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Abstract — Gesture recognition using luminance invariant
radar sensors is vital due to its extensive use in human-machine
interfaces. However, the necessity for computationally expensive
radar data pre-processing steps represented by fast Fourier
transforms to get range and Doppler features are regarded as
a contemporary concern. In this work, we present a solution for
gesture recognition that relies on time-domain radar data applied
to an event-driven, sparse, and end-to-end trained spiking neural
network architecture. Using the proposed solution, it is possible
to discriminate between 10 different gestures in a gesture dataset
recorded using a 60 GHz frequency-modulated continuous-wave
radar sensor, with a mean test accuracy of 93.1%.
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I. INTRODUCTION

Gesture recognition has always been interesting since it
enables the remote control of a wide range of electronics
via human-machine interaction, like smart TVs, virtual reality,
audio equipment, etc. Because of their high angular resolution,
optical-based camera sensors have been utilized to address
human-machine interactions [1]. However, the drawback of
these camera sensors is that they are highly affected by lighting
conditions. Furthermore, because individuals must be in the
camera’s line of sight, they constitute a significant loss of
privacy. Radar sensors, on the other hand, are insensitive to
lighting conditions, have negligible privacy issues, can function
through obstacles, and can be easily integrated into equipment.
Given the advantages of using radar sensors for gesture
recognition, several deep-learning-based approaches for
recognizing gestures have been introduced [2]-[4]. Although
conventional artificial neural networks (ANNs) can accurately
classify radar datasets, they lack the complex characteristics
of biological neurons and are energy inefficient. Thus, the
third generation of ANNs, known as spiking neural networks
(SNNs) [5], has been introduced. SNNs differ from traditional
ANNs in that they function with continuous temporal data
throughout time and generate a sequence of pulses (i.e., spikes)
as an output. When comparing ANNs to SNNs at the neuronal
level, spiking neurons do not use a fixed non-linearity weighted
sum of inputs. Instead, each spiking neuron accumulates input
data over time and fires only when its firing threshold is
reached, resulting in a sparse network in which not all neurons
fire simultaneously. Therefore, they are energy-efficient and
well-suited for low-power embedded devices. SNNs have

recently been used for gesture recognition in [6]-[8]. However,
all of the previously described works have one commonality:
they all rely on conventional radar data pre-processing
to extract the essential features for classification, such as
range, Doppler, and angles. This necessitates the use of
computationally expensive fast Fourier transforms (FFTs) on
raw radar data in advance. Finding a way to avoid performing
FFTs might dramatically reduce computational overhead,
allowing for more energy-efficient deployment on embedded
devices, as long as the processing overhead in the neural
network does not increase proportionally.
Accordingly, the key contributions of the paper are: We
provide a new realistic training approach that skips the FFT’s
pre-processing steps by utilizing just time-domain radar data. A
sparse spiking-based convolutional neural network architecture
that can discriminate between ten distinct gesture classes is
introduced. Because of its low number of computations and
sparsity, the proposed SNN model is highly practical. To the
best of the author’s knowledge, this is the first work using
an SNN model to classify human gestures using time-domain
radar data with multiple receive antennas.

II. SYSTEM AND GESTURE DATASET
A. Dataset Recording

The gesture dataset was recorded using the FMCW 60 GHz
BGT60TR13C radar sensor from Infineon Technologies. The
radar sensor comes with three receiving antennas (NRX ) and
one transmitting antenna (NTX ). The FMCW radar’s transmit
signal is made up of chirps, the frequencies of which are
swept linearly from a start frequency (fmin) of 58 GHz
to a stop frequency (fmax) of 63 GHz. The received and
transmitted chirps are mixed and low-pass filtered to produce
the intermediate frequency (IF) signal. The intermediate
frequency signal is then sampled 64 times (Ns) with an
analog-to-digital converter (ADC) at a sampling frequency (fs)
of 2 MHz.
The recorded gesture dataset includes eight macro gestures:
forward, backward, circle-clockwise, circle-anticlockwise,
down-top, top-down, left-right, and right-left, as well as two
micro gestures: finger-wave and finger-rub. Fig. 1 depicts
an overview of the recorded gestures. Five different persons
contributed to the dataset. Each gesture was recorded 200
times, and each record consisted of 60 frames, with 32
chirps and 64 sample points in each frame. Accordingly, the
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Fig. 1. The ten different recorded gestures.

dimension of the raw data is [recordings, antennas, frames,
chirps, samples] with values of [2000, 3, 60, 32, 64].

B. Dataset Preparation

The mean value along the dimension of both the samples
and the chirps is removed to overcome transmitter-receiver
leakage and the influence of static objects. These procedures
are commonly known as DC removal and moving target
indication (MTI) [9]. Furthermore, as will be indicated in
section IV-C, the suggested training approach is carried out
on a frame-by-frame basis. Consequently, a frame-by-frame
min-max normalization was performed, where the 60 frames of
each record for each antenna were normalized. Thus, the final
time-domain data that will be utilized in the rest of the paper is
in the form of [recordings, antennas, frames, chirps, samples]
with values inside the frame’s dimension (chirps, samples)
ranging from zero to one, which would be more advantageous
to the training approach.

III. CONVENTIONAL PRE-PROCESSING APPROACH

All of the pre-processing steps are applied to the
frame-by-frame normalized recordings as already mentioned
in section II-B. The range-Doppler images (RDIs) for each
frame are then extracted using 2D FFTs; details on how to
generate the RDIs are mentioned in [10]. Since the radar’s
three receiving antennas are arranged in a triangular pattern, it
was possible to estimate the angles in the azimuth and elevation
directions with only two antennas. Correspondingly, for the
RDI of each frame, using the first and third antennas, it was
feasible to retrieve the 32 azimuth-angles corresponding to the
range-Doppler bins with the maximum amplitude in that RDI.
The same is performed for the elevation angles while utilizing
the second and third antennas. Finally, the RDIs of successive
frames got concatenated to generate range spectrograms
and Doppler spectrograms. Therefore, each record has four
available pre-processed features: range spectrograms, Doppler
spectrograms, azimuth angles, and elevation angles.

IV. PROPOSED SOLUTION

SNN’s spiking neurons are distinguished by the existence
of an internal state (membrane potential) and recurrent
feedback connections that update their internal state at each
time step, allowing them to exploit the dynamic temporal
nature of the sequentially based datasets [11]. Moreover,
the radar data includes valuable temporal information of the
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Fig. 2. The synaptic spiking neuron’s working principle. (a) Synaptic spiking
neuron input spikes over time. (b) The synaptic current integrates input spikes
and decays with a decay rate of alpha (α). (c) Membrane potential decays
with a beta (β) decay rate as it integrates across the synaptic current. (d)
Only when the membrane potential reaches its threshold does an output spike
occur. Adapted from [14].

gestures represented by the number of frames in each record.
As a consequence, the idea of directly using the time-domain
radar data on an SNN-based architecture emerged.

A. Spiking Neural Networks

SNNs use spiking neurons that receive and transmit
discrete spikes (either zero or one), which has the advantage
of being sparse and energy-efficient in comparison to
conventional ANNs. For a realistic, implementable solution,
an SNN model that could be trained end-to-end in the
spiking domain is desired. However, because discrete spikes
are undifferentiable in the spiking domain, the issue of not
being able to employ the most successful training algorithm
”backpropagation” would arise [12]. Nonetheless, it was
possible to train the SNNs end-to-end in the spiking domain
using the surrogate gradient descent idea described in [13], in
which the gradient of the undifferentiable spikes is replaced in
the backward pass by the gradient of another differentiable
function. The spiking simulator snnTorch was utilized to
realize and train the spiking neural network used in this
work [14]. The spiking neuron used is a variant of the leaky
integrate-fire (LIF) neuron [15]. The synaptic spiking neuron
shown in Fig. 2 was chosen as our spiking neuron because
it has the most biological plausibility. It is distinct from the
other commonly used LIF neuron variants in that it has two
decay rates: α (synaptic current decay rate) and β (membrane
potential decay rate). In the synaptic neuron, as a first step,

Isyn[t] = αIsyn[t− 1] +WX[t] (1)

the synaptic current (Isyn[t]) relies on the weighted input spike
(WX[t]) along with a decayed version of the synaptic current
in the previous step (αIsyn[t− 1]). Subsequently,

U [t] = βU [t− 1] + Isyn[t] (2)

the membrane potential (U [t]) combines the generated synaptic
current (Isyn[t]) with a decayed form of the preceding
membrane potential (βU [t− 1]).

Sout[t] =

{
1, ifU [t] > Uthr

0, otherwise

}
, (3)

an output voltage spike (Sout[t]) gets generated when
the membrane potential (U [t]) surpasses the spiking neuron
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Fig. 3. The architecture of the SCNN model. The numbers on each convolutional layer represent the input channels and the kernel size. The first convolutional
layer has three input channels, indicating that the network was fed a single frame (chirps, samples) from a single record at a time, with the input channels being
the three antennas. The post-convolutional block is a 2D max-pooling with a stride of 2, followed by 2D batch normalization. The first synaptic spiking neuron
is responsible for transforming the output of the first convolutional layer and the first post-convolutional block into spikes, which are subsequently propagated to
the network’s following layers. The membrane potential from the last synaptic spike neuron is stacked for each frame, where N denotes the number of frames.

threshold (Uthr), and the membrane potential will have a
threshold value subtracted from it.

B. Proposed Spiking Neural Network Architecture

The introduced spiking convolutional neural network
(SCNN) model was constructed using [14]. The model
uses the synaptic spiking neuron and approximates the
undifferentiability of discrete spikes in the backward pass
while training by a gradient of the fast sigmoid function. Fig. 3
presents the architecture of the SCNN model. To gain the
most out of the temporal information in the gestures, the first
convolutional layer and the first post-convolutional block were
used directly on the time-domain input data before their output
was converted into spikes via the first synaptic spiking neuron.
Thus, allowing spikes to propagate throughout the network.
The architecture’s first convolutional layer has a padding of
one and a stride of two, and the same is true for the second
convolutional layer. The first two convolutional layers have a
kernel size of seven. The third convolutional layer has padding
and stride of two and a kernel size of three.

C. Proposed Training Approach

The proposed approach’s procedure shown in Fig. 4 can
be summarized as follows: The 60 frames (one record) of
radar time-domain data were used as the time steps over which
the SCNN iterated in the network forward pass. As a result,
and as shown in Fig. 3, one frame (time-step) was sent to
the network at a time, and the membrane potential from the
architecture’s final synaptic neuron was stacked at the end of
each frame. After stacking the membrane potentials from each
frame, the LogSoftmax function is used for this stack of 60
frames membrane potentials. The negative log-likelihood loss
(NLLLoss) function iterates through the LogSoftmax function
output, generating a separate loss for each frame, and the total
loss is the sum of the losses from each frame. Finally, the
gesture with the highest prediction across all frames in a single
record is designated as the classified gesture. In comparison
to the record-by-record training approach, which requires a
fully pre-processed gesture (full stack of frames) to be sent
to the network, this approach is more realistic since it can
process the frames directly and does not require any additional
pre-processing steps.
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Fig. 4. An overview of the proposed frame-by-frame training approach.

V. EXPERIMENTS AND RESULTS

A. Setup and Optimization

The recorded data, which totaled 2000 recordings for
the ten distinct gestures, was split into three datasets:
training, validation, and testing. There are 1280, 320, and 400
recordings for training, validation, and testing, respectively.
A conventional-ANN variant of the SCNN has been introduced
by replacing ReLUs for synaptic spiking neurons and adding
a dropout layer with a probability of 0.25 before transmitting
the output of the final convolution layer to the fully connected
layer. This ANN variant, which is essentially a convolutional
neural network (CNN), was used to assess the conventional
pre-processing approach. Therefore, the CNN model was
trained record-by-record, with the four ready pre-processed
features indicated in section III being input to the network from
each record. On the other hand, the SCNN architecture was
trained using the frame-by-frame training approach mentioned
in section IV-C, on the time-domain data described in
section II-B.
During training, an ADAM optimizer has been used. The
LogSoftmax and NLLLoss functions were used to compute the
loss as stated in section IV-C. All the model’s hyperparameters
were optimized using Optuna [16]. The SCNN model’s
hyperparameters were as follows: α = 0.65, β = 0.36, synaptic
neuron threshold = 0.5, batch size = 25, optimizer learning rate
of 1× 10−3, and optimizer weight decay of 6.14× 10−6. The
CNN model was likewise trained with the same batch size,
learning rate, and weight decay as the SCNN model.
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B. Classification Accuracies

Both models have been trained for 80 epochs, and early
stopping with a patience of 10 epochs was used. The models
with the lowest validation loss were chosen as the best during
training. These models were then tested on the separately
partitioned test dataset to estimate the test accuracy. To verify
the results, both experiments were reproduced with the same
ten different random seeds to estimate the mean test accuracy.
The SCNN model’s and CNN model’s mean test accuracy were
93.100% and 93.225%, respectively.

C. Computational Complexity

The traditional pre-processing approach primarily relies
on the use of 2D FFTs with a computational complexity of
(NcNs log(NcNs)) to get the RDI for each frame, where Nc

is the number of chirps and Ns is the number of samples.
Although the exact number of multiply-accumulate (MAC)
operations for the 2D FFTs relies on implementation specifics
along with windowing and slicing operations, it is regarded as
a significant number due to its complexity and MACs being
done in the complex domain. In addition, the record-by-record
trained CNN requires 1.6 million MACs per inference, with
all MAC operations being float values. On the contrary, in
the time-domain proposed approach, the 2D FFT steps are
completely skipped. Moreover, applying this approach to the
SCNN has the extra benefit of regarding MACs with spikes as
conditional additions. Because, from 1, when the 1-bit spikes
X[t] equals one, the synaptic weights W are simply added
to the synaptic current. Finally, the SCNN has an upper limit
of 85 million real-valued MAC operations for processing and
inference, highlighting that the MAC operations following any
spiking neuron are essentially just conditional additions.

D. Discussion

As described in section V-C, when comparing the
time-domain frame-by-frame-based training approach to
the conventional pre-processed record-by-record training
approach, the significant benefit is that the expensive FFTs
pre-processing steps are bypassed, resulting in reduced
processing effort. Furthermore, SNNs are more energy-efficient
than ANNs since they communicate using spikes, making
them sparse and causing any MAC operations with spikes
between their layers to be considered as conditional additions.
The experimental results of this work show that the
accuracy resulting from combining the time-domain training
approach with the SCNN is on par with the conventional
computationally expensive pre-processing approach used on a
conventional CNN. As a consequence, the proposed solution
has the advantage of saving the computations required for
pre-processing steps and the network MACs while achieving
accuracy comparable to the conventional state-of-the-art
model. That is because executing the gesture, then the
FFT pre-processing steps, and finally inferring from a CNN
network with non-sparse MACs is considered significantly
more computationally expensive than the proposed solution,
which does not use FFTs and employs sparse MACs. The

proposed system’s effectiveness is attributed to flowing through
the frames in each record, frame-by-frame, along with the
synaptic spiking neuron’s ability to learn spatio-temporal
information; hence, the SCNN accurately learned the temporal
information within the gestures.

VI. CONCLUSION

In this work, a time-domain training approach has been
used directly on an event-driven, sparse, and end-to-end trained
spiking neural network architecture to classify ten distinct
gestures recorded from five different individuals. Classification
accuracy as an evaluation metric showed that the proposed
solution is on a par with the conventional computationally
more expensive approach. These considerations contribute to
the proposed system’s suitability for usage on edge devices.
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