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Supplementary Appendix S1: Statistical Details and Examples

This document provides additional details regarding the statistical methods presented in the main text, in-
cluding outlines of the underlying statistical theory as well as empirical examples using real data. Question
numbers are the same as in the main text, with the exception of three “sub-questions” (Questions 8a, 8b, and
8c) in this appendix that are extensions of Questions 8 but, to shorten the main text, are not addressed there.

1 Management Experiments Using Marked Plants

1.1 Assessing the efficacy of a single management treatment on a single species

Question 1: What is the PET and 95% confidence interval for a given test treatment?

The goal here is to estimate the PET and its 95% confidence interval for a particular species, treatment type,
and treatment level.

Assumptions and notation: We assume there are n marked plants labeled 1, 2, . . . , n. A test treatment
is applied in a uniform manner to each of the n plants, which then respond independently. The treatment
outcome for each plant is a Bernoulli random variable, with treatment being effective with probability p
and ineffective with probability 1 − p. Let random variable N1 be the number of plants for which treatment
is effective (the “successes”), and let N2 := n − N1 be the number for which treatment is ineffective (the
“failures”). Then N1 is binomially distributed with parameters n and p, expected value np, and variance
np(1 − p). Moreover, for n sufficiently large, N1 is approximately normally distributed with mean np and
variance np(1 − p).

Statistical method: Let n1 and n2 denote the observed values of N1 and N2 in a particular management
experiment. To answer Question 1 adequately, we require estimators for binomial parameter p (with n, n1,
and n2 known) and its upper and lower 100(1 − α)% confidence limits, where α is the chosen significance
level (usually 0.05). The maximum likelihood estimator p̂ for PET parameter p is given by

p̂ = N1/n (1)

(e.g., Agresti, 2013, p. 10).
Numerous methods have been proposed for estimating confidence intervals for a binomial success prob-

ability. The simplest is the Wald confidence interval, which Brown et al. (2001) call the “standard interval”
because it is the most common interval presented in introductory statistics textbooks. Unfortunately, it pro-
duces a confidence interval that on average corresponds to a true confidence level well below the nominal
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1 − α level unless n is very large (much greater than 100) and therefore should not be used (Agresti, 2013;
Agresti & Coull, 1998; Brown et al., 2001). Based on simulation studies (Agresti & Coull, 1998; Brown et
al., 2001), two methods that are almost as simple as the Wald interval but perform much better are the Wil-
son interval and the Agresti-Coull interval, with the former performing slightly better than the latter except
when p is very close to 0 or 1. The 100(1 − α)% Wilson confidence interval is given by

p̃ ±
zα/2

ñ

√
N1(1 − N1/n) + z2

α/2/4, (2)

where zα/2 is the 1 − α/2 quantile of the standard normal distribution and

ñ = n + z2
α/2, p̃ = (N1 + z2

α/2/2)/ñ

(Brown et al., 2001; Agresti, 2013: pp. 14–15). The 100(1− α)% Agresti-Coull confidence interval is given
by

p̃ ± zα/2
√

p̃(1 − p̃)/ñ (3)

(Brown et al., 2001; Agresti, 2013: pp. 32–33). As usual, the upper and lower limits of both of these
intervals are random variables; statistical software reports an estimate of each interval obtained by replacing
random variable N1 by observed value n1 in Eqs. (2) and (3).

R functions: Wilson and Agresti-Coull confidence intervals can be computed with the binom.confint()
function in R package binom (Dorai-Raj, 2022), which also has function binom.coverage() for comput-
ing the coverage probability (the proportion of a large number of simulated trials for which the estimated
confidence interval includes the true value of p).

Example: Preventing post-removal resprouting by Norway maple saplings. As part of an adaptive man-
agement project conducted by one of the authors (JNM) to assist managers of the extensive natural lands
of the Fairmount Park System in Philadelphia, Pennsylvania (USA), a field experiment was conducted to
assess two methods of removing invasive Norway maple saplings (cutting down, and cutting down fol-
lowed by stump application of the herbicide, triclopyr) from urban forests in the park system. Each removal
method was randomly assigned to 60 marked saplings. Saplings were cut down during the growing season,
and stumps in the triclopyr group were immediately treated. All stumps were checked one year later to
determine the number in each treatment group for which the removal method had been effective, meaning
that no visible resprouting from the stump or roots had occurred. The results are shown in Table 1, along
with maximum likelihood estimates n1/n of p and the Wilson and Agresti-Coull 95% confidence limits as
computed by the binom.confint() function in R. Note that regardless of which type of confidence interval
is used, the estimated PET for the Cut + Triclopyr treatment is greater than that for the Cut treatment, and
the 95% confidence intervals for the two treatments do not overlap.

Table 1. Estimates and 95% Wilson and Agresti-Coull confidence intervals (CIs) for
PETs for two different treatments in the Norway maple management experiment.

Treatment n1 n PET CI type Lower limit Upper limit

Cut 12 60 0.200 Wilson 0.118 0.318
Agresti-Coull 0.117 0.319

Cut + Triclopyr 58 60 0.967 Wilson 0.886 0.991
Agresti-Coull 0.880 0.997
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Question 2: Does the PET for a given test treatment exceed prescribed management threshold p⋆?

The goal now is to determine whether there is strong evidence that management objective PET > p⋆ has
been achieved for a particular species, treatment type, and treatment level, where p⋆ is a threshold PET to
be exceeded.

Statistical method: The null hypothesis here is H0: p − p⋆ = 0, and the relevant alternative is the
one-sided hypothesis H1: p − p⋆ > 0. The main tests are a large-sample test for proportions and, for
small samples, the exact binomial test and the mid-P binomial test. Simulation studies show that the exact
binomial test is unduly conservative; the false-positive error rate of the mid-P binomial test is closer to the
nominal α.

Assumptions and notation: The assumptions here are the same as for Question 1.
Statistical method: The maximum likelihood estimator p̂ for p is again given by Eq. (1). The null

hypothesis to be tested is H0: p − p⋆ = 0, and since p⋆ is a management threshold to be exceeded, the
relevant alternative hypothesis is H1: p − p⋆ > 0. Under H0, random variable N1 − np⋆ has mean 0 and
variance np⋆(1 − p⋆). For sufficiently large n, then, the standardized random variable V defined by

V =
N1 − np⋆√
np⋆(1 − p⋆)

(4)

will be approximately normally distributed with mean 0 and variance 1 (Hollander et al., 2014: p. 13). There
is uncertainty as to exactly what “sufficiently large” means; by analogy with methods for comparing two
success probabilities discussed in section 1.2 below, we may interpret it to mean that the expected number
of “successes” np⋆ and the expected number of “failures” n(1− p⋆) under H0 both should be at least 5. The
P-value for H0 is simply the probability that Z > v, where Z is a standard normal random variable and v is
the observed value of V . We reject H0 if and only if P ≤ α, where α is the chosen significance level.

If the expected number of successes or failures is less than 5, or if one wishes to remove uncertainty re-
garding adequacy of the normal approximation underlying the large-sample test, some form of binomial test
can be used (Agresti, 2013: pp. 16–17). For the exact binomial test, the P-value is the probability of obtain-
ing a value of N1 as extreme or more so than the observed value if H0 were true. Thus, it is the probability
that N1 ≥ n1 under H0, where N1 has a binomial distribution with parameters n and p⋆ (equivalently, it is
the probability that N1 > n1 − 1, which is more convenient to compute with the complementary distribution
function). The exact binomial test, however, is unduly conservative in the sense that its actual false-positive
(Type-1) error rate tends to be meaningfully less than the nominal rate α. The mid-P version of this test
(which we will call the mid-P binomial test) is less conservative, yielding a false-positive error rate closer
to the nominal α level, though there is no guarantee it will not slightly exceed α (Agresti, 2013: p. 17). The
P-value for the mid-P test is simply the P-value for the exact binomial test minus one-half the probability
of the event {N1 = n1} under H0. That is,

mid-P P-value = Pr{N1 > n1 − 1 | n, p⋆} − 1
2 Pr{N1 = n1 | n, p⋆}. (5)

R functions: The large-sample test referred to can be performed with the prop.test() function in R, or
simply by using the pnorm() function. For small samples, an exact binomial test can be performed with R’s
pbinom() or binom.test() function. The resulting P-value can be adjusted downward to obtain the mid-P
P-value using R’s dbinom()function (see section 1.2 of SI1). All of these functions are included in the stats
package (R Core Team, 2023), which is part of R’s standard library.

Example: Preventing post-removal resprouting by Norway maple saplings (continued). For the Norway
maple example, suppose (arbitrarily) that a method for cutting down saplings is desired for which the prob-
ability of effective treatment is greater than p⋆ = 0.8. The data in Table 1 show that the expected numbers
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of “successes” and “failures” for both experimental groups are np⋆ = 48 and n(1 − p⋆) = 12. Since both
of these expected numbers exceed 5, the large-sample test based on V should be adequate. For purposes of
illustration, we apply the large-sample test (using the prop.test() function in R) as well as the exact and
mid-P binomial tests (using the binom.test() and dbinom() functions in R). The results are shown in
Table 2. Regardless of which test is used, there is strong evidence that the success probability exceeds the
management threshold of 0.8 for the Cut + Triclopyr treatment but not for the Cut treatment.

Table 2. Large-sample, exact binomial, and mid-P binomial tests of the null hypothesis H0: p − p⋆ = 0 versus
alternative hypothesis H1: p − p⋆ > 0 for the Norway maple sapling data presented in Table 1, with p⋆ = 0.8.
Both unadjusted (Raw) and Holm-adjusted (Adj.) P-values are shown.

Large-sample test Exact binomial test Mid-P binomial test

Treatment n1/n Raw P-val. Adj. P-val. Raw P-val. Adj. P-val. Raw P-val. Adj. P-val.

Cut 0.200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Cut + Triclopyr 0.967 0.0006 0.0012 0.0002 0.0004 0.0001 0.0002

1.2 Comparing treatment efficacy in pairs of treatments or species

Question 3: Do PETs pA and pB for plant groups A and B differ?

Here the goal is to determine whether there is strong evidence that the PETs for two groups of plants differ.
In the most common situation, the two groups are plants of a target invasive species that receive different
management treatments, one of which might be the null treatment. The null hypothesis is that there is no
difference; the alternative hypothesis can be either two-sided or one-sided, depending on whether both or
only one alternative is of interest.

Assumptions and notation: The assumptions and notation are similar to those for Questions 1 and 2,
except that two treatment groups are assessed simultaneously. (If there are more than two groups, they
are assessed pairwise and the P-values are Holm-adjusted.) Let the two groups be denoted A and B. We
assume there are nA individuals in group A (labeled 1, 2, . . . , nA) and nB individuals in group B (labeled
1, 2, . . . , nB), with the total number of individuals being n := nA + nB. Each group receives a different
management treatment, which is applied in a uniform manner to each plant and to which plants respond
independently. The treatment outcome for each plant is a Bernoulli random variable. For plants in group
i (i = A,B), treatment is effective with probability pi and ineffective with probability 1 − pi. Let random
variable Ni1 be the number of effectively treated plants in group i, let Ni2 := ni − Ni1 be the number of
ineffectively treated plants in group i, and let Ni = Ni1 + Ni2 (Table 3). Then Ni1 is binomially distributed
with parameters ni and pi, expected value ni pi, and variance ni pi(1− pi). Moreover, for ni sufficiently large,
Ni1 is approximately normally distributed with mean ni pi and variance ni pi(1 − pi).

Table 3. Outcome table with two treatments and a binary treatment effect. Row sums are
fixed, but column sums for the numbers of plants treated effectively and ineffectively are not.

Treatment Plants treated effectively Plants treated ineffectively Row sum

A NA1 nA − NA1 nA
B NB1 nB − NB1 nB

Column sum: N1 n − N1 n
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Statistical method: The maximum likelihood estimator p̂i for pi (i = A,B) is

p̂i = Ni1/ni. (6)

We are interested in testing the null hypothesis H0: pA − pB = 0. Under H0, pA = pB = p. The maximum
likelihood estimator for p is

p̂ = (NA1 + NB1)/(nA + nB) = N1/n, (7)

and random variable p̂A − p̂B has expected value 0 and variance p(1 − p)(1/nA + 1/nB). For sufficiently
large nA and nB, p̂ will be a good estimate of p. The variance of p̂A − p̂B will then be approximately
p̂(1 − p̂)(1/nA + 1/nB), and the random variable V defined by

V =
p̂A − p̂B√

p̂(1 − p̂)(1/nA + 1/nB)
(8)

will have an approximate standard normal distribution (Agresti 2013: p. 78, Hollander et al. 2014: pp. 497,
505). V can therefore be used to test the null hypothesis H0 against a one- or two-sided alternative hypothesis
H1. Whenever nA and nB are large enough for V to be approximately normally distributed, V2 will be
distributed approximately as a chi-squared random variable with 1 degree of freedom. This fact provides
another way to test H0 against the two-sided H1, but use of V is preferable when a one-sided H1 is of interest.

For the one-sided alternative hypothesis H1: pA − pB > 0, we compute the P-value for H0 as the
probability that Z ≥ v, where Z is a standard normal random variable and v is the observed value of V .
For the one-sided alternative hypothesis H1: pA − pB < 0, the P-value is the probability that Z ≤ v, and for
the two-sided alternative hypothesis H1: pA − pB , 0, the P-value is twice the probability that Z ≥ |v|. In
each case, we reject H0 in favor of H1 if and only if P-value < α, where α is the significance level.

To determine whether nA and nB are large enough for V to be approximately normal (or for V2 to be
approximately chi-squared), estimates ei j of the expected values of successes (plants for which treatment
was effective) and failures are computed as

eA1 = nA p̂(n1), eA2 = nA(1 − p̂(n1)),
eB1 = nB p̂(n1), eB2 = nB(1 − p̂(n1)),

(9)

where p̂(n1) is the estimate of p obtained by replacing random variable N1 in the maximum likelihood
estimator p̂ by its observed value n1; that is,

p̂(n1) = n1/n. (10)

A simple rule of thumb for assessing adequacy of the normal approximation for V and the chi-squared
approximation for V2 is that

ei j ≥ 5 for all i, j (11)

(Hollander et al., 2014: p. 505). If any ei j is less than 5, or simply to remove uncertainty regarding adequacy
of the normal approximation, a small-sample test should be used instead (Agresti, 2013: pp. 93–94).

The small-sample test traditionally used for such data is Fisher’s exact test, also known more informa-
tively as the exact conditional binomial test. It assumes that both row and column sums are fixed, which is
inappropriate for experiments of the type considered here because only the row sums are fixed (Lydersen
et al., 2009; Agresti, 2013: p. 93). Simulation studies demonstrate that the exact conditional binomial test
tends to produce P-values well above the correct unconditional P-value, and false-positive error rates well
below the nominal rate α (Lydersen et al., 2009).
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A more-accurate P-value and false-positive error rate can easily be obtained by employing the mid-P
version of the exact conditional binomial test (Lydersen et al., 2009; Agresti, 2013) or by employing various
versions and modifications of Barnard’s exact unconditional binomial test. Exact unconditional binomial
tests treat only the row sums as fixed, which is correct for experiments of the type considered here (in this
traditional terminology, “unconditional” refers only to the column sums). Simulation studies show that these
tests are also more powerful than the exact conditional test for 2 × 2 outcome tables (e.g., Attwood et al.,
2022). Both the mid-P version of the exact conditional test and the exact unconditional tests perform better
than Fisher’s exact conditional test. Based on a simulation study, Lydersen et al. (2009) conclude: “Our
general recommendation is not to condition on any marginals not fixed by design... The traditional Fisher’s
exact test should practically never be used” (the only exception being the rare study where both marginals
are in fact fixed by design). We prefer Barnard’s exact unconditional test over the mid-P version of the
conditional test, mainly because its assumed experimental design is correct and the computational demands
of Barnard’s test that formerly limited its use are no longer a concern in the small-sample case.

R functions: R function prop.test() in the stats package tests H0 using a large-sample test based
on Z2 for a two-sided H1 and based on Z for a one-sided H1. It checks the sample-size condition in Eq. (11)
of the main text and reports a warning if it is violated. Function prop.test() also computes the New-
combe confidence interval for pA − pB. Various versions of the exact unconditional binomial test can be
performed using the exact.test() function in R package Exact (Calhoun, 2022); the package author rec-
ommends using Barnard’s original version of the test when computationally feasible, as specified by option
method="CAM". This function also has an option to compute a confidence interval for pA − pB.

Example: Preventing post-removal resprouting by Norway maple saplings (continued). Using the Nor-
way maple data shown in Table 1, we can test the null hypothesis H0: pCT − pC = 0 for the two removal
methods (CT: cut down, then treat stump with triclopyr; C: cut down, with no follow-up triclopyr treatment)
using the prop.test() function in R (an R snippet for this example is included in the supplemental in-
formation). We find that p̂CT(n1) − p̂C(n1) = 0.767 and v = 8.518. We also find that eA1 = eB1 = 35 and
eA2 = eB2 = 25. All ei j are much greater than 5, so the large-sample test appears appropriate. Since Norway
maple is known to resprout readily from untreated stumps when cut down, and since stump application of
triclopyr is expected to either increase the probability of preventing resprouts or have no effect, the most
appropriate alternative hypothesis is H1: pCT − pC > 0. Using R’s prop.test() function, the reported
P-value is approximately 8.1 × 10−18, well below the usual significance level of α = 0.05 (in publications,
a P-value this small would normally be reported as, for example, P < 0.001). Thus, there is strong evidence
that applying triclopyr to stumps after cutting down saplings increases the proportion of stumps that do not
resprout, compared to cutting down saplings without applying triclopyr.

For purposes of illustration, we test the same null and alternative hypotheses with Barnard’s exact uncon-
ditional binomial test, using function exact.test() in R package Exact. We find that p̂CT(n1)− p̂C(n1) =
0.767 and the reported P-value is approximately 7.0 × 10−20. Thus, this test also provides strong evidence
that applying triclopyr to stumps after cutting down saplings increases the proportion of stumps that do not
resprout, compared to cutting down saplings without applying triclopyr.

Question 4: What is PET difference pA − pB and its 95% confidence interval for plant groups A and B?

The goal in this case is to estimate the difference between the PETs for groups A and B, and to estimate the
95% confidence interval for the difference.

Assumptions and notation: Except where noted below, the assumptions and notation are the same as for
Question 3.
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Statistical method: The maximum likelihood estimator for pi (i = A,B) is given by Eq. (6). An estimator
for the difference pA − pB between the PETs for treatment groups A and B is p̂A − p̂B. As in the case of a
single proportion, the simple Wald confidence interval for pA − pB has poor statistical properties and should
not be used (Agresti & Caffo, 2000; Fagerland et al., 2013; Agresti, 2013). Simulation studies show that
two types of simple confidence interval—the Newcombe hybrid score and Agresti-Caffo intervals—perform
much better.

For the Newcombe hybrid score interval, let (λi(Ni1), υi(Ni1)) be the 100(1 − α)% Wilson confidence
interval for pi, as defined above. Then the 100(1−α)% Newcombe hybrid score interval for pA− pB is given
by

( p̂A − p̂B − zα/2S L, p̂A − p̂B + zα/2S U), (12)

where
S L =

√
λA(1 − λA)/nA + υB(1 − υB)/nB, S U =

√
υA(1 − υA)/nA + λB(1 − λB)/nB. (13)

The 100(1 − α)% Agresti-Caffo interval is given by

p̌A − p̌B ± zα/2
√

p̌A(1 − p̌A)/ňA + p̌B(1 − p̌B)/ňB, (14)

where
ňi = ni + 2, p̌i = (Ni1 + 1)/ňi. (15)

As usual, the upper and lower limits of these confidence intervals are random variables, and statistical
software reports a sample estimate in which random variables Ni1 are replaced by observed values ni1.

For small samples, the Newcombe hybrid score and Agresti-Caffo intervals should not be considered
reliable. Instead, an exact unconditional confidence interval should be employed. Several of these intervals
and software for estimating them are discussed by Fagerland et al. (2015). As is true of Barnard’s test and its
modifications, estimation of exact unconditional intervals is computationally intensive—even more so than
determining a P-value for testing the null hypothesis, pA − pB = 0.

R functions: Newcombe hybrid score and Agresti-Caffo intervals confidence interval for pA − pB can
be computed using the function pairwiseCI() in R package pairwiseCI. The Newcombe confidence
interval can also be computed using the prop.test() function in R’s stats package. For small samples,
the exact.test() function in the Exact package mentioned above in discussing Question 3 has an option
to compute an estimated confidence interval for pA − pB. An alternative that seems to be computationally
more efficient is the BinomCI() function in the ExactCIdiff package (Shan and Wang, 2022), which
estimates an exact unconditional confidence interval due to Wang (2010). Neither of these R functions is
included in the review by Fagerland et al. (2013). We illustrate use of BinomCI() in the following example.

Example: Preventing post-removal resprouting by Norway maple saplings (continued). Estimates of
the PET difference pCT − pC and its 95% confidence interval for the Norway maple data shown in Table 1
were computed using R’s pairwiseCI() function (Newcombe and Agresti-Caffo intervals) and BinomCI()
function (Wang interval). Saplings in group CT were cut down and the resulting stumps were immediately
treated with triclopyr; saplings in group C were simply cut down. The results are shown in Table 4. Note that
all three types of confidence interval provide strong evidence that stump application of triclopyr immediately
after cutting a dappling down increases the probability that resprouting will not occur, as compared to simply
cutting the sampling down. This conclusion is also supported by the method used in the previous example
to answer Question 3. The key advantage of the methods used to answer Question 4 is that, in addition to
providing an estimate of the PET difference and a conclusion as to whether it is significantly different from
zero, they also provide upper and lower boundaries within which the true PET difference is likely to lie.
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Table 4. Estimates and 95% Newcombe, Agresti-Caffo, and Wang confidence intervals for the
difference pCT − pC between PETs for two different management treatments (CT: Cut down, then
treat stump with triclopyr; C: Cut down only) in the Norway maple management experiment.

Confidence Interval Type pCT − pC Lower limit Upper limit

Newcombe 0.767 0.624 0.852
Agresti-Caffo 0.767 0.627 0.857
Wang 0.767 0.635 0.860

2 Management Experiments Using Point Intercept Surveys

2.1 Assessing the efficacy of a single management treatment on a single population

2.1.1 Methods based on binary data

Question 7: What is PDS change P′1−P1 and its 95% confidence interval for pre- and post-treatment PDS
parameters P′1 and P1?

The goal here is to estimate the change in the PDS before and after treatment, as well as the 95% confidence
interval for the change. Unlike the previous two questions, the statistical analysis now utilizes information
from both the pre-treatment and the post-treatment surveys.

Assumptions and notation: All survey points are assessed both before and after the management treat-
ment is applied. During each assessment, each survey point is in one of two mutually exclusive states: 1
(desirable, from a management perspective) or 2 (undesirable). In practice, the desirable and undesirable
states often are absence and presence of live plants of the target invasive species.

Let n denote the (fixed) number of survey points, and let random variables Xk and X′k denote the states
of survey point k before and after treatment. The possible values of the pair of random variables (Xk, X′k)
are (1, 1), (1, 2), (2, 1), and (2, 2). Let Pi j denote the probability that Xk = i and X′k = j, with the possible
values of i being 1 and 2 and similarly for j, and let Pi and P′i denote the probabilities that Xk = i and that
X′k = i. We assume that Pi j is the same for all survey points, and similarly for Pi and P′i . Because the same
survey points are used in both surveys, Xk and X′k are not independent, meaning that Pi j is not equivalent to
the product PiP′j. Let p j | i denote the probability that X′k = j, given that Xk = i, where p j | i is assumed to be
the same for all survey points k. Then

Pi j = Pi p j | i (16)

(here we are using the basic concepts of independence and conditional probability; for a lucid but rigorous
elementary account, see Hoel et al., 1971: sections 1.4, 1.5). We also have P1 + P2 = 1, P′1 + P′2 = 1, and
p1 | i + p2 | i = 1 for i = 1, 2.

Let random variable Ni j denote the number of survey points for which Xk = i and X′k = j (Table 5).
Then the total number n of survey points is given by n = Σi, jNi j. Random variable Ni j has a multinomial
distribution with parameters n and Pi j (analogy: draw n balls with replacement from a bag containing balls
of colors C11, C12, C21, and C22 in proportions P11, P12, P21, and P22; the resulting number of balls of
the different colors will be N11, N12, N21, and N22, with N11 + N12 + N21 + N22 = n). Let the number of
survey points for which Xk = i be Ni = Ni1 + Ni2, and let the number of survey points for which X′k = i
be N′i = N1i + N2i. One possible management goal is to increase the number (equivalently, the proportion)
of survey points that are in desirable state 1. This event will occur if and only if N′1 > N1, which in turn
will occur if and only if N21 > N12 (the values of N11 and N22 are irrelevant, because survey points that
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retain their state cannot cause a change in the number of survey points in the desirable state). Similarly,
since Pi = Pi1 + Pi2 and P′i = P1i + P2i, it follows that P′1 − P1 = P21 − P12, so that P′1 > P1 if and only
if P21 > P12. For this reason, statistical tests of hypotheses concerning whether this management goal has
been achieved are usually based on random variables N12 and N21 alone.

Table 5. Outcome table for McNemar’s and related tests for assessing efficacy of a manage-
ment method using point intercept data, where the management state is either desirable (e.g.,
invasive plant is absent) or undesirable (e.g., invasive plant is present). X: Management state
of a survey point before treatment, X′: management state of a survey point after treatment, Ni j:
number of survey points in state i before treatment and state j after treatment, Ni: number of
survey points in state i before treatment, N′j: number of survey points in state j after treatment.

State After Treatment
State Before Treatment X′ = 1 (Desirable) X′ = 2 (Undesirable) Row Sum

X = 1 (Desirable) N11 N12 N1
X = 2 (Undesirable) N21 N22 N2
Column Sum N′1 N′2 n

Statistical method: Here we are interested in obtaining an estimate of the difference P′1 − P1 and its
100(1 − α)% confidence interval. Recalling that P′1 − P1 = P21 − P12 and that the Ni j are multinomially
distributed with parameters n and Pi j, the maximum likelihood estimators for P12 and P21 are given by

P̂12 = N12/n, P̂21 = N21/n. (17)

Therefore, P̂21 − P̂12 = N21/n − N12/n is an estimator for P21 − P12 and hence for P′1 − P1. That is,

P′1 − P1 ≈ P̂21 − P̂12 = (N21 − N12)/n. (18)

As in the case of two independent binomial probabilities, which we considered above, the simple Wald
confidence interval based on the asymptotic normality of P̂21− P̂12 has poor statistical properties and should
not be used. Agresti & Min (2005) propose the following better but still simple confidence interval for
P′1 − P1:

N21 − N12

n + 2
±

zα/2
n + 2

√
N21 + N12 + 1 −

(N21 − N12)2

n + 2
. (19)

Note that the midpoint of the estimated confidence interval is somewhat less than the estimator for P′1 − P1
stated in Eq. (18).

R functions: Function diffpropci.mp() in R package PropCIs (Scherer, 2018) computes the Agresti-
Min adjusted Wald confidence interval given by Eq. (19) of the main text. Function scoreci.mp in the same
package computes a score confidence interval for P′2 − P2 due to Tango (1998).

Example: Control of an invasive baby’s breath population. Two of the authors (EKR and JNM) con-
ducted an adaptive management study of the invasive plant, baby’s breath (Gypsophila paniculata), in a
coastal dune habitat in northwestern Michigan (USA) (Rice et al., 2020). As part of the study, the efficacy
of a commonly-used management protocol (foliar application of the herbicide, glyphosate, using backpack
sprayers or, when weather conditions prevent use of glyphosate, manual removal of plants) was assessed
using point intercept surveys conducted in two years (2017 and 2018). The pre-treatment survey was con-
ducted in May of 2017 and the post-treatment survey in May of 2018. The survey grid and sampling method
used in this study are described in section 2.2 of the main text, where we note that a quantitative abundance

9



estimate was made in the vicinity of each survey point. These estimates can easily be converted to presence-
absence (binary) data, which is the form in which we will treat them in this example. Specifically, we will
consider presence-absence data for two sampling zones; one (Exp2) received the test treatment and the other
(Ref) was a reference area. The observed values of Ni j and n for the two zones are displayed in Table 6.

Table 6. Observed values ni j and n for baby’s breath presence-
absence data from zones Exp2 and Ref in 2017 and 2018. State
1 is absence of the plant, state 2 is presence. Also shown are
values of n∗, which are used in the example for Question 8.

Zone n11 n12 n21 n22 n n∗

Exp2 9 0 11 46 66 11
Ref 8 3 1 48 60 4

Eqs. (18) and (19) of the main text and the values in Table 6 above were used to calculate estimates
of P′1 − P1 and their corresponding 95% Agresti-Min confidence intervals, which are shown in Table 7.
Both estimates for P′1 − P1 are roughly 0.16 for the Exp2 zone, and the corresponding Agresti-Min 95%
confidence interval does not include zero. It follows that there is strong evidence that the proportion of
the Exp2 zone that was free of baby’s breath decreased between 2017 and 2018, following the treatment in
2017. By contrast, the 95% confidence interval for the reference area does include zero, so there is no strong
evidence for a change in the proportion of the reference area that was free of baby’s breath. Taken together,
these two results are evidence that the test treatment was effective.

Table 7. Estimates and 95% Agresti-Min confidence intervals for the
post-treatment change P′1−P1 in PDS for baby’s breath presence-absence
data from zones Exp2 and Ref. The two estimates of P′1 − P1 are the
difference of maximum likelihood estimates for P′1 (after treatment) and
P (before treatment) and the midpoint of the confidence interval.

P′1 − P1 95% Confidence Interval
Zone Max. Likelihood CI Midpoint Lower Limit Upper Limit

Exp2 0.167 0.162 0.070 0.254
Ref −0.033 −0.032 −0.103 0.038

Question 8: Is P′1 − P1 > 0, meaning that the PDS increased following treatment?

The goal here is simply to determine whether there is strong evidence that the PDS increased following
treatment. The answer to this question provides no information regarding the magnitude of a detected
increase. In particular, it is important to remember that the size of the P-value is not a measure of the
magnitude of increase, but only a measure of the strength of evidence that an increase occurred. Question 7
deals with the issue of how large the increase (if any) was, which usually is more important.

Assumptions and notation: The assumptions and notation are the same as for Question 7, except that
nearly all available statistical tests for answering Question 8 impose the additional condition that observed
sum n∗ = n12 + n21 is fixed, where ni j denotes the observed value of random variable Ni j (the only test
we are aware of the does not impose this condition is the computationally-complex exact unconditional test
attributed to Suissa and Shuster (1991) and assessed by Fagerland et al. (2013)). Let N∗12 and N∗21 denote
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N12 and N21 conditioned on n∗. Then N∗12 = n∗ − N∗21 . Also, N∗12 is binomially distributed with parameters
n∗ and P∗12, where P∗12 is the probability that any particular survey point undergoes state transition 1→ 2,
conditional on the transition being either 1→2 or 2→1, and is given by

P∗12 =
P12

P12 + P21
=

1
1 + P21/P12

. (20)

N∗12 and N∗21 have expected values n∗P∗12 and n∗P∗21 and common variance n∗P∗12(1 − P∗12), where P∗21 =

1 − P∗12.
Statistical method: For this question, we are interested in testing the null hypothesis that P′1 − P1 = 0

against the one-sided alternative hypothesis P′1 − P1 > 0. As shown above, the sign of P′1 − P1 is necessarily
the same as the sign of P∗21 − P∗12, so testing H0: P′1 − P1 = 0 against H1: P′1 − P1 > 0 is equivalent to testing
H0: P∗21 − P∗12 = 0 against H1: P∗21 − P∗12 > 0. A score test closely related to McNemar’s test is used for this
purpose.

It is important to note that the chi-squared test recommended by Madsen (1999), Parsons (2001), and
Hauxwell et al. (2010), and used by Mikulyuk et al. (2010) as the basis for a power analysis, is not ap-
propriate for comparing pre- and post-treatment point intercept data if the same sampling grid is used for
both surveys, because the pre and post observations for each survey point are paired and therefore cannot
be assumed to be statistically independent. McNemar’s test and the closely related score test are designed
specifically for this case and have been used by, for example, Wersal et al. (2006, 2010), Madsen et al. (2006,
2008), and Rice et al. (2020).

Because P∗21 + P∗12 = 1, testing H0: P∗21 − P∗12 = 0 against H1: P∗21 − P∗12 > 0 is equivalent to testing
H0: P∗21 − 1/2 = 0 against H1: P∗21 − 1/2 > 0. The score test (Agresti, 2013: p. 416) is based on the
standardized random variable V given by

V =
N∗21 − N∗12√
N∗21 + N∗12

. (21)

When n∗ is sufficiently large (n∗ > 10, according to Agresti, 2013: p. 416), the distribution of V under
the null hypothesis approximates a standard normal distribution. (The test statistic for McNemar’s classical
asymptotic test is V2, which is approximately chi-squared with one degree of freedom for large n∗ and is
appropriate for testing the null hypothesis against the two-sided alternative.) In this typical case, the P-value
under null hypothesis P∗21 − P∗12 = 0 with one-sided alternative hypothesis P∗21 − P∗12 > 0 is the probability
that Z > v, where Z is a standard normal random variable and v is the observed value of random variable
V in Eq. (21). Numerical studies by Fagerland et al. (2013) show that this asymptotic test has the highest
statistical power of the five commonly-used tests they assessed but tends to produce false-positive (type-I)
error rates slightly greater than the nominal α. These authors also show that the continuity correction often
used with McNemar’s asymptotic test (the default option for R function mcnemar.test()) should not be
used, because it usually results in false-positive error rates that are much less than the nominal α.

Two alternative tests that can easily be performed with standard statistical software and do not require
large n∗ are the exact conditional test and the mid-P test. Both use the fact that under H0, N∗21 is binomially
distributed with parameters n∗ and P∗21 = 1/2. For the exact conditional test, the relevant P-value for testing
the null hypothesis against our one-sided alternative hypothesis is the probability that the value of random
variable N∗21 would be as large as, or larger than, observed value n21 if the null hypothesis were true. Thus,
it is the probability that N∗21 ≥ n21 (equivalently, N∗21 > n21 − 1) with n∗ fixed at the observed value and
P∗21 = 1/2. Fagerland et al. (2013) show that this test is overly conservative, often producing false-positive
error rates less than half the nominal α. The mid-P McNemar test usually produces a false-positive error
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rate that is much closer to the nominal α without exceeding it, while achieving power nearly as high as
that of the asymptotic test (Fagerland et al., 2013). This test is performed by subtracting half the binomial
probability of event {N21 = n21} from the one-sided P-value produced by the exact conditional test; that is,

mid-P P-value = Pr
(
N21 ≥ n21 | n∗, 0.5

)
− 1

2 Pr
(
N21 = n21 | n∗, 0.5

)
, (22)

where the probabilities are binomial with parameters n∗ and P∗21 = 0.5.
Based on an extensive numerical study, Fagerland et al. (2013) recommend not using the asymptotic

McNemar test with continuity correction or the exact conditional test. They summarize their conclusions
regarding the other three tests they assessed as follows: “The easy-to-calculate mid-P test is an excellent
alternative to the complex exact unconditional test. Both can be recommended for use in any situation. We
also recommend the asymptotic test if small but frequent violations of the nominal level is acceptable.”

R functions: R’s mcnemar.test() performs the classical McNemar asymptotic test of the null hy-
pothesis against the two-sided alternative. Rather than dealing with the problem of how to utilize this
function to produce a P-value for the appropriate one-sided alternative hypothesis, we recommend per-
forming the test more transparently by referring score statistic V to a standard normal distribution using R
function pnorm(). The exact conditional test is easy to perform using R function pbinom() to calculate
Pr(N12 > n12 − 1 | n∗, 0.5); Hollander et al. (2014: p. 507) give an example. The P-value for the mid-P
test also can easily be computed using pbinom() and Eq. (22) of the main text by first computing the exact
conditional P-value Pr(N12 > n12 − 1 | n∗, 0.5) and then adjusting it by subtracting Pr(N12 = n12 | n∗, 0.5)/2.

Example: Control of an invasive baby’s breath population (continued). Table 6 contains all the data
required for applying the mid-P McNemar and exact conditional tests to the baby’s breath presence-absence
data. As we have already noted, Fagerland et al. (2013) show that the mid-P McNemar test is clearly superior
to the exact conditional test, but we nevertheless include both in this example to illustrate the difference in
the resulting P-values. Table 8 shows the P-values for tests of the null hypothesis H0: P′1 − P1 = 0 versus
the one-sided alternative hypothesis H0: P′1 − P1 > 0 for both tests. Note that there is very strong evidence
in favor of the alternative hypothesis in both cases, but that the P-values for the exact conditional test are
larger than those for the mid-P test. This difference does not change the conclusion in the present example
but could do so in cases where the P-values were closer to the chosen significance level.

Table 8. P-values for tests of the null hypothesis P′1 − P1 = 0 versus
the alternative hypothesis P′1 − P1 > 0 for baby’s breath presence-absence
data from zones Exp2 and Ref. Results are shown for both the mid-P
McNemar test and the exact conditional test.

P-value
Zone Mid-P McNemar Exact Conditional

Exp2 0.0002 0.0005
Ref 0.8125 0.9375

Additional remarks. From a management perspective, it is important to know whether P′1 > P1, because
it provides evidence as to whether the relative frequency of the invasive plant decreased. But what does
knowing that this frequency decreased really tell us about the effectiveness of the management treatment
employed? This question may seem strange, so we provide two simple examples to show why it is important
to consider.

Suppose the desirable management state is absence of the focal invasive plant and the undesirable state
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is presence. From Eqs. (16) and (20), we have

P∗21 =
1

1 + (P1/P2) · (p2 |1/p1 |2)
. (23)

Now suppose p2 |1 = p1 |2, meaning that it is just as likely that the invasive plant will invade a survey point
where it initially was not present as it is that the plant will be extirpated from a survey point where it initially
was present. Then the sign of P∗21 − 1/2 is determined entirely by the sign of P2 − P1; i.e., by whether the
initial proportion of survey points occupied by the invasive plant is greater or less than the initial proportion
not occupied by it. But this has nothing to do with the effectiveness of the management treatment applied
in the present field experiment; it simply reflects the fact that if there initially are more (or fewer) survey
points where the invasive plant is present than where it is absent, there will be more (or fewer) chances for
extirpation to occur than for colonization to occur.

Alternatively, suppose P2 = P1, so that each survey point is equally likely to be in the desirable or
undesirable state before the management treatment is applied. Then the sign of P∗21 − 1/2 is determined
entirely by the sign of p1 |2 − p2 |1; i.e., by whether whether it is more (or less) likely that the invasive plant
will be extirpated from a survey point where it is initially present or will invade a survey point where it is
initially absent. This condition is directly related to the apparent effectiveness of the management treatment
in locally extirpating the invasive plant relative to the apparent effectiveness of the plant in invading new
locations. (We say “apparent” because, depending on properties of the plant and the method used to relocate
survey points for the post-treatment survey, some of the observed differences in states of survey points before
and after treatment may reflect measurement error.)

These examples show that, while it is important to know whether the probability of a survey point
being occupied by the invasive plant decreased following treatment, the change in this probability typically
confounds the influences of two distinct factors, one of which is related to the effectiveness of management
and the other not. It therefore seems worthwhile to supplement the assessment by focusing on the first factor,
which is the relative sizes of the probabilities of apparent local extirpation (p1 |2) and colonization (p2 |1). We
address this issue in the following three research questions. In all three questions, we assume the desirable
management state is absence of live plants of the invasive species and the undesirable state is presence.

Question 8a: What are the probabilities of apparent local extirpation (p1 |2) and apparent local colonization
(p2 |1) and their 95% confidence intervals?

We can answer this question using the same statistical methods we used for Question 1. Let n1 and n2 be
the known number of survey points in state 1 (invasive plant is absent) and state 2 (invasive plant is present)
before treatment, where

n1 = n11 + n12, n2 = n21 + n22. (24)

We assume that after the management treatment is applied, each survey point that was in state i before
treatment is in state j with probability p j | i, where all state transitions occur independently (note: transitions
1→ 1 and 2→ 2 are allowed). Of the ni survey points in state i before treatment, the number in state j
after treatment is a binomial random variable with parameters ni and p j | i. The estimators for p j | i and its
100(1 − α)% confidence interval are therefore the same as for Question 1 except that ni replaces n, p j | i

replaces p, and Ni j replaces N1. The maximum likelihood estimator of p j | i is given by

p̂ j | i = Ni j/ni, (25)

where ni is given by Eq. (24).
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Examples. An example using baby’s breath data is presented in section 1.2.1 of the Supporting In-
formation; an R program that analyzes a set of appropriate simulated data (available online in a separate
spreadsheet file) is presented in section 2.2.1.

Question 8b: Is the probability p1 |2 of apparent local extirpation greater than the probability p2 |1 of
apparent local colonization?

We can answer this question using the same statistical methods as for Question 3, with changes in notation
similar to those made in answering Question 8a. Two groups are again being compared, but the groups are
now the sets of survey points that were in the two different management states (1 and 2) before treatment
instead of sets of plants that received two different treatments. Treatment outcomes are again binary, but
“success” now corresponds to a change in management state of a survey point following treatment (1 → 2
or 2→ 1) and “failure” now corresponds to the management state remaining unchanged. Of the ni (known)
survey points in state (or group) i before treatment, the number in state j , i after treatment is a binomial
random variable with parameters ni and p j | i, as in Question 8a. Now, however, we wish to determine
whether there is strong evidence that the “success” probabilities p1 |2 and p2 |1 for the two groups differ. The
outcome table and notation for the statistical method are presented in Table 9. We can apply the statistical
methods used in Question 3 with groups 1 and 2 replacing treatments A and B, n1 and n2 replacing nA and
nB, and p2 |1 and p1 |2 replacing pA and pB. The null hypothesis will always be H0: p1 |2 − p2 |1 = 0, while
the relevant alternative hypothesis typically will be the one-sided hypothesis H1: p1 |2 − p2 |1 > 0, since we
are interested in knowing specifically whether there is strong evidence that the test treatment increases the
relative frequency of transitions from management state 2 to state 1.

Table 9. Outcome table for Question 8b. The possible changes in management state are 2 → 1
(for survey points in state 2 before treatment) and 1 → 2 (for survey points in state 1 before
treatment). X: state of survey point before treatment, Ni j: number of survey points in state i
before treatment and state j , i after treatment, nk: fixed number of survey points in group k (k
= A, B) before treatment, N∆: total number of survey points that changed state, n: total number
of survey points.

Group State Change Occurred Did Not Occur Row Sum

A (X = 2) 2→ 1 N21 nA − N21 nA
B (X = 1) 1→ 2 N12 nB − N12 nB

Column Sum: N∆ n − N∆ n

Examples. An example using baby’s breath data is presented in section 1.2.1 of the Supporting In-
formation; an R program that analyzes a set of appropriate simulated data (available online in a separate
spreadsheet file) is presented in section 2.2.1.

Question 8c: What is the difference p1 |2 − p2 |1 and its 95% confidence interval for the probabilities of
apparent local extirpation and apparent local colonization?

We can answer this question using the same statistical methods we used for Question 4, with the same
changes in notation as for Question 8b. The central management issue is whether the ability of a test
treatment to extirpate an invasive species from locations where it was present before treatment is greater
than the ability of the invader to expand into locations where it was not present before treatment.
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Examples. An example using baby’s breath data is presented in section 1.2.1 of the Supporting In-
formation; an R program that analyzes a set of appropriate simulated data (available online in a separate
spreadsheet file) is presented in section 2.2.1.

2.1.2 Methods based on quantitative data

Question 9: What are the mean local densities µi and µ′i in group i and their 95% confidence intervals
before and after treatment?

The goal here is simply to characterize the mean density of an invasive plant species in the restoration or
reference area before and after treatment, focusing on one combination of plant species, treatment type, and
treatment level at a time.

R functions: The function meanCI() in R package MKinfer (Kohl, 2023) is a flexible and convenient
function for constructing bootstrap confidence intervals for the mean density (or abundance) of an invasive
plant. Its bootci.type argument provides options for computing several different types of bootstrap con-
fidence intervals, which are explained by Efron and Tibshirani (1998: chapter 14). To use this function, we
suggest setting argument boot=TRUE and accepting the default choice for the others. This will produce an
estimate of the mean density and five different types of bootstrap confidence intervals (viewing all of these
is interesting and may stimulate you to read chapter 14 of Efron and Tibshirani (1998)), of which we suggest
using the BCa (Bias-Corrected and accelerated) interval.

Example: Control of an invasive baby’s breath population (continued). Continuing with the baby’s
breath example, we now employ quantitative density data instead of the presence-absence data used in
section 4.1.1 of the main text. Recall that zone Exp2 received the test treatment in 2017 (only), after the
2017 point intercept survey had been conducted, and that Ref was the reference area. Bootstrap estimates
of mean density (plants m−2) and corresponding BCa 95% confidence interval for zones Exp2 and Ref in
2017 (pre-treatment) and 2018 (post-treatment) are shown in Table 10. Note that these results suggest a
substantial decrease in mean density in Exp2 between 2017 and 2018 but do not suggest a decrease in the
reference area.

Table 10. Bootstrap estimates of mean baby’s breath density and
corresponding BCa 95% confidence interval (CI) in zones Exp2
and Ref for years 2017 and 2018. Density units: plants m−2.

BCa CI

Zone Year Mean Lower Upper

Exp2 2017 2.187 1.705 2.862
2018 0.397 0.258 0.699

Ref 2017 1.789 1.362 2.378
2018 1.570 1.150 2.239

Question 10: Is the mean local density µ′i in group i after treatment less than prescribed management
threshold µ⋆?

The goal in this case is to test the null hypothesis that µ′i−µ
⋆ = 0 against the one-sided alternative hypothesis

µ′i − µ
⋆ < 0, where µ⋆ is an appropriately low prescribed density of the target invasive plant. Rejection of
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the null hypothesis at a confidence level of, say, 0.95 provides strong evidence that the management goal
was achieved.

R functions: Useful R packages for bootstrap methods include boot (Canty & Ripley, 2021; origi-
nally created for the book by Davison and Hinkley (1997) and now part of the standard distribution of R),
bootstrap (Tibshirani & Leisch, 2019; original S version created for the book by Efron and Tibshirani
(1998)), and the more-recent MKinfer package, which also includes functions for permutation tests. We
find the bootstrap and permutation functions in the MKinfer package particularly well designed and easy
to use. The boot and bootstrap packages provide greater flexibility for bootstrap methods but, in our
opinion, require more expertise to use properly. For this reason, we will restrict attention to the bootstrap
and permutation test functions in the MKinfer package in this review.

Example: Control of an invasive baby’s breath population (continued). In the baby’s breath example, let
us consider two possible threshold densities, both completely arbitrary: µ⋆ = 1.0 and µ⋆ = 0.5 plants m−2.
The test treatment was applied to zone Exp2 in 2017; zone Ref is the reference area. We consider the
densities measured in both zones in 2018. Table 11 shows the bootstrap t test results. The reported P-values
are not adjusted to account for multiple comparisons in this case, because in practice, only the hypothesis
test for zone Exp2 and for a single threshold density would be of interest for judging management success.
Note that the results provide strong evidence that the 2018 baby’s breath density was below the threshold of
1.0 plants m−2 in zone Exp2 but does not provide strong evidence that it was below the alternative threshold
of 0.5 plants m−2. There is no evidence that either threshold was achieved in the reference area.

Table 11. Tests of null hypothesis H0: µ′i−µ
⋆ = 0 versus alternative hypothesis µ′i−µ

⋆ < 0
for the 2018 baby’s breath point intercept data from zones Exp2 (which received the test
treatment) and Ref (the reference area). µ′i is the mean density (plants m−2) a year after
the test treatment was applied, while µ⋆ is the prescribed threshold density. For purposes
of illustration, two different threshold densities are considered.

Zone Mean Density Target Density P-value

Exp2 2.187 1.0 0.004
0.5 0.241

Ref 1.789 1.0 0.995
0.5 1.000

Question 11: Is µ′i − µi < 0, meaning that the mean local density in plant group i decreased following
treatment?

The goal in this case is simply to determine whether there is strong evidence that the mean local density
decreased following treatment. The null hypothesis is H0: µ′i − µi = 0 and the appropriate alternative
hypothesis is H0: µ′i − µi < 0. In testing the null hypothesis, it is necessary to account for the fact that the
point intercept data consist of matched pairs, since they were collected at the same survey points.

R functions: Functions perm.t.test() and boot.t.test() from R package MKinfer can again be
used. There are now two sets of local density data: pre-treatment and post-treatment, each as a data vector.
Both functions have a paired argument, which should be assigned the value TRUE. Both functions also
have an alternative argument, which should be assigned the value "less" if the first of the two data
arguments is the one whose density is asserted to be less in the alternative hypothesis. For Question 11, we
are interested in the reported P-values.
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Example: Control of an invasive baby’s breath population (continued). Returning to the baby’s breath
example yet again, the pre-treatment data are those for 2017 and the post-treatment data are those for 2018.
For Question 11, the hypothesis tests for both zones Exp2 and Ref are relevant, because we want to know
whether we can attribute any density decrease detected in Exp2 to the test treatment instead of some region-
wide decrease in density due to some other factor. We therefore used R’s p.adjust() function with Holm’s
method (the default) to adjust the P-values separately for each type of t test to account for the multiple
comparisons (only the smaller of the two P-values will change with this method). The results are shown
in Table 12. Note that there is strong evidence that the local density of baby’s breath decreased in both
zones, though the evidence clearly is stronger for zone Exp2. Of course, strength of evidence that a change
occurred does not provide evidence regarding the magnitude of change. The estimates of difference µ′i − µi

for groups Exp2 and Ref in Table 11 suggest a substantially larger decrease occurred in Exp2 than in the
reference area. In section 4.2 of the main text, we consider statistical methods that allow one to determine
whether there is strong evidence that local density in fact decreased more in Exp2 than in the reference area;
if so, there is strong evidence that the test treatment was effective, even though local density decreased in
the reference area.

Table 12. Tests of null hypothesis H0: µ′i − µi = 0 versus alternative hypothesis µ′i − µi < 0 for the 2017
and 2018 baby’s breath point intercept data from zones Exp2 (which received the test treatment) and Ref
(the reference area). µ′i is the mean local density (plants m−2) a year after the test treatment was applied,
while µi is the mean local density shortly before the test treatment was applied. P-values were adjusted
by Holm’s method. Estimate: maximum likelihood estimate of difference µ′i − µi.

P-value

Zone Estimate t Test Type Unadjusted Adjusted

Exp2 −1.790 Bootstrap < 2.2 × 10−16 < 4.4 × 10−16

Permutation < 2.2 × 10−16 < 4.4 × 10−16

Ref −0.219 Bootstrap 0.036 0.036
Permutation 0.028 0.028

Question 12: What is the change µ′i − µi and its 95% confidence interval for mean local density in plant
group i following treatment?

The goal in this case is to estimate the change in mean density before and after treatment and to estimate the
95% confidence interval for the difference. The change will be negative if mean density decreased.

R functions: Functions perm.t.test() and boot.t.test() from R package MKinfer can be used
yet again. These functions produce P-values as well as confidence intervals, so a single R program can
conveniently be written to generate both types of result. We are now interested in the confidence intervals.
We note that both functions can produce two different types of confidence interval: one-sided and two-sided.
These are obtained by assigning values "less" and "two.sided" to function argument alternative. The
one-sided interval is useful for estimating only a reasonable upper bound on the true change in density and
provides no information about how far below zero the true change is likely to be. By contrast, the traditional
two-sided interval is useful for estimating reasonable upper as well as lower bounds on the true change
in density and thus provides a reasonable indication of how much uncertainty surrounds the maximum
likelihood estimate.

Example: Control of an invasive baby’s breath population (continued). We may utilize the baby’s
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breath data again to illustrate the two types of confidence intervals. We wrote a single R program that used
functions perm.t.test() and boot.t.test() to generate the P-values displayed above in Table 12 and
the confidence intervals displayed below in Table 13. As noted in discussing Question 11, the two sets of
density data (for 2017 and 2018) consist of matched pairs, so function argument paired was set to TRUE.
Note that the one-sided confidence intervals have infinite width, but their upper limits are lower than those
of the two-sided intervals. All upper limits of the one-sided intervals are negative, providing strong evidence
that mean density decreased in both the Exp2 and Ref zones, consistent with results of the hypothesis tests
in Table 12.

Table 13. One-sided and two-sided 95% confidence intervals for density difference µ′i − µi

for the 2017 and 2018 baby’s breath point intercept data from zones Exp2 (which received
the test treatment) and Ref (the reference area). µ′i is the mean local density (plants m−2) a
year after the test treatment was applied, while µi is the mean local density shortly before
the test treatment was applied. Estimate: maximum likelihood estimate of difference µ′i −µi.

One-sided 95% CI Two-sided 95% CI

Zone Estimate Method Lower Upper Lower Upper

Exp2 −1.790 Bootstrap −∞ −1.378 −2.292 −1.335
Permutation −∞ −1.438 −2.279 −1.290

Ref −0.219 Bootstrap −∞ −0.034 −0.435 0.005
Permutation −∞ −0.031 −0.438 −0.003

2.2 Comparing treatment efficacy in pairs of treatments or species

Question 13: Is the mean decrease µA − µ
′
A in local density in plant group A before and after treatment

greater (or different, or less) than the mean decrease µB − µ
′
B in local density in plant group B?

R functions: Functions perm.t.test() and boot.t.test() from R package MKinfer can be used
to answer Question 13. The two data vectors are the density changes for group A matched pairs and group
B matched pairs. The function argument paired should be set to FALSE (the default) and the argument
alternative should be set to either "two.sided", "less", or "greater", as appropriate.

Example: Control of an invasive baby’s breath population (continued). Recall that results for the ex-
amples in Questions 11 and 12 provide strong evidence that local density of baby’s breath decreased in
restoration zone Exp2 after receiving the test treatment, but that there was also strong evidence that local
density decreased in reference area Ref, as well. Also recall that the estimated decreases in density in the
two zones, as well as the corresponding confidence intervals, suggest that the magnitude of decrease was
greater in Exp2 than in Ref. Let us now test this suggestion rigorously.

Each entry i in the 2017 vector of local densities for zone Exp2 corresponds to the same survey point
as entry i in the 2018 vector, so data in the two vectors are matched pairs. The same is true for the 2017
and 2019 data vectors for zone Ref. Subtracting the 2017 density vector from the 2018 density vector for
zone Exp2, we obtain a single vector of decreases for zone Exp2. Doing the same for the reference area,
we obtain a single vector of decreases for zone Ref. Note that positive values of the calculated differences
imply decreases in density between 2017 and 2018. Next, we assign the decrease vectors for Exp2 and Ref
(in that order) to the first two (x and y) arguments of the boot.t.test() and perm.t.test() functions.
We retain the default values for all other arguments except that argument alternative is set to "greater"
so the null hypothesis of equal decrease in Exp2 and Ref will be tested against the alternative hypothesis
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that the magnitude of decrease in density was greater in zone Exp2 than in zone Ref.
The results show that the difference between the estimated decrease in Exp2 and the estimated decrease

in Ref is 1.572 plants m−2. The P-value for the test of the hull hypothesis that the two decreases were
equal against the alternative hypothesis that the decrease was greater in Exp2 than in Ref is reported by both
boot.t.test() and perm.t.test() as < 2.2 × 10−16, so we may confidently reject the null hypothesis.
The results therefore provide strong evidence that the mean local density of baby’s breath decreased more
in zone Exp2 than in zone Ref. This finding constitutes strong evidence that the test treatment was effective,
even though a statistically significant decrease in mean local density was detected in the reference area.
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