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Online appendix 

In this appendix I further compare the proposed measure of elite collective action to other 

measures of elite influence in the literature. I first compare the data they use, and then their 

parametrization.  

Table 1A summarizes the different variables that each of the measures of elite influence use. For 

the ECA measure, I focus only on the power-sharing dimension. This is the most readily 

comparable quantity to existing work, since past research has not focused on the cohesion of the 

elites. There is substantial overlap when it comes to power-sharing. ECA and GS both use Svolik’s 

coding of military involvement in government. GWF use a somewhat similar coding to capture 

whether the sitting autocrat controls the military or if the military functions as an independent 

force. The same holds for the second row, where GS and ECA use essentially the same variable 

capturing whether the autocrat owes its position to a collective or not. GWF focuses less on the 

origins of the dictator and more on whether rulers currently control the party. The next couple of 

variables in all measures try to capture the independence or power of the party relative to the 

executive. ECA and GS also overlap in their attention to the cabinet. Particularly, on whether the 

autocrat has shuffled members of the cabinet. GWF somewhat similarly consider whether 

members can climb the party ladder by their own means or if they depend on the whims of the 

dictator.   

 Key areas of difference relate to legislatures and purges. GS and GWF do not consider 

legislatures as potential power-sharing spaces. For some cases, like some communist countries 

or autocracies with rubber stamp legislatures, this omission is likely justified. However, in some 

cases legislatures do behave as genuine counterbalances. The RI model ECA uses allows it to 

consider legislatures without making the assumption that they are always (or never) spaces of 

power-sharing. Purges, military or otherwise, are seemingly clear indicators of a lack of power-

sharing. However, while purges do diminish power-sharing, research is less clear about what is it 

that purges tell us about the overall level of elite power. Some dictators may purge only when 

they know the elite is weak enough to not be able to resist it, while others may do it when they 

fear the elite has amassed too much influence (Sudduth 2017). Without clear theoretical 

expectations, ECA opts to not consider purges as an indicator of power-sharing. Moreover, by 

excluding purges from the measure of power-sharing, it is possible to assess the empirical 

relationship between the two without circularity.  
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Table 1A: Comparison of power-sharing/personalism indicators  

ECA Power-sharing GS Personalism GWF Personalism 

Military involvement No military involvement Executive controls security apparatus 

Executive is selected  Executive is not a collective Executive controls party 

Single party  No regime party Party serves as rubber stamp 

Hegemonic party Party created by executive Party created by executive 

Presence of a legislature Multiple parties Loyalty-based access to party 

Stable cabinet Cabinet change Loyalty-based promotion in party 

Stable legislature   

Autonomous legislature   

Local government    

 Military purges Military purges   

 Civilian purges  

 Executive’s family in power  

 Executive has no title*   

 
Dictator before transition  

 
 Executive controls paramilitaries 

*Gandhi and Sumner include three variables: executive has not official position, executive has two 
positions, executive has three official positions.  

 

Comparison of standard 2-parameter and random item IRT models.  

This section goes presents in further detail the differences between the two parameter IRT model 

(2PL) and the random items model (RI). The 2PL model is the most common in political science, 

and is also the one used in current measures of autocratic elite influence (Gandhi and Sumner 

2020; Geddes, Wright, and Frantz 2018, 82).  The RI model is a more general version of the 2PL 

in that it does not assume measurement invariance. In other words, it recognizes that the items 

perform differently in different contexts.  The traditional 2PL model specifies the probability of a 

positive response by individual i to item k as:  
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𝑃(𝑦𝑖𝑘 = 1|𝜃𝑖, 𝛼𝑘 , 𝛽𝑘) = (1 + 𝑒𝑥𝑝(𝛼𝑘𝜃𝑖 − 𝑏𝑘))
−1

 

Where 𝜃𝑖, 𝛼𝑘 , 𝛽𝑘 denote the latent ability, the item discrimination, and the item difficulty, 

respectively. The model is usually estimated through a latent continuous variable Zjk.  

 𝑍𝑖𝑘|𝑦𝑖𝑘  ,  𝜃𝑖, 𝛼𝑘 , 𝛽𝑘~Φ(𝛼𝑘𝜃𝑖 − 𝛽𝑘 ,  1) Eq. 1 

The random items model lets 𝛼𝑘 𝛽𝑘 to vary by group j. Equation 1 then becomes  

 𝑍𝑖𝑗𝑘|𝑦𝑖𝑗𝑘  ,  𝜃𝑖, 𝛼𝑗𝑘 , 𝛽𝑗𝑘~Φ(𝛼𝑗𝑘𝜃𝑖 − 𝛽𝑗𝑘 ,  1) Eq. 2 

where 𝛼𝑗𝑘 = 𝛼𝑘 + 𝑎𝑗𝑘 and 𝛽𝑗𝑘 = 𝛽𝑘 + 𝑏𝑗𝑘.  Additionally, the RI model also treats the latent abilities 

as the result of a fixed and random component such that 𝜃𝑖 = 𝜇𝜃 + 𝜎𝜃𝜖𝜃. As reported by Fox 

(2010, 200),  the mean of the latent continuous variable is then: 

Zijk = (𝛼𝑘 + 𝑎𝑗𝑘)(𝜇𝜃 + 𝜎𝜃𝜖𝜃) − (𝛽𝑘 + 𝑏𝑗𝑘) + ϵ𝑖𝑗𝑘 

 𝑍𝑖𝑗𝑘 = 𝛼𝑘𝜇𝜃 − 𝛽𝑘 + 𝛼𝑘𝜎𝜃𝜖𝜃 + 𝑎𝑗𝑘𝜎𝜃𝜖𝜃 + 𝑎𝑗𝑘𝜇𝜃 − 𝑏𝑗𝑘 − 𝜖𝑖𝑗𝑘 Eq. 3 

The results reported in the manuscript and in this appendix reflect hierarchical versions of the 

2PL and RI models. That is to say that the ability parameters have a hierarchical structure so 

that regime-year observations are nested in regimes (Fox, 2010, 203). While the hierarchical 

version of the 2PL model is not standard in the literature, I use it here to make it more 

comparable to the RI model. 

Simulation performance  

The main text compared how well the 2PL and RI models recovered the item parameters 𝛼𝑘 and 

𝛽𝑘 examining their RMSE. Figure 1A instead shows the posterior predictive checks for each of 

the 10 simulated items. Recall that  𝛼𝑘 and 𝛽𝑘 capture the mean discrimination and difficulty. In 

addition, the simulated data contains deviations from the mean denoted as 𝑎𝑗𝑘 and 𝑏𝑗𝑘. For the 

first few items, 𝑎𝑗𝑘 and 𝑏𝑗𝑘 are close to zero but get farther from it for the later items. That is, the 

later items have more variance across countries. Panel A shows that the 2PL model approximates 

the items with small 𝑎𝑗𝑘 and 𝑏𝑗𝑘 well enough. However, the later half of items the model performs 

consistently worse. In contrast, Panel B shows that the RI items performs well regardless of the 

degree of item variance. When item variance is low, the RI model gives similar answers to the 

2PL model, but it gives more accurate answers as item variance increases. The difficulty 

parameters show a similar pattern. 
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Figure 1A: Item parameter recovery for 2PL and RI models  

 
Results from a simulation study with 10 items, 50  groups and 40 years. The credible intervals shown are for 90% (light) 70% and 50% (dark).  

 

It is worth noting the much wider credible intervals of the RI model. While there is more 

uncertainty at the parameter level with the RI model, there is less uncertainty at the level of the 

prediction. This standard behavior models arises from the propagation of uncertainty from the 

random effects, and has the advantage of offering estimates that do not undersell the uncertainty 

(McElreath 2015). Nevertheless, the results do suggest that maximizing the number of repeated 

observations (i.e. years for each country) would be beneficial when using an RI model. The ECA 

measures uses covers 71 years instead of the 40 in the simulation. Hence the ECA measure 

should alleviate some of the uncertainty inherent with random effects models.  

Performance in elite collective action measure  

I now compare the performance of the ECA measure reported in the manuscript using a RI model, 

and an alternative specification using the 2PL model.  I compare them using leave-one-out cross-

validation. In this process, all the data except for one datapoint is used to train the model. Then 

the resulting parameters are used to predict the observation that was left out. This process is then 
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repeated for all datapoints in the dataset. The results are summarized by leave-one-out 

information criteria, with smaller scores representing less error.  

Figure 2A shows the information criteria for the RI and 2PL version of the ECA measure. 

It disaggregates power-sharing and cohesion components. In both cases, the RI version has 

considerably less error. A difference of four is usually taken as evidence of better fit (Vehtari, 

Gelman, and Gabry 2017). In this case, the difference is 236 and 443 for power-sharing and elite 

cohesion, respectively. This suggests that the RI model matches the data better than the 2PL 

model.  

Figure 2A: Error in recovery of latent dimensions  

 

Stan code 

The models mentioned here were fitted within the R package for Stan (Carpenter et al. 2017). 

The following is the Stan code for the 2PL and RI models.  
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2PL model  

data{ 
  int<lower=1> K;               // # items 
  int<lower=1> J;               // # countries 
  int<lower=1> JK;              // # of random effects  
  int<lower=1> I;               // # country-years  
  int<lower=1> N;               // # observations 
  int<lower=1> kk[N];           // index for items 
  int<lower=1> jj[N];           // index for countries  
  int<lower=1> ii[N];           // index for country-years  
  int<lower=1> jjkk[N];         // index random effects   
  int<lower=0> y[N];            // response variable  
  int<lower=1> nn[N];            // index for observations 
  int<lower=1> jb[I];           // index for countries for beta parameter   
} 
parameters{ 
  vector [I] e_ij; 
  vector [N] e_ijk; 
  vector[J] mu_0j;                  //Spread for mean country abilities  
  vector<lower=0>[K-1] free_a_k;    // mean discrimination  of item k 
  vector<lower=0>[K-1] free_b_k;    // mean difficulty  of item k 
} 
transformed parameters{ 
  vector [I] theta_ij; 
  real mu_theta;  
  real<lower=0> sigma_theta; 
  vector[K] a_k;                    // mean discrimination  of item k, complete vector 
  vector[K] b_k;                    // mean difficulty  of item k, complete vector 
 
  a_k[1:K-1]=free_a_k; 
  a_k[K]=1/prod(free_a_k);         // Constrain a_k to multiply to 1 for identification  
  b_k[1:K-1]=free_b_k; 
  b_k[K]=1/prod(free_b_k);         // Constrain a_k to multiply to 1 for identification  
  mu_theta=0;                      // Fix scale of theta, mean=0 
  sigma_theta=1;                   // Fix scale of theta, sd=1 
  theta_ij[ii]=mu_0j[jj]+ e_ij[ii]; 
} 
model{ 
  vector[N] eta; 
  e_ij~normal(0, 1.5);  
  e_ijk~normal(0,1); 
  mu_0j~normal(0, 1.5); 
  a_k~normal(0,1); 
  b_k~normal(.5, 1); 
  for (n in 1:N){ 
    eta[n] = a_k[kk[n]]*mu_theta-b_k[kk[n]]+ 
    a_k[kk[n]] *sigma_theta .*theta_ij[ii[n]]+ 
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    e_ijk[n]; 
  } 
  y ~ bernoulli_logit(eta); 
} 
generated quantities{ 
  vector[N] eta; 
  vector[N] log_lik;          //Log likelihood to estimate deviance and LOO-IC  
  real dev; 
  dev = 0; 
      for (n in 1:N){ 
    eta[n] =  a_k[kk[n]]*mu_theta-b_k[kk[n]]+ 
    a_k[kk[n]] *sigma_theta .*theta_ij[ii[n]]+ 
    e_ijk[n]; 
      log_lik[n] = bernoulli_logit_lpmf(y[n] | eta[n]); 
  } 
  dev = dev + (-2)*bernoulli_logit_lpmf(y | eta); 
} 
 

Random items model  

data{ 
  int<lower=1> K;               // # items 
  int<lower=1> J;               // # countries 
  int<lower=1> JK;              // # of random effects  
  int<lower=1> I;               // # country-years  
  int<lower=1> N;               // # observations 
  int<lower=1> kk[N];           // index for items 
  int<lower=1> jj[N];           // index for countries  
  int<lower=1> ii[N];           // index for country-years  
  int<lower=1> jjkk[N];         // index random effects   
  int<lower=0> y[N];            // response variable  
  int<lower=1> nn[N];           // index for observations 
  int<lower=1> jb[I];           // index for countries for beta parameter  
             
} 
parameters{ 
  vector [I] e_ij; 
  vector [N] e_ijk; 
  vector[J] mu_0j;                  //Spread for mean country abilities  
  vector<lower=0>[K-1] free_a_k;    // mean discrimination  of item k 
  vector<lower=0>[K-1] free_b_k;    // mean difficulty  of item k 
  vector[K-1] e_a_kj_raw[J];       // discrimination of item 
  vector[K-1] e_b_kj_raw[J];        // difficulty of item 
   
} 
transformed parameters{ 
  vector [I] theta_ij; 
  real mu_theta;  
  real<lower=0> sigma_theta; 
  vector[K] a_k;                    // mean discrimination  of item k, complete vector 
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  vector[K] b_k;                    // mean difficulty  of item k, complete vector 
  vector[K] e_b_kj[J]; 
  vector[K] e_a_kj[J]; 
   
   
  a_k[1:K-1]=free_a_k; 
  a_k[K]=1/prod(free_a_k);         // Constrain a_k to multiply to 1 for identification  
  b_k[1:K-1]=free_b_k; 
  b_k[K]=1/prod(free_b_k);         // Constrain b_k to multiply to 1 for identification  
   
  for (j in 1:J) {                // Contrain random effects to sum to 1 
    e_a_kj[j] = append_row(e_a_kj_raw[j], -sum(e_a_kj_raw[j])); 
  }   
  for (j in 1:J) { 
    e_b_kj[j] = append_row(e_b_kj_raw[j], -sum(e_b_kj_raw[j])); 
  } 
   
  mu_theta=0;                      // Fix scale of theta, mean=0 
  sigma_theta=1;                   // Fix scale of theta, sd=1 
  theta_ij[ii]=mu_0j[jj]+ e_ij[ii]; 
   
} 
model{ 
  vector[N] eta; 
  e_ij~normal(0, 1);  
  e_ijk~normal(0,1); 
  mu_0j~normal(0, 1); 
  a_k~lognormal(0, .3); 
  b_k~normal(1, .5); 
   
  for (k in 1:J) { 
    e_b_kj[k] ~ normal(0, 1);  // prior on  beta random effects 
  } 
    for (k in 1:J) { 
    e_a_kj[k] ~ normal(0, 1);  // prior on alpha random effects 
  } 
   
  for (n in 1:N){ 
    eta[n] = a_k[kk[n]]*mu_theta-b_k[kk[n]]+ 
      a_k[kk[n]] *sigma_theta .*theta_ij[ii[n]]- 
      e_a_kj[jj[ii[n]], kk[n]]*mu_theta+ 
      e_a_kj[jb[ii[n]], kk[n]]*sigma_theta*theta_ij[ii[n]]- 
      e_b_kj[jb[ii[n]], kk[n]]+e_ijk[n]; 
  } 
  y ~ bernoulli_logit(eta); 
}  
generated quantities{ 
  vector[N] eta; 
  vector[N] log_lik; 
  real dev; 
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      for (n in 1:N){ 
    eta[n] = a_k[kk[n]]*mu_theta-b_k[kk[n]]+ 
      a_k[kk[n]] *sigma_theta .*theta_ij[ii[n]]+ 
      e_a_kj[jj[ii[n]], kk[n]]*mu_theta+ 
      e_a_kj[jb[ii[n]], kk[n]]*sigma_theta*theta_ij[ii[n]]- 
      e_b_kj[jb[ii[n]], kk[n]]+e_ijk[n]; 
      log_lik[n] = bernoulli_logit_lpmf(y[n] | eta[n]); 
  } 
  dev = -2 * sum(log_lik); 
} 
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