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1. Systematic literature review methods

The systematic literature review aimed to i) update the review of RCTs on the adult
population undertaken within the HTA [1], and ii) expand the evidence base by including
studies that enrolled paediatric patients. Therefore, the resulting studies will reflect the
current evidence totality on both populations. The process comprised of the following
steps:

1. The identified studies on adults from Soares et al., 2012 [1] (up to December
2009) along with the identified studies on both adults and paediatric patients from
Alejandria et al., 2013 [2] (up to December 2012), which was a systematic review
that identified studies in both adults and children, were directly included.

2. The search strategy employed by Soares et al., 2012 [1] to search for adult studies
up to December 2009 was used to:

(a) Identify citations before December 2009 that pertained only to paediatric
patients. This was possible because the search strategy did not apply any
population criteria, and only excluded studies on non-adult patients during
the screening process

(b) Update the search for both adult and paediatric patients by restricting searches
to between 1st January 2010 and 1st August 2018.

The search strategies for MEDLINE and EMBASE are shown in Table 1 and Table 2
respectively.
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Table 1: Search in Ovid MEDLINE(R).

# Searches Results
1 immunoglobulins/ 42452
2 immunoglobulin$.tw. 141513
3 ivig.tw. 6165
4 1 or 2 or 3 165054
5 sepsis/ 53622
6 sepsis.tw. 83096
7 septic shock/ 20856
8 septic shock.tw. 18886
9 septicemia/ 53622

10 septicaemia.tw. 6055
11 septicemia.tw. 12227
12 5 or 6 or 7 or 8 or 9 or 10 or 11 139261
13 4 and 12 1778
14 randomized controlled trial.pt. 464602
15 controlled clinical trial.pt. 92507
16 randomized.ab. 407222
17 placebo.ab. 187477
18 drug therapy.fs. 2031668
19 randomly.ab. 288588
20 trial.ab. 423856
21 groups.ab. 1779563
22 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 4192834
23 exp animals/ not humans.sh. 4475707
24 22 not 23 3617942
25 13 and 24 553

Ovid MEDLINE(R) 1946 to July Week 3 2018, Ovid MEDLINE(R) In-Process & Other Non-Indexed
Citations July 31, 2018.
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Table 2: Search in EMBASE.

# Searches Results
1 immunoglobulins/ 115815
2 immunoglobulin$.tw. 163890
3 ivig.tw. 14191
4 1 or 2 or 3 235251
5 sepsis/ 137769
6 sepsis.tw. 125463
7 septic shock/ 44807
8 septic shock.tw. 29733
9 septicemia/ 16197
10 septicaemia.tw. 6613
11 septicemia.tw. 13638
12 5 or 6 or 7 or 8 or 9 or 10 or 11 229315
13 4 and 12 5007
14 random.tw. 268899
15 placebo.mp. 407475
16 double-blind.tw. 170545
17 14 or 15 or 16 716448
18 17 and 13 306
19 animals/ not (animals/ and humans/) 1348142
20 18 not 19 306

EMBASE 1980 to 2018 Week 31.

3



2. Systematic literature review methods

Inclusion Criteria
The inclusion criteria were the same as those used in Soares et. al., 2012 [1], with an

important difference being that studies enrolling participants of any age were included. In
particular:

• Population(s) : Patients of any age with severe sepsis or septic shock

• Intervention(s) : Any preparation of polyclonal IVIG or IVIGAM (i.e., IgM-enriched
IVIG)

• Comparator(s) : No treatment (Placebo), Standard of Care (SoC) i.e., antibiotics, or
Albumin (ALB) serum

• Outcome(s) : All-cause mortality

• Setting : Critical-care unit

• Study-design : Randomised controlled trials

All studies which investigated the use of IVIG/IVIGAM for prevention of sepsis were
excluded, along with those studies which had enrolled patients with suspected but
unconfirmed sepsis.

Data Extraction
Data were extracted using the template that was developed in Soares et al., 2012 [1].

The following information was extracted:

• Population: Whether the enrolled patient population was paediatric or adult. If
paediatric, information on population age (young children, full- or pre-term neonates
etc.) was also extracted.

• Intervention: The specific IVIG/IVIGAM product used in the treatment arm, in-
cluding days of treatment duration, and total dosage (in mg/kg). For control
interventions, data extracted predominantly concerned the type of treatment (e.g.,
no treatment, antibiotics, albumin-serum).

• Outcome: The number of patients enrolled in each arm, along with the number of
events (deaths).

• Quality: Allocation concealment, blinding, randomisation, intention-to-treat analysis,
missing data; from these, Jadad scores were subsequently calculated [3].

• Other details : Year of publication, setting (e.g., Intensive Case Unit).

4



2. Analysis data

2. Analysis data

The full set of data used across all analyses is provided in Table 3.
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Table
3:D

irectand
indirectdata

in
the

IV
IG

case-study.

St.ID
t1

r1
n1

t2
r2

n2
pub.year

Jadad
dosage

duration
population

1/ √
N

Study
1

A
LB

13
27

IV
IG

A
M

8
29

2005
5

1.75
5

adults
0.19

R
odriguez

2005
2

A
LB

29
103

IV
IG

A
M

27
103

2006
3

0.93
3

adults
0.1

H
entrich

2006
3

PLA
14

34
IV

IG
A

M
8

34
2002

2
0.75

3
adults

0.17
K

aratzsas
2002

4
PLA

7
21

IV
IG

A
M

5
21

2002
3

0.75
3

adults
0.22

Tugrul2002
5

A
LB

10
22

IV
IG

A
M

9
30

1995
1

0.93
3

adults
0.18

Behre
1995

6
PLA

9
28

IV
IG

A
M

1
27

1991
3

0.855
3

adults
0.19

Shedel1991
7

PLA
13

17
IV

IG
A

M
8

18
1990

1
0.75

3
adults

0.24
W

esoly
1990

8
PLA

11
25

IV
IG

A
M

6
25

1987
1

0.45
3

adults
0.2

Spannbruker
1987

+
Vogel1987

9
A

LB
36

56
IV

IG
19

57
1996

3
1

5
adults

0.13
D

om
inioni1996

10
A

LB
3

19
IV

IG
4

19
1991

5
1.2

3
adults

0.23
Burns

1991
11

PLA
9

12
IV

IG
7

12
1988

1
1

5
adults

0.29
D

e
Sim

one
1988

12
A

LB
113

303
IV

IG
126

321
2007

5
0.9

2
adults

0.06
W

erdan
2007

13
PLA

19
22

IV
IG

15
24

1988
2

0.5
2

adults
0.2

G
rundm

ann
1988

14
A

LB
4

11
IV

IG
1

10
2003

5
2

3
adults

0.32
D

arenberg
2003

15
PLA

1
74

IV
IG

1
74

1981
3

0.45
3

adults
0.12

Lindquist
1981

16
PLA

10
343

IV
IG

3
339

2000
3

0.21
3

adults
0.05

M
asaoka

2000
17

A
LB

9
19

IV
IG

3
21

1998
3

1.8
7

adults
0.22

Yakut
1998

18
PLA

1
28

IV
IG

2
28

1996
4

0.5
1

children
0.19

C
hen

1996
19

PLA
9

24
IV

IG
A

M
6

20
1993

1
0.6

3
children

0.22
Erdem

1993
20

PLA
6

30
IV

IG
A

M
1

30
1988

4
0.5

1
children

0.18
H

aque
1988

21
PLA

2
18

IV
IG

2
19

1992
3

0.5
1

children
0.23

M
ancilla

1992
22

PLA
8

30
IV

IG
A

M
5

30
1997

1
0.6

3
children

0.18
Sam

atha
1997

23
PLA

7
25

IV
IG

7
25

1999
1

0.15
3

children
0.2

Shenoi1999
24

A
LB

5
17

IV
IG

2
14

1992
5

0.5
1

children
0.27

W
eism

an
1992

25
A

LB
677

1734
IV

IG
686

1759
2011

5
1

3
children

0.02
Brocklehurst

2011
26

PLA
2

51
IV

IG
A

M
4

51
2014

5
0.75

3
children

0.14
A

kdag
2014

27
PLA

14
39

IV
IG

A
M

5
39

2014
5

0.6
3

children
0.16

K
ola

2014
28

PLA
10

30
IV

IG
8

30
2005

3
2

2
children

0.18
Yildizdas

2005

r1,r2:num
ber

of
deaths

in
the

controland
treatm

ent
arm

s
w

hich
are

of
size

n1
and

n2
respectively.D

osage
is

m
easured

in
m

g/kg
and

duration
of

treatm
ent

in
days.

6



3. Heterogeneity re-exploration process

3. Heterogeneity re-exploration process

3.1. Methods

In the original HTA ([1]), the authors developed and implemented a step-by-step frame-
work to identify important effect modifiers and select the best-fitting models in an
evidence base that comprised only of direct evidence [4]. We extended this framework to
also include the indirect evidence from paediatric patients. The proposed process not only
explores potential effect modifiers and alternative treatment parametrisations separately
within each population, but also identifies if and how indirect evidence might help in
explaining the heterogeneity among the direct studies.

The extended heterogeneity exploration framework consists of the following steps:

1. Fit simple FE and RE models without covariates: For every possible treatment
parametrisation, fit FE and RE models separately in each population without im-
posing any information-sharing between direct and indirect evidence1. Record
population-specific residual deviances and between-studies heterogeneities as well
as overall DIC and residual deviance2. This step provides an initial understanding of
the heterogeneity within each population, the extent to which alternative treatment
parametrisations can partly explain heterogeneity, and whether or not the relative
effects seem to be similar among the two populations.

2. Add covariates: Subsequently, for each potential effect modifier fit the following
four meta-regression models:

(a) FE with separate, population-specific, effect modification
(i.e. logit(pi,k) = µi + dk,pop + βpop × cov )

(b) FE with common effect modification across the two populations
(i.e. logit(pi,k) = µi + dk,pop + β × cov )

(c) RE with separate, population-specific, effect modification
(i.e. logit(pi,k) = µi + δi,k + βpop × cov )

(d) RE with common effect modification across the two populations
(i.e. logit(pi,k) = µi + δi,k + β × cov )

In the equations above, pop indexes the population, k the treatment, and i the study.
Note that because no study provides information on both populations, pop is nested

1This is achieved by specifying separate parameters for each population. The only quantities that refer to
the full evidence base are the Deviance Information Criterion (DIC) and the overall residual deviance.

2That is simply the sum of the population-specific residual deviances.
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3. Heterogeneity re-exploration process

in i. Study-specific random-effects are assumed to follow treatment- and population-
specific normal distributions (δi,k ∼ N(dk,pop, τpop)). All remaining parameters in
the aforementioned models are defined as in the main body of the manuscript and
vague priors are applied to all hyperparameters. Finally, it is important to highlight
that models (a) and (c) do not impose any information-sharing among the direct
and indirect evidence, whilst models (b) and (d) impose some information-sharing
because common effect modification is assumed across the two populations. The
process is repeated for all treatment parametrisations.

This step allows us to compare the direction and estimated magnitude of the effect
modification for each potentially important covariate in the two populations to
assess whether it is statistically reasonable to impose a common effect modifica-
tion coefficient. We can also obtain additional information regarding the optimal
treatment parametrisation, and confirm whether the results are consistent with the
previous step, and that the inclusion of covariates has not changed the best-fitting
treatment parametrisation.

3. Combining covariates: For the identified important effect modifiers and the best
performing treatment parametrisation, we can repeat the process of Step 2, using
combinations of covariates. If the results of Step 2 suggest that different covariates
are important in the two populations, models which use different effect modifiers
for each population can be fit i.e. ‘hybrid’ models.

For this analysis, four different treatment parametrisations were explored: T2, T3a,
T3b and T4 (Figure 1). The five covariates which had been found to explain some of
the heterogeneity in Soares et al., 2012 [1] were considered. These were: duration of
treatment, Jadad score, 1/

√
N (sample size), Dosage of IVIG/IVIGAM, and year of study

publication.
Models were implemented in WinBUGS [5], through R [6] using the R2WinBUGS

package [7]; a Bayesian framework was adopted. Three MCMC chains with different
starting values were used for all models, and Gelman-Rubin statistics were used to assess
model convergence. For model comparison, deviance information criterion (DIC) and
posterior mean residual deviance (Dres) were used and defined in accordance with the
NICE Technical Support Document 2 [8]. Models were considered to fit significantly
worse when differences in DIC were larger than 3 points [9].
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3. Heterogeneity re-exploration process

Figure 1: Updated networks graph.

In the parentheses, the first number indicates the number of adult studies providing evidence for the
comparison in question, while the second number indicates the number of paediatric studies.
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3.2. Results

The results are presented in the same sequence as the steps were described in the methods
section. This is because the conclusions of each step feed into the next, until we reach
the last step and decide on the final list of base-models. The selected base-models are
then the starting point for sharing information among adults and paediatric patients on
relative effectiveness.

3.2.1 Step 1 : Fit FE and RE models without any covariates

Table 4 illustrates the results of the application of FE and RE models, without any
covariates (null models), in the four treatment parametrisations being assessed.

Table 4: Results of Step 1 of the re-exploration of heterogeneity.

Network Model τAD τPE Dres DresAD DresPE DIC

T2
FE n/a n/a 77.02 51.43 25.59 303.36
RE 0.56∗ 0.47 51.97 30.82 21.14 289.31

T3a
FE n/a n/a 71.11 50.12 20.99 299.45
RE 0.60∗ 0.35∗ 51.89 31.23 20.67 289.50

T3b
FE n/a n/a 65.61 42.76 22.84 293.91
RE 0.49∗ 0.47 52.98 31.57 21.41 290.28

T4
FE n/a n/a 65.57 43.58 22.00 295.92
RE 0.53∗ 0.46∗ 52.99 31.90 21.08 291.76

Blue colour indicates a low within-column value, red a high within-column value, and yellow similar
within-column values. The asterisk (∗) indicates a significant value at the 95% confidence level. τ refers
to the between-studies-heterogeneity and Dres to the residual deviance. Subscripts (AD, PE) represent
whether a measure only refers to adult or paediatric studies, while when there is no subscript the
measure refers to the whole database (adults and paediatric patients).

In all networks, the DIC and residual deviance for RE models are lower than for
FE models. The breakdown in residual deviance between the adult and paediatric
patients shows that the decrease in residual deviance is mainly driven from the adult
evidence (the difference between the paediatric residual deviance across FE and RE
models within each network is very small and this is consistent across networks). Across
adult studies, heterogeneity (τAD) is significant regardless of treatment parametrisation,
implying that heterogeneity is not adequately explained by the network structure, and
therefore covariates will need to be considered.

Across networks, all RE models fit similarly based on both Total Residual Deviance
and DIC. However, based on the heterogeneity estimates (τAD, τPA), T3b network is the
best for adults and T3a for the paediatric studies. However, it should be noted that in

10
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the paediatric network only 2 out of the 11 studies use ALB in the control arm, so when
ALB and PLA are separated (as in T3b), only a limited amount of evidence informs the
IVIG/IVIGAM vs ALB comparison. With regards to T4, DIC and Dres are similar to T3b,
but heterogeneity estimates are significant for both evidence sets and the model is less
parsimonious.

Overall, based on DIC values and given the fact that the primary focus here is on
adults, T3b is chosen as the best treatment parametrisation.

3.2.2 Step 2 : Adding covariates

Table 5 shows the results of the meta-regression models, under T3b parametrisation, on
a collection of variables which where shown by Welton et al., 2014 [4] to influence the
relative effect.

The first feature to notice is that in contrast to the null models, FE models here
perform better than RE with the exception of the meta-regression model on Jadad which
struggles to explain any heterogeneity. All other models seem to at least partly explain
heterogeneity, and improve the fit according to DIC.

The covariate which produces the best performing meta-regression models is duration
of treatment, though this improvement seems to be driven only by the adult evidence3.
This is further supported by the fact that compared to the model that imposes separate
effect modification coefficients, when a common effect modification is imposed, the
direction of βPE changes and its magnitude becomes very similar to the adult one. As
a result of this difference between the two populations, the FE model with population-
specific coefficients fits the best in terms of both DIC and residual deviance.

FE meta-regression models on sample size also fit well and marginally better than
random-effects. In this case, the magnitude of effect modification is similar among
adult and paediatric studies and when a common coefficient is imposed, its estimate
becomes more precise (CrI not shown in Table 5). The meta-regression models on year of
publication provide a very similar fit with those on sample size, albeit slightly worse in
terms of heterogeneity, residual deviance, and DIC.

3The fact that duration of treatment does not seem to be an important effect modifier in the paediatric
studies may confirm the clinicians’ suspicion about this variabe in Soares et al., 2012 [1] where they were
unable to intuitively explain the reason that it was the main source of heterogeneity in adults —see Soares et
al., 2012 [1] page 38.
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Table 5: Step 2c. Results of meta-regression models on various covariates in network T3b.

Covariate Model τAD τPE βAD βPE Dres DresAD DresPE DIC

NULL
FE n/a n/a - - 65.61 42.76 22.84 293.91
RE 0.49∗ 0.47 - - 52.98 31.57 21.41 290.28

Duration

FE sep n/a n/a −0.40∗ 0.54 50.88 27.95 22.94 281.23
FE com n/a n/a −0.36∗ −0.36∗ 53.25 27.99 25.26 282.58
RE sep 0.19 0.50 −0.40∗ 0.54 50.03 28.43 21.60 284.81
RE com 0.20 0.57 −0.36∗ −0.36∗ 50.50 28.32 22.17 285.26

Jadad

FE sep n/a n/a 0.26∗ 1.97 61.07 38.23 22.85 290.39
FE com n/a n/a 0.26∗ 0.26∗ 61.09 38.20 22.88 290.41
RE sep 0.44‡ 0.45 0.18 −3.18 53.86 32.43 21.43 291.07
RE com 0.43‡ 0.47 0.19 0.19 53.84 32.46 21.38 291.10

Sample

FE sep n/a n/a −7.49∗ -4.48 55.98 33.09 22.89 286.28
FE com n/a n/a −6.70∗ −6.70∗ 55.56 32.95 22.61 284.92
RE sep 0.29 0.50 −6.70∗ −4.51 53.22 31.57 21.65 289.36
RE com 0.27 0.45 −6.22∗ −6.22∗ 52.78 31.47 21.31 287.71

Dosage

FE sep n/a n/a −1.44∗ 2.06 58.65 35.75 22.90 288.97
FE com n/a n/a −1.19∗ −1.19∗ 60.61 35.80 24.80 289.95
RE sep 0.37‡ 0.49 −1.25‡ 2.02 52.88 31.26 21.62 290.32
RE com 0.38‡ 0.54 −1.01 −1.01 53.05 31.16 21.90 290.31

Year

FE sep n/a n/a 0.08∗ 0.05 57.45 34.65 22.80 287.68
FE com n/a n/a 0.08∗ 0.08∗ 56.86 34.47 22.39 286.19
RE sep 0.31 0.48 0.06 0.06 54.62 32.98 21.63 290.97
RE com 0.29 0.44 0.07‡ 0.07‡ 54.08 32.89 21.19 289.24

Blue colour indicates a low value with darkest shading showing the lowest values. The ‡ symbol indicates
significance at the 90% confidence level. τ refers to the between-studies-heterogeneity, Dres to the residual
deviance and β to the meta-regression coefficient of the control variable in question which is modelled
in the log-odds ratio scale. Subscripts (AD, PE) represent whether a measure refers to only adult or
paediatric studies, while when there is no subscript the measure refers to the whole database (adults and
paediatric patients).
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Regarding alternative treatment parametrisations, the results of the meta-regression
models on all covariates are provided elsewhere [10]. For illustrative purposes though,
the models on duration of treatment and on Jadad are provided in Table 6 and Table 7).
Just as in Step 1, for the models that account for duration of treatment, T3b is again
much better than T2 and T3a, but not significantly better than T4. However, T3b may be
preferred over T4 on parsimony grounds. For the models that account for Jadad, T2 fits
as well as the other treament parametrisations and should be preferred on parsimony
grounds.

Table 6: Results of meta-regression models on duration for all network parametrisations.

covariate Model τAD τPE βAD βPE Dres DresAD DresPE DIC

T2

FE sep n/a n/a −0.38∗ 0.36 61.39 37.11 24.27 289.70
FE com n/a n/a −0.27∗ −0.27∗ 69.01 38.12 30.90 296.34
RE sep 0.37 0.46 -0.29 0.25 54.01 32.40 21.61 290.33
RE com 0.43 0.57 -0.18 -0.18 53.28 31.71 21.57 290.52

T3a

FE sep n/a n/a −0.37∗ 0.29 58.24 37.57 20.67 288.55
FE com n/a n/a −0.27∗ −0.27∗ 63.53 38.25 25.28 292.85
RE sep 0.42 0.37 -0.28 0.31 53.14 32.63 20.51 290.34
RE com 0.49 0.44 -0.14 -0.14 53.55 31.90 21.65 291.56

T3b

FE sep n/a n/a −0.40∗ 0.54 50.88 27.95 22.94 281.23
FE com n/a n/a −0.36∗ −0.36∗ 53.25 27.99 25.26 282.58
RE sep 0.19 0.50 −0.40∗ 0.54 50.03 28.43 21.60 284.81
RE com 0.20 0.57 −0.36∗ −0.36∗ 50.50 28.32 22.17 285.26

T4

FE sep n/a n/a −0.41∗ 0.54 50.88 28.80 22.08 283.23
FE com n/a n/a −0.36∗ −0.36∗ 53.29 28.85 24.44 284.61
RE sep 0.21 0.50 −0.40∗ 0.54 50.42 29.15 21.27 286.72
RE com 0.22 0.57 −0.36∗ −0.36∗ 51.10 29.14 21.97 287.43

Blue colour indicates a low value with darkest shading showing the lowest values. τ refers to the
between-studies-heterogeneity, Dres to the residual deviance and β to the meta-regression coefficient
of the control variable in question which is modelled in the log-odds ratio scale. Subscripts (AD, PE)
represent whether a measure only refers to adult or paediatric studies, while when there is no subscript
the measure refers to the whole database (adults and paediatric patients).
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Table 7: Results of Meta-Regression models on Jadad for all network parametrisations.

covariate Model τAD τPE βAD βPE Dres DresAD DresPE DIC

T2

FE sep n/a n/a 0.29∗ 0.09 64.83 39.24 25.59 293.15
FE com n/a n/a 0.20∗ 0.20∗ 66.55 39.87 26.68 293.87
RE sep 0.44 0.55 0.20 0.01 53.78 32.33 21.46 291.51
RE com 0.47∗ 0.49 0.12 0.12 53.59 31.53 22.06 290.83

T3a

FE sep n/a n/a 0.34∗ -0.03 61.59 39.63 21.95 291.92
FE com n/a n/a 0.17∗ 0.17∗ 66.80 41.91 24.88 296.11
RE sep 0.46 0.42 0.23 -0.04 53.86 32.70 21.16 291.90
RE com 0.54∗ 0.43 0.08 0.08 53.09 31.63 21.46 291.51

T3b

FE sep n/a n/a 0.26∗ 1.97 61.07 38.23 22.85 290.39
FE com n/a n/a 0.26∗ 0.26∗ 61.09 38.20 22.88 290.41
RE sep 0.44 0.45 0.18 -3.18 53.86 32.43 21.43 291.07
RE com 0.43 0.47 0.19 0.19 53.84 32.46 21.38 291.10

T4

FE sep n/a n/a 0.32∗ 2.99 60.45 38.43 22.01 291.78
FE com n/a n/a 0.33∗ 0.33∗ 60.43 38.42 22.01 291.76
RE sep 0.46 0.47 0.22 5.57 54.04 32.93 21.10 292.85
RE com 0.46 0.47 0.23 0.23 53.96 32.91 21.05 292.67

∗ indicates a value that is significant at the 5% level, whilst a ‡ at the 10% level. Blue shading indicates
low within-column values.

3.2.3 Step 3 : Combining covariates

The results of Step 2 suggest that duration of treatment is the most important predictor
of the relative effect, followed by sample size and year of publication. In this step, these
covariates are combined to assess whether the models would fit better and explain a larger
part of heterogeneity. The models that combined year with sample size and all three
variables together did not converge despite additional efforts such as centering or thinning
the MCMC chains. The results of the two remaining combination meta-regression models
are shown in Table 8.

The first thing to note is that the effects of sample size, modelled as 1/
√

N, and the
year of publication are not significant at the 95% level when separate coefficients are
assumed in each population. In the first set of models (Duration + Sample), common
coefficient models perform slightly better than those with separate coefficients. This may
be because the coefficient for duration across paediatric studies has the same sign as in
adults, and as a result when a common coefficient is imposed, the residual deviance does
not increase and a better fit is observed overall. Heterogeneity in adults is comparable to
that estimated with the T3b meta-regression solely on duration (Table 5), indicating that
sample size does not explain any additional heterogeneity in adults. However, it does on
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Table 8: Step 3. Meta-regression models with multiple covariates in T3b network.

Covariate Model τAD τPE β1,AD β1,PE β2,AD β2,PE Dres DresAD DresPE DIC

Duration + Sample

FE sep n/a n/a −0.35∗ −0.18 −1.6 −5.7 51.74 28.76 22.98 283.14
FE com n/a n/a −0.26∗ −0.26∗ −3.9‡ −3.9‡ 51.42 28.69 22.72 281.8
RE sep 0.20 0.48 −0.34∗ −0.04 −2.04 −4.7 50.69 29.12 21.56 286.32
RE com 0.20 0.47 −0.27‡ −0.27‡ −3.85 −3.85 50.11 28.77 21.34 284.76

Duration + Year

FE sep n/a n/a −0.36∗ 6.0 0.015 −0.57 51.82 28.78 23.03 283.26
FE com n/a n/a −0.27∗ −0.27∗ 0.05‡ 0.05‡ 51.67 28.84 22.82 281.99
RE sep 0.22 0.50 −0.36∗ −2.5 0.01 0.32 50.63 29.13 21.5 286.3
RE com 0.21 0.48 −0.29∗ −0.29∗ 0.04 0.04 50.78 29.38 21.4 285.7

Blue colour indicates a low value with darkest shading showing the lowest values. τ refers to the
between-studies-heterogeneity, Dres to the residual deviance, and β1 and β2 to the meta-regression
coefficient of the first and the second control variable in question which is modelled in the log-odds ratio
scale. Subscripts (AD, PE) represent whether a measure only refers to adult or paediatric studies, while
when there is no subscript the measure refers to the whole database (adults and paediatric studies).

paediatric studies as can be observed by comparing the paediatric-specific heterogeneity
estimates in Table 8 with the corresponding estimates in Table 5, and this leads to lower
total and paediatric-specific residual deviance values.

As mentioned above, the model that included both the year of publication and the
sample size did not converge. This may indicate that these variables explain the same
component of heterogeneity, implying that only one is enough to explain the heterogeneity
due to study quality. This hypothesis is further supported by the fact that the last meta-
regression models that use the duration of treatment and year of publication perform
similarly to the models that use the duration of treatment and the sample size. Finally,
given the conclusions from all steps, ‘hybrid’ models were attempted (Table 9), using
different specifications for each evidence set. Note that the first model with FE meta-
regression on duration in adults and a FE model without any covariates in paediatric
patients provides the best fit amongst all attempted models in this section.

Table 9: ‘Hybrid’ models that do not use the same covariates in the two populations. T3b network
parametrisation.

covariate Model ad Model paed τAD τPE βAD βPE Dres DresAD DresPE DIC
Duration (adults) FE M-regr FE n/a n/a −0.4∗ - 50.82 27.96 22.87 280.1
Duration (adults) FE M-regr RE n/a 0.47 −0.4∗ - 49.34 27.96 21.39 281.7

Dur (ad); Sample (paed) FE M-regr FE Mregr n/a n/a −0.4∗ -5 51.28 27.96 23.32 281.9
Blue colour indicates a low value with darkest shading showing the lowest values. τ refers to the
between-studies-heterogeneity, Dres to the residual deviance and β to the meta-regression coefficient
of the control variable in question which is modelled in the log-odds ratio scale. Subscripts (AD, PE)
represent whether a measure only refers to adult or paediatric studies, while when there is no subscript
the measure refers to the whole database (adults and paediatric studies).
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3. Heterogeneity re-exploration process

3.2.4 Base model selection

The previous steps illustrated that before imposing any information-sharing, we need to
identify the model(s) that best describe the direct and the indirect evidence. Therefore, we
investigated heterogeneity in the extended evidence space to find the best fitting models
for adults and children. We explored FE and RE models with alternative treatment
parametrisations (combining or separating active -IVIG/IVIGAM- and control -ALB/SoC-
treatments) as well as meta-regression models using the following effect modifiers: days
of treatment duration, Jadad score [3], 1/

√
N (with N being the sample size), dosage

of the active treatment, and year of publication. For each covariate we tried models
that allowed a different effect modification coefficient for adults and children as well as
models with a common coefficient. For covariates exhibiting a significant effect in both
populations, models that combined multiple covariates were attempted. Finally, when a
covariate was exhibiting a significant effect in one population but not the other, we tried
‘hybrid’ models that accounted for the effect of the said covariate only in one population.

The model comparison for the base-model selection was based on the DIC in line with
[8, 9]. The best fitting model was a ‘hybrid’ FE model that accounted for the effect of
the days of treatment duration in adults but did not consider any covariates for children.
This model considered three treatment nodes combining IVIG and IVIGAM but keeping
ALB and SoC separate (i.e., T3b). The relative effect of interest there was the ALB vs.
IVIG/IVIGAM. No random-effects models (with or without covariates) fitted better than
the fixed effect model that accounted for the duration of treatment.

However, the aforementioned model adjusted for the effect of the days of treatment
duration and as mentioned in [1] clinicians did not find the relationship of this covariate
intuitively linked to relative efficacy and suspect that it might be correlated with other
influential aspects. Also, since the aim of our paper is primarily methodological, we
wanted to understand the impact of information-sharing under RE models. Given that
all RE models fitted significantly worse than the aforementioned FE model (i.e., yielded
DICs that were higher by at least 5 points), amongst the best fitting RE models, we chose
a meta-regression model on Jadad score because it allowed us to predict the relative effect
of a study of the best possible quality, and such a model would potentially appeal to
decision-makers. Specifically, we chose the RE meta-regression model that used Jadad as
a covariate for both adults and children with a common effect modification coefficient.
We note that the common effect modification coefficient implies that some information-
sharing is already taking place between the two populations. This model combined both
active treatments (IVIG/IVIGAM) and control treatments (ALB/SoC). The treatment
effect of interest there was hence ALB/SoC vs. IVIG/IVIGAM (i.e., T2).
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4. Applying information-sharing under meta-regression base-models

4. Applying information-sharing under meta-regression base-models

Consider the case where the base-models for both evidence sets account for the same
covariate X. Then the synthesis model for the direct evidence would take the following
form:

ri,k ∼ Bin(pi,k, ni,k)

logit(pi,k) = θi,k = µib + δi,bk + βDir · (Xi − XDir)

δi,bk ∼ N(dDir
bk , τDir2

)

dDir
bk = dDir

1k − dDir
1b

dDir
11 = 0

where dDir
bk , dDir

1k , τDir are the relative treatment effects, basic parameters, and between-
studies heterogeneity specific to the direct evidence. Xi is the study-specific value for
covariate X and XDir is the covariate value at which we center. Similarly the synthesis
model for the indirect evidence is defined by specifying dIndir

bk , dIndir
1k , τ Indir, and XIndir.

The prediction for the relative treatment effect of the direct evidence at a covariate
value of, say, X = 3 is:

mDir
1k [3] = dDir

1k − βDir · XDir + βDir · 3

which implies that if we choose to center at XDir = 3, then two two last components
cancel out and

mDir
1k [3] = dDir

1k

Similarly, for the indirect evidence the prediction for the relative effect at X = 3, if we
choose to also center at XIndir = 3 is

mIndir
1k [3] = dIndir

1k

This implies that we can still use the ISMs that are described in the manuscript,
without any modifications to accommodate the fact that the relative effect now comprises
of two components, even if different β coefficients are used in the two evidence sets, as
long as we center both sources’ meta-regression models at the covariate value at which
we want to relate them.

17



5. Random-effects extreme information-sharing exploration

5. Random-effects extreme information-sharing exploration

In the Jadad RE base-model, for low values of α, the power-prior yields results which
share information more strongly than lumping, and as α gets closer to 1, the estimates get
closer to lumping. This is attributed to the way that the power-prior operates and to the
nature of the indirect evidence.

Specifically, the paediatric evidence includes only one very big study Blocklehurst et
al., 2011 (with more than 3000 patients) and 10 relatively small studies (all with less than
100 patients). For very low α values (0 – 0.2), the only study whose likelihood gathers
some weight is the big Brocklehurst study, whilst the likelihoods of all the small paediatric
studies remain effectively negligible. Therefore, the relative effect of the big Brocklehurst
study, which is 0 and therefore suggests that IVIG/IVIGAM is no better than the control,
contributes excessively to the overall relative effect and pulls it towards the no effect. For
values of α > 0.2 the small paediatric studies start becoming non-negligible and their
likelihoods acquire adequate weight to be accounted by the random-effects model as
small studies. Hence, for values of α > 0.2, the small studies start contributing to the
overall effect, gradually pulling the relative effect towards the estimate obtained under
lumping when α = 1.

The above interpretation was tested in a fictitious example that is shown below. In
Figure B, the data of the big Brocklehurst study are tweaked so that this study reports
a higher relative effect similar to the small paediatric studies. As expected, the result is
a monotonous relationship between alpha and the relative effect. In Figure C, the data
of the small paediatric studies are tweaked so that they report a very low, close to no
effect, relative effect. The result is again a monotonous relationship between alpha and
the relative effect in the other direction.

It can therefore be concluded that the reason behind the observed non-monotonous
relationship in this case study, leading to some power prior models sharing outside the
spectrum defined by lumping and splitting is the nature of the indirect evidence i.e., that
the indirect evidence comprises studies that simultaneously considerably differ in their
sample size and the relative effect they report.
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5. Random-effects extreme information-sharing exploration

Figure 2: Relative treatment effect (IVIG/IVIGAM vs ALB) estimates (y-axis) of re-running power-prior
models for different α values (x-axis), for the Jadad RE base-model, under different scenarios for
the indirect evidence.
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B: Big study similar to small
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C: Small studies similar to big
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6. Kullback-Leibler divergence illustration

6. Kullback-Leibler divergence illustration

Figure 3 illustrates KL-divergence from a standard normal distribution. The top left figure
shows the KL divergence from a standard normal for distributions with sd = 1 and means
varying between −1 and 1, while the top right graph for distributions with mean = 0 and
standard deviations varying between 0.4 and 1.6. It is apparent that KL is symmetrical for
divergent means, but more sensitive to lower -than the reference distribution- standard
deviations. This feature is also revealed in the bottom graph by the non-circular shapes of
the oval KL levels lines.
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6. Kullback-Leibler divergence illustration

Figure 3: An illustration of KL divergence from the standard normal distribution.

The top left and right graphs show the KL divergence for distribution with varying means and varying
standard deviations respectively. The graph in the bottom incorporates both changes simultaneously and
reveals the non-symmetrical nature in which KL weights changes in the mean and the standard deviation.
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