this difference is due to an erroneous transformation of the transformed quantities of interest
back to the original scale.

Shepherd and You (2020, Corrigendum 1) report the following substantive effect: “Given
that our outcome variables are log-transformed, a one standard deviation increase in the num-
ber of future lobbyist staff (0.34) is associated with 1.8% increase in a members Legislative
Effectiveness Score (LES) (exp(log(1.7) + 0.0317 x 0.34) — 1.7 = 0.0184), if we evaluate the
effect [...] at the mean level of LES.” Where 1.7 is the mean of the LES in their sample, 0.0317

is the coefficient for the number of future lobbyists in their model and 0.34 is supposed to be a

8The log-transformation of the variables is motivated by “Given that all outcome variables have
highly skewed distributions, we use log-transformed variables in the estimation” (Shepherd
and You, 2020, 276). Unfortunately, this commonly used motivation is wrong, the decision of
transforming the dependent variable should only be based on the distribution of Y|X, i.e. the
error distribution. Moreover, since all of the variables contain Os, they decide to calculate the
log as log(x + 1). This has to be taken into account when transforming the quantities of interest

back to the original scale.
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residualized standard deviation, as proposed in Mummolo and Peterson (2018), in the number
of future lobbyist staff.

According to our replication analysis the mean of LES is at 1 and the residualized standard
deviation of the number of future lobbyists ~ 0.74. However, even correcting those two
values would still yield an erroneous transformation. Note, that this interpretation neglects the
multiplicative nature of a model with a log-transformed dependent variable, the substantive
effect depends on a scenario for all other independent variables.®.

Using the results from the model in Shepherd and You (2020, 276, Table 2, Model 4) and
following the steps outlined in section 3 we get that a one standard deviation increase in the
number of future lobbyist staff (0.74) is associated with a 5.6% increase in a member’s LES for
an average member of Congress, 1 with a 95% Confidence Interval from 2.8% to 8.3%. Thus,
on average, the effect is more than 3 times as large as reported by Shepherd and You (2020).

Using the 95% Confidence Interval to test the classical two-sided hypothesis whether a
one standard deviation increase in future lobbyist staff has an effect (different from 0) on a
member’s LES, we can reject the Null hypothesis of no effect. This highlights the importance to
communicate the uncertainty surrounding quantities of interest and not only relying on a point
estimate.

In their paper Shepherd and You (2020, 273) formulate their hypothesis as a directed hy-
pothesis: “Hiring a future revolving-door staffer should be associated with increases in member
legislative effectiveness and bill sponsorship activity.” Another advantage of the simulation
approach is that we can easily calculate the probability that the % Change in Legislative Effec-
tiveness Score that is associated with a one standard deviation increase in future lobbyist staff is

greater than 0, a test that is better suited to the directed hypothesis. With our simulation results

9The approach of Shepherd and You (2020) would give the same results only if all of the other
coeflicients were exactly O or if the intercept is 0 and they chose a scenario where all other

covariates are set to 0.

10Note that this observation does not exist. Other approaches for scenarios based on actual
observations have been proposed (e.g. Hanmer and Kalkan, 2013). Using our R package

simloglm it is easy to also calculate the percent increase using the observed value approach.

11



we find that this is the case in all of our 1,000 simulations, thus, yielding a p-value of < ﬁ
for the one-sided hypothesis test.

Figure Al displays the correctly calculated results for the scenarios outlined in Shepherd
and You (2020). Since the sampling distribution of quantities of interest on the original scale
is not necessarily symmetric we advise applied scholars to communicate as much information

as possible on the shape of the distribution. This can be achieved, for instance, by reporting

multiple confidence intervals.

Figure A1: Correct Quantities of Interest based on the results in Shepherd and You (2020). Results for
the effect of a one (residualized) standard deviation increase (0.74) in the number of future lobbyists on
the Legislative Effectiveness Score (LES), where all other covariate values are set to their means. Panel
(A) shows the First-Difference between Expected Values. Panel (B) shows the First-Difference between
Medians. Panel (C) shows the % Change.
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