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Abstract:   

Behavioral decision research is in a position to reduce the gap between the exact and the 

social sciences.  The analysis of decision tasks allows quantitative prediction of behavior. 

The main goal of the current paper is to clarify and further this claim.  We organized 

three open choice prediction competitions that are focused on three related choice tasks: 

one shot decisions under risk, one shot decisions from experience, and repeated decisions 

from experience. Each competition was based on two experimental studies: An 

estimation study, and a competition study. Both studies used the same method and 

subject pool, and examined randomly selected decision problems from the same 

distribution.  After the termination of the estimation study we posted the results and their 

fit with several baseline models on the web (http://tx.technion.ac.il/~eyalert/Comp.html), 

and challenged researchers to participate in competitions that focus on the prediction of 

the results of the second (competition) study. Results from the estimation study reveal 

that some of the baseline models provide impressive predictions. The results also 

highlight the robustness of the difference (significant negative correlations) between 

decisions from description and decisions from experience.  The results of the 

competitions will be presented in the next draft of the current paper. 
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The Merriam Webster dictionary defines “exact science” as “a science (as physics, 

chemistry, or astronomy) whose laws are capable of accurate quantitative expression.”  

Most observers, including most social scientists, regard the social sciences as “inexact” 

by this definition, since theories in the social sciences are mostly used to make only 

qualitative predictions.  A clear indication of the significance of the gap between the 

exact and the social sciences is provided by an analysis of exams used to evaluate college 

students. Typical questions in the exact sciences ask the examinees to predict the 

outcome of a particular experiment, while typical questions in the social sciences ask the 

examinees to exhibit understanding of a particular theoretical construct (see Erev & 

Livne-Tarandach, 2005 analysis of the GRE exams).   

 The analysis of decision tasks can reduce this gap.  The quantification of theories 

involves two steps: An abstraction of the environment as an individual choice task (or as 

a multiplayer game), and an abstraction of the choice rule. Many choice theories have 

been given precise quantifications in this way.  For example, Tversky and Kahneman 

(1992) present a refined variant of prospect theory (Tversky & Kahneman, 1979) that 

includes explicit quantification of the relevant assumptions.  A focus on quantitative 

expressions is also common in other refinements of prospect theory (e.g., Wu & 

Gonzalez, 1996; Prelec 1998) and in leading alternatives to this theory (see e.g., 

Birnbaum & Navarrete, 1998; Brandstätter, Gigerenzer & Hertwig, 2006). 

However, most previous analyses of quantitative models of choice behavior focus 

on fitting the results of a particular set of experiments, and stop short of evaluating the 

predictive value of the fitted models.   That is, the models’ parameters are estimated to fit 

the target data, and the accuracy of the fit is used to compare models.  We believe that 

one of the reasons for the tendency to avoid evaluation of quantitative predictions is a 

product of a problematic incentive structure.  The evaluation of quantitative predictions 

tends to be expensive and less interesting than the popular analyses. Research that leaves 

the evaluation of the quantitative predictions to future studies can start with a 

presentation of few interesting phenomena, and concludes with the presentation of an 

elegant and insightful model that captures them.  To study quantitative predictions, on the 

other hand, researchers have to consider a wide set of randomly selected problems, and 

random samples of problems are less immediately appealing than specially selected cases 
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meant to illustrate a qualitative point. The researcher then has to estimate models, and 

then run another large and boring (random sample) study in order to compare the 

different models.  Moreover, the cost can increase if the researchers’ favorite models fail.   

The main goal of the current research is to contribute to the quantification of 

descriptive models of choice behavior by facilitating the transition from fitting data to 

quantitative predictions of behavior in a new set of choice problems.  It tries to address 

the high cost and boredom problems by the organization of an open choice prediction 

competitions that can change the incentive structure.  We plan to run the necessary boring 

studies, and challenge other researchers to predict the results. 

A second goal of the current research is to clarify the relationship between 

decisions that are made based on a description of the payoff distributions (like the 

situations examined by Kahneman & Tversky, 1979), and decisions that are made based 

on experience.  Recent research reveals large gaps between these environments (see 

Barron & Erev, 2003; Weber et al., 2004; Hertwig et al., 2004; Hau et al., 2008; Newell 

Demes & Rakow, in press; Ungemach, Chater & Stewart, 2008).  Decision makers tend 

to overweight rare events when they have to rely on a description of these events, and 

tend to underweight rare events when they rely on personal experience.   

 

1. Method 

The current research involves three related, but independent, choice prediction 

competitions.  All three competitions focus on the prediction of binary choices between a 

safe prospect that provides Medium payoff (referred to as M) with certainty, and a risky 

prospect that yields High payoff (H) with probability Ph, and Low payoff (L) otherwise.  

Thus, the basic choice problem is: 

S: M with certainty 

R: H with probability Ph; L otherwise 

 

Table 1 presents 60 problems of this type that will be considered below.  Each 

competition will focus on a distinct experimental condition.  Three conditions (and 

competitions) will be considered.  In Condition Description the participants are asked to 

make a single choice based on a description of the prospects (as in decisions under risk 
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paradigm considered by Kahneman & Tversky, 1979).  Condition Experience-sampling 

(E-sampling) focuses on one-shot decisions from experience (as in Hertwig et al., 2004), 

and Condition Experience-repeated (E-repeated) focuses on repeated decisions from 

experience (as in Barron & Erev, 2003). 

 

<Insert Table 1> 

 

The three competitions will be based on two experimental studies: An estimation 

study, and a competition study.  The two studies use the same (three conditions) method 

and examine similar, but not identical, decision problems and decision makers.  The 

estimation study was run in March 2008. After the termination of this study we posted the 

results (described in Table 1) on the web (see http://tx.technion.ac.il/~eyalert/Comp.html) 

and challenged researchers to participate in three competitions that focus on the 

prediction of the results of the second (competition) study.  Each competition focuses on 

one experimental condition.  The competition study was run in May 2008, but we will not 

look at the results until September 2nd 2008.   The predictions submission deadline is 

September 1st 2008. 

Researchers participating in the competitions are allowed to study the results of 

the estimation study.  Their goal is to develop a model that will predict the results of the 

competition study.  The model should be implemented in a computer program that reads 

the payoff distributions of the relevant gambles as an input and predicts the proportion of 

risky choices as an output. Thus, we use the generalization criterion methodology (see 

Busemeyer & Wang, 2000) and the implied competitions can be described as simplified 

variants of the competition organized by Arifovic, McKelvey, and Pevnitskaya (2006). 

 

1.1 The problem selection algorithm. 

Each study focused on 60 problems.  The exact problems were determined with a 

random selection of the parameters M, H, Ph and L using the algorithm described in 

Appendix 1.  Notice that the algorithm implies that about 1/3 of the problems involve rare 

(low probability) High outcomes (Ph < .1), and about 1/3 involve rare Low outcomes (Ph 

> .9).   In addition the algorithm implies that 1/3 of problems are in the gain domain (all 
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outcomes are positive), 1/3 are in the loss domain (all outcomes are negative), and the 

rest are mixed problems (at least one positive and one negative outcome). 

Table 1 presents the 60 problems that were selected for the estimation study.  The 

same algorithm was used to select the 60 problems in the competition study.  Thus, the 

two studies focused on choice problems that were sampled from the same space of 

problems.   

 

1.2 The estimation study 

 One hundred and sixty Technion students participated in the estimation study. 

Participants were paid 40 Sheqels ($11.4) for showing up, and could earn more money or 

lose part of the show-up fee during the experiment.  Each participant was randomly 

assigned to one of the three experimental conditions. 

Each participant was seated in front of a personal computer and was presented 

with a sequence of choice tasks.  The exact tasks depended on the experimental condition 

as explained below.  The procedure lasted about 40 minutes on average in all three 

conditions. 

The payoffs on the experimental screen in all conditions referred to Israeli 

Sheqels. At the end of the experiment one choice was randomly selected and the 

participant’s payoff for this choice determined his/her final payoff. 

The 60 choice problems listed in Table 1 (the estimation set) were studied under 

all three conditions.  The main difference between the three conditions was the source of 

the information (description, sampling or feedback).  Yet, the manipulation of this factor 

implied other differences.  The unique properties of the experimental method in each of 

the three conditions are described below:  

  

Condition Description (One-shot decisions under risk):  

Twenty Technion students were assigned to this condition.  Each participant was 

seated in front of a personal computer screen and was then presented with each of the 60 

problems. Participants were asked to choose once between the sure payoff and the risky 

gamble in each of the 60 problems that were randomly ordered.  A typical screen and the 

instructions are presented in Appendix 2. 
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Condition Experience-Sampling (E-sampling, one shot decisions from experience) 

            Forty Technion students participated in this condition. They were randomly 

assigned to two different sub-groups. Each sub-group contained 20 participants who were 

presented with a representative sample of 30 problems from the estimation set (each 

problem appeared in only one of the samples, and each sample included 10 problems 

from each payoff domain). The participants were told that the experiment includes 

several games, and in each game they will be asked to choose once between two decks of 

cards (represented by two buttons on the screen). It was explained that before making this 

choice they will be able to sample the two decks. Each game was started with the 

sampling stage, and the participants were asked to press the "choice stage" key when they 

felt that they have sampled enough (but not before sampling at least once from each 

deck).   

The outcomes of the sampling were determined by the relevant problem.  One 

deck corresponded to the safe alternative: All the (virtual) cards in this deck provided the 

medium payoff.  The second deck corresponded to the payoff distribution of the risky 

option; e.g., sampling the risky deck in problem 21 resulted with the payoff “+2 Sheqels” 

in 10% of the cases, and outcome “-5.7 Sheqels” in the other cases. 

At the choice stage participants were asked to select once between the two virtual 

decks of cards.  Their choice yielded a random draw of one card from the selected deck 

and was considered at the end of the experiment to determine the final payoff.  A typical 

screen and the instructions are presented in Appendix 2. 

 

Condition Experience-repeated (E-repeated, repeated decisions from experience): 

One-hundred Technion students participated in this condition. They were 

randomly assigned to five different sub-groups. Each sub-group contained 20 participants 

who were presented with 12 problems (each problem appeared in only one of the 

samples, and each sample included equal proportion of problems from each payoff 

domain). Each participant was seated in front of a personal computer and was presented 

with each of the problems for a block of 100 trials.  Participants were told that the 

experiment would include several independent sections (each section included a repeated 
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play of one of the 12 problems), in each of which they would be asked to select between 

two unmarked buttons that appeared on the screen (one button was associated with the 

safe alternative and the other button corresponded to the risky gamble of the relevant 

problem) in each of an unspecified number of trials. Each selection followed with a 

presentation of its outcome in Sheqels (a draw from the distribution associated with that 

button, e.g., selecting the risky button in problem 21 resulted with gain of 2 Sheqels with 

probability 0.1 and loss of 5.7 Sheqels otherwise).  Thus, the feedback was limited to the 

obtained payoff; the forgone payoff (the payoff from the unselected button) was not 

presented.  A typical screen and the instructions are presented in Appendix 2. 

 

1.3 The competition study 

 The competition study was identical to the estimation study with two exceptions: 

Different problems, and different participants.  The (60) problems were selected using the 

algorithm used to draw the problem in the estimation studies.  The (160) participants 

were drawn from the same population used in Study 1 (Technion Students) without 

replacement.  That is, the participants in the competition study did not participate in the 

estimation study, and the choice problems were new problems randomly drawn from the 

same distribution 

 

1.4 The competition criterion: Mean Squared Distance (MSD) and the Equivalent 

Number of Observations (ENO) interpretation. 

The current competitions focus on a Mean Squared Distance (MSD) criterion.  

Specifically, the winner in each competition will be the model that minimizes the squared 

distance between the prediction and the mean observed choice proportion in the relevant 

condition (the mean over the 20 participants in Conditions Description and E-sampling, 

and over the 20 participants and 100 trials in Condition E-repeated). The main advantage 

of this measure is its relationship to traditional statistics (like regression, t-test and the d 

statistic) and intuitive interpretation.1  These attractive features are clarified here with the 

                                                 
1 Studies that focus on fitting tend to prefer the log likelihood statistic over MSD.  Log likelihood main 
advantage is the facilitation of statistical test of the significance of the contribution of additional parameter.  
This advantage is not important in the current prediction tasks.   It’s disadvantages include a bias against 
(incorrect) models that make extreme predictions.  For an example consider two errors: Error 1: “a 
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computation of the ENO (Equivalent Number of Observations) order-maintaining 

transformation of the MSD scores (see Erev et al., 2007).  The ENO of a model is an 

estimation of the size of the experiment that has to be run to obtain predictions that are 

more accurate than the model’s prediction.  For example, if a model has an ENO of 10, 

its prediction of the probability of R choice in a particular problem is expected to be as 

accurate as the prediction that is based on the observed proportion of R choices in an 

experimental study of that problem with 10 participants.  Erev et al. show that this score 

can be estimated as ENO = S2/(MSE - S2) where S2 is the pooled estimated variance over 

problems, and MSE is the mean squared distance between the prediction and the choices 

of the individual subjects (0 or 1 in the current case).  When the sample size is n = 20, 

MSE = MSD + S2(20/19).   

 

2. The results of the estimation study 

 The right hand columns in Table 1 present the aggregate results of the estimation 

study.  They show the mean choice proportions of the risky prospect (the R-rate) and the 

mean samples that participants took in condition E-sampling.  The lower panel presents 

the mean R-rate over problems.   

 

2.1 Correlation analyses 

Two sets of correlation analyses were conducted.  The first set focuses on the 

relationship between the R-rates in the three conditions using problem as a unit of 

analysis.  The results, presented Table 2a, reveal high correspondence between the two 

experience conditions (r[E-sampling,E-repreated] = 0.83, p < .0001), and a large 

difference between these conditions and the description condition (r[Description, E-

sampling) = -0.45, p<.05; and r[Description, E-repeated] = -0.28 p < .05).  This 

difference between the three conditions is clarified by Figure 1 that presents the R-rate as 

a function of Ph by condition.   The results reveal an increase in the R-rate with Ph in the 

two experience conditions, and a decrease in the description condition.  This pattern is 

                                                                                                                                                 
prediction 0 when the observed proportion is 1/1000.”  Error 2: “a prediction 0.01 when the observed 
proportion is 0.99.”  The log likelihood measure implies that a model that makes error 2 is preferred over a 
model that makes error 1.   
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consistent with the assertion that people exhibit overweighting of rare events in decisions 

from description, and underweighting of rare events in decisions from experience (see 

Barron & Erev, 2003).  Additional analysis reveals that the effect of Ph holds 

independently of the objective attractiveness of the risky prospect. 

 

<Insert Table 2> 

<Insert Figure 1> 

 

  The second set of correlation analyses focused on individual differences.  This set 

examines the relationship between the choices made by the same individual in different 

problems.  Correlations of this type were computed for all the pairs of problems that were 

faced by the same participants.  The current design allows computation of these 

correlations for 1770 pairs of problems in Condition Description (59+58+57…+1 = 59 * 

30, when all the participants faced all 60 problems), 870 pairs in Condition E-Sampling 

(=29*15*2, when each of two subgroup faced 30 problems), and 330 pairs in Condition 

E-Repeated (=11*6*5 when each of five subgroup faced 12 problems). 

The first panel in Table 2b presents the median correlations over all pairs.  The 

results reveal positive but relatively low correlations.  The median correlations are .10, 

.05 and .12 in Condition Description, E-sampling and E-repeated. 

The second panel shows the correlation as a function of Ph (the probability of the 

high payoff).  The results show relatively high and positive correlation between pairs of 

“relatively safe” problems (in which Ph is high), and between pairs of “long shot” 

problems (in which Ph is low). Moreover, the results also show a negative correlation 

between pairs of problems where one problem is relatively safe but the other is a long 

shot.  This pattern was observed in all three conditions and can be explained with the 

assertion that individuals differ in a consistent fashion in their weighting of rare events.  

It seems that some people exhibit higher sensitivity to such events.  

The third panel shows the effect of the payoff domain.  The highest correlations 

were observed when both problems involved gains and losses.  This pattern replicates 

previous results (see Ert& Yechiam, 2008) and can be explained with the assertion of 

consistent individual differences in the reaction to avoidable losses. 
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2.2 Learning curves 

 Figure 2 presents the observed R-rates in Condition E-repeated in 5 blocks of 20 

trials.  The 60 problems were classified to 12 graphs based on two properties: The 

probability of high payoff (Ph) and the relative value of the risky prospect. The most 

common pattern is a decrease in risky choices with experience.  This pattern is predicted 

by the hot stove effect (Denrell & March, 2001).  Comparison of the three rows suggests 

an interesting nonlinear relationship between the probability of high payoff (Ph) and the 

magnitude of the hot stove effect.  A decrease in R rate with experience is clearer for high 

Ph and low Ph, but not for medium Ph level.  This nonlinear relationship explains why 

previous studies that focus on gambles with equally likely outcome (like Biele et al., in 

press) found no evidence for the hot stove effect.  The learning curves in the medium Ph 

problem show higher sensitivity to the expected values. 

 

< Insert Figure 2 > 

 

3. Baseline models  

In order to clarify the challenge for the participants in the competitions we 

derived the predictions of several baseline models.  We chose to focus on models that 

were described and estimated (using a Mean Squared Distance criterion) in previous 

research.  In addition, we present two new models that were motivated by the data 

collected in the estimation study.  The predictions of the published baseline models were 

derived with the original parameters, and with parameters estimated to fit the estimation 

set.  The models are grouped by the experimental conditions that they were designed to 

address. 

 

3.1 Baseline Models for Condition Description (One shot decisions under risk) 

3.1.1 Original (5-parameter) Cumulative prospect theory (CPT) 
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According to cumulative prospect theory (Tversky & Kahneman, 1992), decision-

makers are assumed to select the prospect with the highest weighted value.  The weighted 

value of Prospect X that pays x1 with probability p1 and x2 otherwise is: 

 

(1)                                                                    

 

where V(xi) is the subjective value of outcome xi, and π (pi) is the subjective weight of 

outcome xi.  The subjective values are given by a value function that can be described as 

follows: 

 (2)                                                                               

                               

The parameters 0 < α < 1 and 0 < β < 1 capture the assumption of diminishing sensitivity 

in the gain and the loss domain respectively.  The parameter λ >1 captures the loss 

aversion assertion. 

            The subjective weights are assumed to depend on the outcomes' rank, sign, and on 

a cumulative weighting function.  When the two outcomes are of different sign, the 

weight of outcome i is:  

(3)                                                           

              

The parameters 0 < γ < 1 and 0 < δ < 1 capture the tendency to overweight low-

probability outcomes.   

When the outcomes are of the same sign, the weight of the most extreme outcome 

(largest absolute value) is computed with equation (3) (as if it is the sole outcome of that 

sign), and the weight of the less extreme outcome is the difference between that value and 

1. 
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The predictions of CPT were estimated with three sets of parameters: Tversky and 

Kahneman’s parameters (for the median decision maker), the parameters estimated by Ert 

and Erev (2007), and the parameters that best fit the current data.  The exact predictions 

are presented in the competition web site.  Table 3a presents four measures of the 

accuracy of these predictions.  The first two measures are the proportion of agreement 

between the median choice and the prediction (Pagree) and the correlation between the 

observed and the predicted results.  These measures show high agreement (above 90%) 

and high correlation (above 0.84) in all cases.   The third measure, and the focus of the 

current competition, is a Mean Square Distance (MSD) score.  It reflects the mean of the 

squared distance of the prediction from the mean results (over participants) in each 

problem. Thus it is the mean of 60 squared distance scores.  The final measure is the 

ENO transformation of the MSD score.  The implied ENO scores are around 2. 

 

< Insert Table 3 > 

 

 

3.1.2 Stochastic cumulative prospect theory (SCPT).   

The second model considered here is the stochastic variant of cumulative prospect 

theory proposed by Erev, Roth, Slonim and Barron (2002, and see a similar idea in 

Busemeyer, 1985).  The model assume that the probability of selecting the risky prospect 

(R) over the safe prospect (S) is 

  

(4)       

                                                                                     

  

The parameter μ captures payoff sensitivity, and D is the absolute distance between the 

cumulative functions implied by the two prospects.  The computation of D requires a 

normalization of the weights of the different outcomes.  The normalized weight of 

outcome x1 is   
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(5)                                                                                          

Assuming x1> x2, the cumulative normal value of gamble X at point z (0 < z < 1) is  

(6)                                                                              

 

            Following Ert and Erev (2007) we focused on a three parameters simplification of 

SCPT.  The simplification involves the assumption of gain loss symmetry that implies: λ 

=1, β = α, and δ = γ.  Table 3a presents the predictions of this model with the parameters 

estimated by Ert and Erev (2007), and with the parameters that best fit the current data.  

The results show that SCPT matches the proportion of agreement of the original model 

and reduces the MSD score.  The ENO, with the parameters estimated by Ert and Erev, is 

44.9.  

 Fitting all five parameters to the current data increases the estimated ENO to 80.  

Yet, it is not clear that the ENO interpretation of the MSD score makes sense when the 

same data is used to fit the parameters and estimate the model. 

  

3.1.3  The priority heuristic 

According to the priority heuristic (Brandstätter, Gigerenzer, & Hertwig, 2006), 

decision-makers are assumed to follow a lexicographic rule that evaluate alternatives by 

sequential comparison of their minimum value, their maximum value, and their 

respective probabilities.  

            The priority rule for nonnegative prospects asserts that the first comparison is 

done between the two minimum gains, the stopping rule is determined by a free cutoff 

parameter s: if the minimum gains differ by s (or more) of the maximum gain then the 

examination is stopped and the prospect with the better minimum gain is selected. If the 

difference does not pass this cutoff then the two probabilities of the minimum gains are 

matched. The examination is stopped if these probabilities differ by s (or more) of the 

probability scale. In the case that this cutoff rule is also not satisfied, the decision maker 

selects whichever prospect with the higher maximum gain. The same procedure applies 
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for mixed problems and for nonpositive prospects (in such a case the word "gain" is 

simply replaced with the word "loss").   

            The prediction of the Priority Heuristic is estimated with two sets of parameters: 

the stopping rule parameter used by Brandstätter et al. (2006) and the stopping rule 

parameter that best fit the current data. The results show that this model captures the 

median choice as well as the CPT model: Proportion of agreement between the median 

choice and the prediction is above 90%.  However, the mean square deviation (MSD) 

score is relatively high, and the implied ENO is around 2. 

 

3.2 Baseline models for Condition E-sampling (One shot decisions from experience)  

3.2.1 Primed sampler 

            The Primed sampler model (Erev, Glozman & Hertwig, 2008) implies a simple 

choice rule in condition sampling: The participants are expected to take a sample of k  

draws from each alternative, and select the alternative with the higher sample mean.  Erev 

et al.’s estimation of the value of k is 5.  Table 3b shows that this simple model provides 

good approximation of the current results.  Moreover, the value k = 5 minimizes the MSD 

score.  The implied ENO is 11.87. 

  

3.2.2 Primed sampler with individual differences. 

            Under a natural extension of the primed sampler model the exact value of the 

sample size differ between participants and decisions.  The current model captures this 

idea with the assumption that the exact sample size is uniformly drawn from the integers 

between 1 and k.  Best fit is obtained with k =9.  Table 3b shows that the added 

variability improves the fit. 

 

3.3 Baseline models for condition E-Repeated (repeated decisions from experience) 

 

3.3.1   Normalized Reinforcement Learning (NRL) 

The normalized reinforcement learning model (see Erev & Barron, 2005; and a 

similar model in Erev, Bereby-Meyer & Roth, 1999) assumes a stochastic choice rule that 
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is similar to the SCPT rule.  Specifically, the probability of selecting the risky prospect at 

trial t is given by: 

(7)                                                                                      

  where WVt(k) is the weighted value of action k at trial t, μ is a free payoff 

sensitivity parameter, and Dt is a measure of experienced payoff variability.  If strategy k 

was selected at t, its weighted value at trial t+1 is a weighted average of WVt(k) at t, and 

vt the obtained payoff at t  

(8)  

The parameter 0 < ω < 1 captures the weight of recent outcomes.  The initial 

value, WV1(k) is assumed to equal A(1)—the expected payoff from random choice (e.g., 

A(1) in Problem 1 is .5[18.8(.8) + 7.6(.2)] +15.5). 

The payoff variability term Dt is the weighted average of the difference between 

the obtained payoff at trial t and t-1: 

(9)   

where v0 is assumed to equal A(1), and D1 is assumed to equal μ.  The predictions 

of this model with the parameters estimated by Erev and Barron and the parameters that 

best fit the data are presented in Table 3c.  The results reveal a relatively large advantage 

of the estimated parameters. 

  

3.3.2  Basic Reinforcement Learning 

            The basic reinforcement learning model, considered here, is a simplification of 

the NRL model.  The simplification involves the assumption Dt =1.  Table 3c reveals that 

this simplification impairs the fit. 

 

3.3.3 RELACS 

            Erev and Barron (2005) present a generalization of the NRL model that assumes 

reinforcement learning among cognitive strategies.  Since this model is rather complex, 
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we do not present its details here.  Table 3c presents its predictions for the current task 

with the parameters estimated by Erev and Barron, and with the parameters that best fit 

the current data. The results reveal that RELACS provide relatively good predictions 

using the original parameters, but the best fit is not very good.  

  

3.3.4 Explorative sampler  

The explorative sample model (Erev, Ert & Yechiam, in press) can be 

summarized with the following assumptions:  

A1: Exploration and exploitation. The agents are assumed to consider two 

cognitive strategies: exploration and exploitation. Exploration implies a random choice.  

The probability of exploration is 1 in the very first trial, and (when information 

concerning the forgone payoffs is not available) it reduces toward an asymptote (at ε) 

with experience.  The effect of experience on the probability of exploration depends on 

the expected number of trials in the experiment (T).  Exploration diminishes quickly 

when T is small, and slowly when T is large (in the current study T = 100).  This 

assumption is quantified as follows: 

    (9)                                      

                                                                      

where δ is a free parameter that captures the sensitivity to the length of the experiment. 

A2: Experiences. The experiences with each alternative include the set of 

observed outcomes yielded by this alternative in previous trials.  In addition, when the 

payoffs are limited to the obtained payoff, the subjective value of the very first outcome 

is recalled as an experience with all the alternatives.   

A3: Naïve sampling. Under exploitation the agent draws (with replacement) a 

sample of mt past experiences with each alternative.  All previous experiences are equally 

likely to be sampled. 

A4: Sampling algorithm. The value of mt at trial t is assumed to be randomly 

selected from the set {1, 2,…… k} where k  is a free parameter. 

The sampling algorithm is assumed to depend on the available information.  When the 

feedback is limited to the obtained payoffs the sampling from the experiences with the 
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different alternatives is independent.  When the foregone payoffs are known (the decision 

makers receive complete feedback that includes the payoff from the unselected 

alternatives), the distinct samples are perfectly correlated.  The decision maker selects 

one set of mt trials, and the outcomes in those trials are used to determine the values of 

the different alternatives.  

A5: Regressiveness, diminishing sensitivity, and choice. The recalled subjective 

values of the outcome x (from selecting alternative j) at trial t is assumed to be affected 

by two factors: regression to the mean of all the experiences with the relevant alternative 

(in the first t-1 trials), and diminishing sensitivity.   Regression is captured with the 

assumption that the regressed value is Rx= (1-w)x + (w)Aj(t), where w is a free parameter 

and Aj(t) is the average outcome from the relevant alternative.2 

            Diminishing sensitivity is captured with a variant of prospect theory’s (Kahneman 

& Tversky, 1979) value function that assumes 

(10)                        

 

Where αt = (1+Vt)(-β), β > 0 is a free parameter, and Vt is a measure of payoff 

variability. Vt is computed as the average absolute difference between consecutive 

obtained payoffs in the first t-1 trials (with an initial value at 0).  The parameter β 

captures the effect of diminishing sensitivity: large β implies quick increase in 

diminishing sensitivity with payoff variability. 

The estimated subjective value of each alternative at trial t is the mean of the 

subjective value of the alternative's sample in that trial.  Under exploitation the agent 

selects the alternative with the highest estimated value. 

Table 3c presents the predictions of the explorative sampler model with the 

parameters estimated by Erev et al. (in press), and with the parameters that best fit the 

current data. The results reveal that the model tends to over-predict the tendency to select 

the risky prospect. 

                                                 
2 Implicit in this regressiveness (the assumption W > 0) is the assumption that all the experiences are 
weighted (because all the experiences affect the mean).  The value of this implicit assumption was 
demonstrated by Lebiere, Gonzalez and Martin (2007). 
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3.3.5 Explorative sampler with recency  

            The last model presented here is a refinement of the explorative sampler model 

that was developed to capture the bias considered above.  Specifically, the refined model 

assumes that the most recent outcome with each alternative is always considered.  This 

change, that increased the assumed hot stove effect, is implemented by replacing 

assumption A3 with the following assumption: 

A3’: Naïve sampling with recency. Under exploitation the agent draws (with 

replacement) a sample of mt past experiences with each alternative.  The first draw is the 

most recent experience with each alternative. All previous experiences are equally likely 

to be sampled in the remaining mt-1 draws.  Notice that Assumption A3’ implies a hot 

stove effect (see Denrell & March, 2001): An increase in risk aversion with experience. 

            The right hand column in Table 3c presents the predictions of the refined model.  

The results show that the refinement improves the fit.  Additional analysis shows that the 

added recency effect does not impair the predictions of the explorative sampling models 

in the experimental conditions reviewed by Erev and Haruvy (2008). 

  

3.4 Summary 

 The estimation study highlights the value of the four working assumptions that 

underlie the current project.  First, the high equivalent number of the observations (ENO) 

of some of the baseline models clarifies the assertion that behavioral decision research is 

in a position to reduce the gap between the exact and the social sciences.   

The support to the assertion that “evaluation of quantitative predictions tend to be 

boring and costly” includes the fact that we had to use many pages with technical details 

to describe the estimation study. 

 A third observation involves the robustness of the difference between decisions 

from description and decisions for experience.  The estimation study reveals negative 

significant correlations between the two classes of choice tasks in the wide set of 

problems considered here. 

 Finally, and most importantly, the results suggest that the evaluation of predictive 

value can be important.  One indication for this assertion is provided by the large 
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difference of the ENO of similar models supported in previous research.  For example, 

the addition of a stochastic response rule to CPT increases its ENO from 2 to 45.   

 We believe that the results of the competitions, to be reported in the next draft of 

the current paper, have the potential of including interesting surprises that will further 

clarify the assertion that the study of quantitative predictions can reduce the gap between 

the exact and the social sciences. 
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Appendix 1: The problem selection algorithm. 

The 60 problems in each set are determined according to the following algorithm: 

• The probability p is drawn (with equal probability) from one of the following sets 

(.01-.09), (.1-.9), (.91-.99)  

• Two random draws are generated for the risky option (Xmax, Xmin): 

• Xmin is drawn (with equal probability) from (-10, 0);  Xmax is drawn from (0, 

+10). 

• H'= Round(Xmax, .1)3 

• L'= Round(Xmin, .1) 

• The Expected Value of the risky option is determined and an error term is added 

to create the value of the safe option: 

• m = round(H'*p+L'*(1-p), .1); 

• sd = min(abs(m-L')/2,abs(m-H')/2,2);  e=rannor(0)*sd;  m=m+e; 

• Finally the dataset is balanced to include equal proportion of problems that 

include nonpositive payoffs (loss domain), nonnegative payoffs (gain domain) 

and both positive and negative payoffs (mixed domain).  

• If problem <21 then con = -max+min; 

• If 20 < problem < 41 then con = 0; 

• If problem > 40 then con = +max-min; 

• L = L'+con; M = round(m+con,.1); H = H'+con;  

 

                                                 
3 The function Round(x, .1) implies rounding x to the nearest decimal. The function abs(x) returns the absolute value  
of x. the function rannor(0) returns a randomly selected value from a normal distribution with a mean of 0 and standard 
deviation of 1. 
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Appendix 2: Translation of the instructions and typical experimental screens of each of 

the three conditions (Description, Experience-Sampling, and Experience-Repeated). 

 
Condition Description: 

This experiment includes several games. In each game you will be asked to select one of 

two alternatives.   

At the end of the experiment one of the games will be randomly drawn (all the 

games are equally likely to be drawn), and the alternative selected in this game will be 

realized.    

Your payoff for the experiment will be the outcome (in Sheqels) of this game. 

Good luck! 

 
Experimental Screen after selecting the safer option in Problem 32: 
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Condition E-Sampling: 

This experiment includes several games.  Each game includes two stages: The sampling 

stage and the choice stage. 

At the choice stage (the second stage) you will be asked to select once between 

two virtual decks cards (two buttons).  Your choice will lead to a random draw of one 

card from this deck, and the number written on the card will be the "game's outcome."  

During the sampling stage (the first stage) you will be able to sample the two decks.  

When you feel that you have sampled enough press the "choice stage" key to move to the 

choice stage. 

At the end of the experiment one of the games will be randomly drawn (all the 

games are equally likely to be drawn). Your payoff for the experiment will be the 

outcome (in Sheqels) of this game.  

Good luck! 

 
Experimental screen (a) after sampling the deck associated with the safer option in 
Problem 4 during the sampling stage: 
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Experimental screen (b) – After choosing the deck associated with the safer option in 
Problem 4 during the real game stage: 
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Condition E-Repeated: 

This experiment includes several games.  Each game includes several trials.  You will 

receive a message before the beginning of each game. 

In each trial you will be asked to select one of two buttons.  Each press will result 

with a payoff that will be presented on the selected button. 

At the end of the experiment one of the trials will be randomly drawn (all the 

trials are equally likely to be drawn). Your payoff for the experiment will be the outcome 

(in Sheqels) of this trial. 

Good luck! 

 
Experimental Screen after choosing the risky alternative in Problem 36: 
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 Table 1: The 60 estimation set problems and the aggregate proportion of choices in risk 

in each of the experimental conditions. 

  Risk  Safe Proportion of choices in Risk (R - rate) average number
Problem High P(High) Low Medium Description E-Sampling E-repeated of samples 

1 -0.3 0.96 -2.1 -0.3 0.2 0.25 0.33 10.4 
2 -0.9 0.95 -4.2 -1 0.2 0.55 0.50 9.7 
3 -6.3 0.3 -15.2 -12.2 0.6 0.5 0.24 13.9 
4 -10 0.2 -29.2 -25.6 0.85 0.3 0.32 10.7 
5 -1.7 0.9 -3.9 -1.9 0.3 0.8 0.45 9.9 
6 -6.3 0.99 -15.7 -6.4 0.35 0.75 0.68 9.9 
7 -5.6 0.7 -20.2 -11.7 0.5 0.6 0.37 11.1 
8 -0.7 0.1 -6.5 -6 0.75 0.2 0.27 13.9 
9 -5.7 0.95 -16.3 -6.1 0.3 0.6 0.43 11.0 

10 -1.5 0.92 -6.4 -1.8 0.15 0.9 0.44 11.8 
11 -1.2 0.02 -12.3 -12.1 0.9 0.15 0.26 11.9 
12 -5.4 0.94 -16.8 -6.4 0.1 0.65 0.55 11.2 
13 -2 0.05 -10.4 -9.4 0.5 0.2 0.11 10.4 
14 -8.8 0.6 -19.5 -15.5 0.7 0.8 0.66 12.1 
15 -8.9 0.08 -26.3 -25.4 0.6 0.3 0.19 11.6 
16 -7.1 0.07 -19.6 -18.7 0.55 0.25 0.34 11.0 
17 -9.7 0.1 -24.7 -23.8 0.9 0.55 0.37 15.1 
18 -4 0.2 -9.3 -8.1 0.65 0.4 0.34 11.2 
19 -6.5 0.9 -17.5 -8.4 0.55 0.8 0.49 14.9 
20 -4.3 0.6 -16.1 -4.5 0.05 0.2 0.08 10.9 
21 2 0.1 -5.7 -4.6 0.65 0.2 0.11 8.8 
22 9.6 0.91 -6.4 8.7 0.05 0.7 0.41 9.2 
23 7.3 0.8 -3.6 5.6 0.15 0.7 0.39 10.7 
24 9.2 0.05 -9.5 -7.5 0.5 0.05 0.08 14.6 
25 7.4 0.02 -6.6 -6.4 0.9 0.1 0.19 8.9 
26 6.4 0.05 -5.3 -4.9 0.65 0.15 0.20 13.4 
27 1.6 0.93 -8.3 1.2 0.15 0.7 0.50 8.9 
28 5.9 0.8 -0.8 4.6 0.35 0.65 0.58 10.6 
29 7.9 0.92 -2.3 7 0.4 0.65 0.51 10.6 
30 3 0.91 -7.7 1.4 0.4 0.7 0.41 10.0 
31 6.7 0.95 -1.8 6.4 0.1 0.7 0.52 11.0 
32 6.7 0.93 -5 5.6 0.25 0.55 0.49 11.0 
33 7.3 0.96 -8.5 6.8 0.15 0.75 0.65 11.1 
34 1.3 0.05 -4.3 -4.1 0.75 0.1 0.3 11.4 
35 3 0.93 -7.2 2.2 0.25 0.55 0.44 12.8 
36 5 0.08 -9.1 -7.9 0.4 0.2 0.09 14.6 
37 2.1 0.8 -8.4 1.3 0.1 0.35 0.28 10.9 
38 6.7 0.07 -6.2 -5.1 0.65 0.2 0.29 10.9 
39 7.4 0.3 -8.2 -6.9 0.85 0.7 0.58 12.7 
40 6 0.98 -1.3 5.9 0.1 0.7 0.61 13.5 
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41 18.8 0.8 7.6 15.5 0.35 0.6 0.52 9.0 
42 17.9 0.92 7.2 17.1 0.15 0.8 0.48 10.8 
43 22.9 0.06 9.6 9.2 0.75 0.9 0.88 9.9 
44 10 0.96 1.7 9.9 0.2 0.7 0.56 10.1 
45 2.8 0.8 1 2.2 0.55 0.7 0.48 19.4 
46 17.1 0.1 6.9 8 0.45 0.2 0.32 9.2 
47 24.3 0.04 9.7 10.6 0.65 0.2 0.25 11.8 
48 18.2 0.98 6.9 18.1 0.1 0.75 0.59 9.0 
49 13.4 0.5 3.8 9.9 0.05 0.45 0.13 8.9 
50 5.8 0.04 2.7 2.8 0.7 0.2 0.35 10.0 
51 13.1 0.94 3.8 12.8 0.15 0.65 0.52 9.0 
52 3.5 0.09 0.1 0.5 0.35 0.25 0.26 11.9 
53 25.7 0.1 8.1 11.5 0.4 0.25 0.11 9.0 
54 16.5 0.01 6.9 7 0.85 0.25 0.18 13.4 
55 11.4 0.97 1.9 11 0.15 0.7 0.66 9.6 
56 26.5 0.94 8.3 25.2 0.2 0.5 0.53 14.3 
57 11.5 0.6 3.7 7.9 0.35 0.45 0.45 10.0 
58 20.8 0.99 8.9 20.7 0.25 0.65 0.63 12.9 
59 10.1 0.3 4.2 6 0.45 0.45 0.32 10.1 
60 8 0.92 0.8 7.7 0.2 0.55 0.44 10.2 

Note - All problems involves binary choice between a sure payoff (Medium) and a risky 
option with two possible outcomes (High and Low). For example, Problem 1 describes a 
choice between loss of NIS 0.3 for sure, and a gamble that yields a loss of NIS 0.3 with 
probability of 0.96 and a loss of NIS 2.1 otherwise.  
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 Table 2: Correlation analyses (Estimation study): 

2a: The correlations between the R-rates in the different conditions using problem as a 
unit of analysis.  All three correlations are significantly different from 0 (p< .05). 

 

 

 

 

2b. The median correlations between R-rates in different pairs of problems using 

participant as a unit of analysis. The numbers in parentheses present the number of pairs 

that were used to compute each median. 

Dimension Category Description E-sampling E-repeated 

Overall  .10 (1770) .05 (870) .12 (330) 

p>.9 in both problems .19 (300) .18 (144) .42 (56) 

p>.9 in one problem, 

and <.1 in the second 

-.06 (500) -.11 (249) -.22 (95) 

P<.1 in both problems .24 (190) .14 (91) .38 (38) 

Phigh 

Other .10 (780) .05 (386) .14 (141) 

Gain in both problems .10 (190) .04 (90) .00 (30) 

Gain in one, loss in the 

second 

.07 (400) .02 (200) .07 (80) 

Loss in both .11 (190) .05 (90) .03 (30) 

Mixed and Med<0 in 

both 

.28 (66) .19 (30) .48 (10) 

Mixed and  

Med >0 in both 

.18 (28) .27 (12) .07 (4) 

Payoff 

domain 

Other .09 (896) .05 (448) .19 (176) 

R, R .10 (300) .05 (144) .09 (54) 

R, S .10 (875) .05 (437) .09 (167) 

Higher EV 

S, S .06 (595) .05 (289) .22 (109) 

 E-sampling E-repeated 

Description -.45 -.28 

E-sampling  .83 
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Table 3: Summary of the descriptive value of the proposed baseline models in each 

condition of the estimation study. Pagree is the proportion of agreement between modal 

predictyion and the modal choice, Corr is the person correlation, MSD is mean squared 

deviation, ENO is the equivalent number of observations. 

3a: Condition Description: 

Model Parameters Pagree Corr MSD  ENO 
(S2=.1860) 

Original 
α=.88, β=.88  
λ=2.25 
γ=.61, δ=.69 

91% 0.84 0.099 2.05 

Symmetric 
α=β=.86 
λ=1, γ= δ=.5 

91% 0.83 
 

0.1049 1.68 

Cumulative 
Prospect  
Theory  
  

Fitted 
α = β =.70 
λ=1, γ = δ =.65 

95% 0.85 .0932 2.22 

Symmetric 
α=β=.77 
(λ=1) 
γ=δ=.71, μ=2.04 

93% .91 .0134 44.9 Stochastic 
Cumulative 
Prospect 
Theory 

Fitted 
α=.89, β=.98 
λ=1.5, γ= δ=.7 
μ=2.15 

91% .92 .0116 80.6 

Priority 
Rule 

s=.1 95% .81 .0999 2.05 

 
3b: Condition E-sampling.  
Model Parameter pagree Corr MSD 

 
ENO 
(S2=.1927) 

Primed 
sampler 

κ = 5 90% 0.81 .027 11.87 

Primed 
sampler fitted 
with variability  

κ = 9 93% 0.88 
 

.017 29.3 
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3c: Condition E-repeated:  
 

Model Parameters pagree Corr MSD 
est 

ENO est 
(S2=.0875) 

Original 
w=.01, λ=3 

.74 .81 0.0236 4.55 Normalized 
Reinforcement 

Learning 
(NRL) 

Fitted 
w=.15, λ=1.1 

.76 .83 0.0092 18.13 

Original 
w=.03, λ=1 

.53 .60 0.0301 3.40 Basic 
Reinforcement 
Learning (RL) Fitted 

W=.15, λ=1 
.56 .67 0.0224 4.85 

Original 
λ = 8 

α =.0012  
β =0.2, k=4 

.77 .87 0.0121 11.32 RL among 
cog. Strategies 

(RELACS) 

Fitted 
λ = 8, α =.005 
β =0.1, k=4 

.77 .88 0.0110 13.20 

Original 
β=.15, ε=.08   

k = 5 

.73 .84 0.0189 6.02 

Fitted 
β=.05 ε=.12, 

k=20 

.75 .85 0.0115 12.28 

Explorative 
sampler 

 
(δ = 0.55, and 

w=.3 in all 
cases) 

With recency 
β=.10  

ε =.12,  k=8 

.82 .88 0.0075 27.99 
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Figure 1: R-rate (proportion of risk taking) as a function of Ph (the probability of getting 

the high outcome from the risky gamble) in each of the three experimental conditions in 

the estimation study. 
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Figure 2 – observed R-rates in Condition E-repeated in 5 blocks of 20 trials.  The 60 
problems were classified to 15 graphs according to (a) The probability of high payoff 
(Ph) and the relative expected value of the risky prospect (EVr-EVs). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE – The numbers in the legend are the problem id. In the marked problems (1 and 
43) one alternative dominates the other. 
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