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Abstract
This paper serves as a formal supplement to “Package CovRegpy: Regularised Covariance Regression and
Forecasting in Python”. In this work, algorithmic variations are presented for Singular Spectrum Analysis
(SSA) and Singular Spectrum Decomposition (SSD). Additionally, the pseudo-code for the Empirical
Mode Decomposition (EMD) sifting procedure as well as the original X11 sifting procedure, as opposed
to the numerous variations constructed since its inception, are presented in the appendix. The EMD sifting
procedure is an unnecessary tautology to those familiar with the algorithm as EMD refers exclusively to
the sifting procedure as opposed to the subsequent Huang transform (HT) as well, but it is included here for
clarification. The entire procedure is referred to as the Hilbert-Huang transform (HHT) as a tribute to the
creator (Huang) of EMD. Implicit factors and Regularised Covariance Regression (RCR) are presented in
“Package CovRegpy: Regularised Covariance Regression and Forecasting in Python” with little detail on
combining the two models to forecast covariance with the financial setting. Explicit forecasting methods
are presented herein as well as a lagging alternative with both presented in a case study. Furthermore, the
formulation of the non-linear multivariate extension of GARCH Dynamic Conditional Correlation (DCC)
is presented herein to supplement the script included in the associated software package. Algorithmic
extensions developed for SSA and SSD (both presented in “Package CovRegpy: Regularised Covariance
Regression and Forecasting in Python”) are presented herein to assist with the implementation included in
the software package.

Keywords: Portfolio Optimisation, Regularised Covariance Regression (RCR), Empirical Mode Decomposition (EMD),
Singular Spectrum Analysis (SSA), Singular Spectrum Decomposition (SSD), X11, Implicit Factors, Risk Premia Parity,
Risk Parity, Long\Short Equity;

Data Availability Statement

The data, Python code, figures, and other replication materials that support this study are openly
available in CovRegpy at:

https://zenodo.org/doi/10.5281/zenodo.10827714.

A regularly maintained version catalogue of the software package CovRegpy, as well as detailed
installation instructions and examples for both experienced and new users, can be found here:

https://github.com/Cole-vJ/CovRegpy.

https://zenodo.org/doi/10.5281/zenodo.10827714
https://github.com/Cole-vJ/CovRegpy
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8. Supplement Introduction

The Python functions that do not form the main contribution of this work (i.e. not
CovRegpy.py, CovRegpy DCC.py, CovRegpy RPP.py, CovRegpy SSA.py, CovRegpy SSD.py,
or CovRegpy X11.py which are outlined in “Package CovRegpy: Regularised Covariance
Regression and Forecasting in Python”) can be found in the following directory for additional
scripts which are used in the the supplemental case studies in Section 12, Section 13, and Section
14:

https://github.com/Cole-vJ/CovRegpy/tree/main/CovRegpy_add_scripts.

The case studies which are presented in “Package CovRegpy: Regularised Covariance Regression
and Forecasting in Python” are contained in:

https://github.com/Cole-vJ/CovRegpy/tree/main/aas_examples.

The additional case studies and examples (some of which are presented in this supplement) can
be found in:

https://github.com/Cole-vJ/CovRegpy/tree/main/examples.

Section 9 describes the explicit forecasting methods available in this package. Single neuron
neural network forecasting is discussed in Section 9.1, before Gaussian process forecasting and
instantaneous frequency forecasting are discussed in Sections 9.2 and 9.3, respectively. The scripts
for single neuron neural network forecasting (Section 9.1) and Gaussian process forecasting
(Section 9.2) can be found in:

https://github.com/Cole-vJ/CovRegpy/blob/main/CovRegpy_add_scripts/

CovRegpy_forecasting.py,

with the instantaneous frequency forecasting being in:

https://github.com/Cole-vJ/CovRegpy/blob/main/CovRegpy_add_scripts/

CovRegpy_IFF.py.

Section 10 presents the notation used in CovRegpy DCC.py for the DCC multivariate general-
ized autoregressive conditional heteroskedasticity (MGARCH) covariance forecasting framework.
Section 11 details the extensions proposed herein for SSA (Section 11.1) and SSD (Section 11.2).

The SSA extensions developed herein, namely decomposing SSA (Section 11.1.1) and
Kolmogorov-Smirnov SSA (Section 11.1.2), are included in CovRegpy SSA.py as optional inputs.
The extensions available for SSD, namely modified embedding (Section 11.2.1) and the scaling
factor (Section 11.2.2) were proposed in Bonizzi et al. (2014). These extensions were not included
in the original presentation of the technique owing to the focus of the paper and the view that
these extensions remove the strength of the downsampling without decimation upon which SSD
is based. The initial trend adjusting SSD is presented herein for the first time as in the original
work an embedding factor of L= T/3 is strictly used. Within this extended context, the embed-
ding ratio would be ‘3’ - we make this flexible and adjustable with our software package and we
motivate this in Section 11.2.3.

https://github.com/Cole-vJ/CovRegpy/tree/main/CovRegpy_add_scripts
https://github.com/Cole-vJ/CovRegpy/tree/main/aas_examples
https://github.com/Cole-vJ/CovRegpy/tree/main/examples
https://github.com/Cole-vJ/CovRegpy/blob/main/CovRegpy_add_scripts/CovRegpy_forecasting.py
https://github.com/Cole-vJ/CovRegpy/blob/main/CovRegpy_add_scripts/CovRegpy_forecasting.py
https://github.com/Cole-vJ/CovRegpy/blob/main/CovRegpy_add_scripts/CovRegpy_IFF.py
https://github.com/Cole-vJ/CovRegpy/blob/main/CovRegpy_add_scripts/CovRegpy_IFF.py
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Section 12 is a case study demonstrating covariance regression on synthetic data constructed
using the Cholesky decomposition to correlate returns based on some underlying sinusoidal
structures and as such will have a well-defined solution. In Section 13, the explicit forecasting
techniques (Section 9) are displayed on a synthetically generated amplitude and frequency-
modulated sinusoidal structure. Frequency and amplitude-modulated structures are common in
time series analysis and occur regularly in several fields. The case studies are concluded with
Section 14 that used 5 very large market cap S&P500 stocks to demonstrate a real-world case
study in which the techniques in this software package are used to make portfolio weighting
decisions based on risk appetite and covariance forecasting.

This supplement is concluded in Section 15 which includes easily translatable pseudo-code for
both the EMD algorithm (Algorithm 2) and the X11 algorithm (Algorithm 3).

Note to Users

Extensive studies have been conducted on the robustness of and potential for algorithmic exten-
sions to EMD, see van Jaarsveldt et al. (2023) and van Jaarsveldt et al. (2021). Whilst not formally
compared against SSA and SSD in those works or in this work, the extensions to SSA and SSD
developed or presented in this work were an attempt to robustify these methods. These variations
are by no means exhaustive and are presented herein for completeness sake and one should use this
package in conjunction with the AdvEMDpy package for regularised covariance regression and
forecasting. Most importantly, as already detailed in van Jaarsveldt et al. (2023) and van Jaarsveldt
et al. (2021), these algorithms are not necessarily competitors and can be used in conjunction to
exceed the resolution capabilities of any one individual algorithm. This work, as well as the others
already mentioned, promote interdisciplinary exchange and collaboration.

9. Dynamic Covariance Forecasting Models for Time Series

In addition to time series decomposition using the implicit factor models as outlined in Section
4 of “Package CovRegpy: Regularised Covariance Regression and Forecasting in Python” and
RCR used to calculate the unattributable (or systemic or contemporaneous) (Ψ) and attributable
(or structural) covariance (B) in Section 5 of “Package CovRegpy: Regularised Covariance
Regression and Forecasting in Python”, one would benefit from work being able to explicitly
forecast time series rather than merely being able to apply RCR to lagged data. The work in this
section builds upon work done in van Jaarsveldt et al. (2023) and van Jaarsveldt et al. (2021) on
EMD and the forecasting of the implicit factors.

These forecasting techniques are introduced here and should be used with care as more assump-
tions are required to formally forecast the independent variable rather than lagging the independent
variable against the dependent variables. Several robust forecasting techniques are listed here for
those intending to formally forecast the independent variables. A short cast study of these fore-
casting techniques is conducted in Section 13 on a specifically constructed synthetic modulated
time series.

9.1 Neural Network

This forecasting methodology is developed here and is based upon Deng et al. (2001) and van
Jaarsveldt et al. (2023) on using multivariate regression to accurately extrapolate a smooth curve
with the intent of estimating the locations of the nearest extrema for fitting extrema envelopes in
EMD. The following work regarding forecasting using a single-neuron neural network reduces to
a multivariate regression model in the absence of an activation function or rather with the identity
function as the activation function. The objective function is:



4 Annals of Actuarial Science

arg minw||wP− y||22 + α||w||22, (1)

with the weighting vector, w being of dimension k which is the fitting window dimension and is
constructed as:

w=
[
w1 w2 . . . wk

]
, (2)

with P being constructed similarly as Equation (20) where the time series is embedded (with an
embedding dimension or the number of samples being m) in a matrix as:

P=


yT−(m+k) yT−(m+k−1) · · · yT−(k+1)

yT−(m+k−1) yT−(m+k−2) · · · yT−k

...
...

. . .
...

yT−(m+1) yT−m · · · yT−2

 , (3)

with T being the length of the time series (first element y0; final element yT−1) and with the target
vector, y, being defined as:

y=
[
yT−m yT−(m−1) . . . yT−1

]
. (4)

The notation above, and throughout, is analogous to Python for easy reference to accompanying
software and Equations (4) and (8), respectively, such that:

yT−m := y[-m] and y2 := np.append(y[-int(k - 1):], y forecast[:1]) (5)

Once the weighting vector, w, has been estimated, it is iteratively applied to the end of the
time series to extrapolate the time series. That is, with yT being the first point extrapolated, it is
calculated as:

yT =wy1, (6)

with y1 being:
y1 =

[
yT−k yT−(k−1) . . . yT−1

]T
, (7)

and with,
y2 =

[
yT−(k−1) yT−(k−2) . . . yT−1 yT

]T
, (8)

etc. The uncertainty in the prediction of each successive time series realisation grows exponen-
tially owing to the uncertainty inherent in each extrapolation.

9.2 Gaussian Process

Those familiar with Gaussian processes would possibly conclude that it would be well-suited in
its original state with a relatively simple kernel. It would be well suited to be applied directly to
structures extracted using X11, SSA, and SSD as these structures would be nearly homogeneous in
their frequency content, whereas structures isolated using EMD can have more complex frequency
structures and content. More complex and compound kernels are needed to capture and accurately
forecast these structures.

In this setting a periodic kernel, the most well-known of which being the Exponentiated Sine
Squared kernel, is highly recommended. When the structures are more complex, as in IMFs
extracted using EMD, more complex kernels are required. It is recommended that several com-
pound kernels be used that accommodate decaying periodic structures. The better-suited kernel
would combine Exponentiated Sine Squared kernels with radially decaying kernels such as the
Radial Basis kernel and the Rational Quadratic kernel. These are discussed and demonstrated
more thoroughly in Section 13.1.3
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9.3 Instantaneous Frequency Forecasting

This technique takes advantage of the relative sparsity of many seemingly complex structures in
the frequency domain. IMFs (the structures extracted using EMD) are frequency and amplitude-
modulated time series. One could then independently forecast both the instantaneous frequency
and the instantaneous amplitude followed by a Fourier transform into the temporal domain. As
this is a new method, only linear IFF is provided in this package, but this is not essential and
more complex frequency and amplitude forecasting is possible. It remains to fit the phases of the
structures.

By referring to Equation (11) and Equation (13) in “Package CovRegpy: Regularised
Covariance Regression and Forecasting in Python” one can simply extrapolate both the instanta-
neous amplitude, a(t), and the instantaneous frequency, ω(t), before transforming the result back
in the temporal domain. To demonstrate, a sine wave such as y= sin(t) has a relatively complex
representation in the temporal domain, whereas it has a simple instantaneous amplitude, a(t) = 1,
and instantaneous frequency, ω(t) = 1. The only difficulty lies in the phase which needs to be fit-
ted as the phase is lost in the integral. A simple, yet effective example, is demonstrated in Section
13.1.4.

10. Dynamic Conditional Correlation

This serves as a very brief (owing to the scope and focus of this work) description of the
steps involved in setting up one’s equations for optimisation in the forecasting of the covari-
ance using Dynamic Conditional Correlation (DDC) multivariate generalized autoregressive
conditional-heteroskedasticity (MGARCH) - this is implementable using the CovRegpy DCC.py

script provided in this script for fair comparison of our model with the MGARCH models with dif-
ferent frameworks. For a more in-depth and formal review of MGARCH models and their history
as multivariate extensions of traditional GARCH models, one can see Bauwens et al. (2006).

With regards to the model at hand, let yt be an N -dimensional stochastic process with It−1

being the sigma field generated by past discrete realisations of the process yt up to and including
time t− 1, and with θ being a finite parameter vector the DCC MGARCH model can be defined
as:

yt = µt(θ) + ϵt(θ), (9)

with µt(θ) being the conditional mean of the process and with

ϵt(θ) =H
1
2
t (θ)zt, (10)

with Ht being a positive N ×N definite matrix. Let zt be an N -dimensional vector with the first
two centred moments of zt defined as:

E[zt] = 0N , and
Var(zt) = IN ,

(11)

where 0N is the N -dimensional zero vector and with IN being the N ×N identity matrix. With
zt defined as above in Equation (11), the conditional distribution of yt as defined in Equation (9)
is then calculated as:

Var(yt|It−1) = Vart−1(yt)

=H
1
2
t (θ)Vart−1(zt)

(
H

1
2
t (θ)

)′
=Ht(θ).

(12)

From Equation (12) it follows that given any positive definite matrix Ht(θ)
1
2 defined as above, the

conditional covariance of yt is given by Ht(θ). The different ways of estimating Ht(θ) divide
the different MGARCH models broadly into 3 groups namely: direct extensions of GARCH
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(Bollerslev et al. (1988)), linear combinations of direct extensions of GARCH models, and non-
linear combinations of direct extensions. DDC MGARCH falls under the final categorisation and
was introduced in Engle (2002) as:

Ht =DtRtDt, (13)

with,

Dt = diag{h
1
2
11t, . . . , h

1
2

NNt}, (14)

with hiit = σ2
i t being modelled as a GARCH(p, q) process such that:

σ2
i t= ωiit +

p∑
j=1

βjσ
2
i(t−j) +

q∑
j=1

αjϵ
2
i(t−j), (15)

and with,
Rt = (1− a− b)R̄+ aU(t−1) + bR(t−1), (16)

where,
Ut = utu

T
t , (17)

where,
ut =D−1

t rt, (18)

with rt being the returns at time t. With this framework mostly repeated verbatim from
Engle (2002), the likelihood function to be minimised with rt|It−1 ∼MVN (0N ,Ht) and with
MVN (·, ·) being the multivariate normal distribution, becomes:

L=−1

2

T∑
t=1

(
N log(2π) + log|Ht|+ rTt H

−1
t rt

)

=−1

2

T∑
t=1

(
N log(2π) + log|DtRtDt|+ rTt D

−1
t R−1

t D−1
t rt

)

=−1

2

T∑
t=1

(
N log(2π) + 2log|Dt|+ log|Rt|+ uT

t R
−1
t ut

)

=−1

2

T∑
t=1

(
N log(2π) + 2log|Dt|+ log|Rt|+ rTt D

−1
t D−1

t rt − uT
t ut + uT

t R
−1
t ut

)
.

(19)

11. Implicit Factor Model Extensions

As detailed in ‘Package CovRegpy: Regularised Covariance Regression and Forecasting in
Python’, the title refers to the relative difficulty in relating these factors to easily observable factors
such as, for example, the factor models proposed in Fama and French (1993) and Fama and French
(2015) (examples of explicit factor models) that relate the returns of assets above the ‘risk-free’
rate to other observable financial factors such as the book to market value. An early example of
what one could refer to as an implicit factor model as a principal portfolio model can be used in
the accompanying script titled CovRegpy PCA.py with an easily repeatable script example using
the five largest assets in the S&P500 (by market cap) at the time of the script’s creation.
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11.1 Singular Spectrum Analysis

As already alluded to in ‘Package CovRegpy: Regularised Covariance Regression and Forecasting
in Python’, the major drawback of SSA in its originally proposed form, see Hassani (2007), is that
it was a trend filtering technique rather than a formal decomposition algorithm. It can be used as a
decomposition algorithm if one makes a relatively minor adjustment to the Grouping step of SSA
in Section 3.4.3 in ‘Package CovRegpy: Regularised Covariance Regression and Forecasting in
Python’.

11.1.1 Decomposing Singular Spectrum Analysis Extension

By slightly modifying this algorithm originally proposed in Hassani (2007) one can optimally
(in some sense) decompose the time series. This has been named the Decomposing Singular
Spectrum Analysis (D-SSA) and is done by modifying the Grouping step. Rather than group all
the structures, one can keep all the components whose indices are listed in I separate and apply
the Diagonal Averaging step to each structure independently. One can observe in Figure 1 the
decomposition of the example time series.

Figure 1. SSA and D-SSA trend estimate and component isolation compared against the corresponding
underlying structures.

The above decomposition can be achieved by running the below code. All plots within this
section can be seen by running the script CovRegpy SSA.py which contains the below code.

ssa_trend, ssa_decomp = CovRegpy_ssa(x11_time_series, L=10, est=8)

One can note the seasonal component extracted using D-SSA is more smooth than the seasonal
component extracted using X11. This is not true for the trend-cycle component which con-
tains more noise than the corresponding component extracted using X11 - it is because of this
observation that KS-SSA was developed.
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11.1.2 Kolmogorov-Smirnov Singular Spectrum Analysis Extension

Another interesting algorithmic variation to traditional SSA is named Kolmogorov-Smirnov
Singular Spectrum Analysis (KS-SSA) uses Gaussian distribution or Normality assumptions about
the distribution of the errors about the estimated trend to optimise (MSE) the initial trend extrac-
tion. Using the traditional Kolmogorov-Smirnov framework, by testing all values for L and each
resulting subset, I , of the resulting decomposition one can arrive at a trend that minimizes the
Kolmogorov-Smirnov test statistic.

If one wants to optimise both L and est using the described Kolmogorov-Smirnoff framework,
then the relevant code inputs are KS test, plot KS test, and KS scale limit. To perform the
Kolmogorov-Smirnoff optimisation one must have KS test=True. To observe each incremental
plot of the Kolmogorov-Smirnoff, one must have plot KS test=True. This results in numerous
plots like the images on the right of Figure 2.

Figure 2. Kolmogorov-Smirnov Singular Spectrum Analysis (KS-SSA) Kolmogorov-Smirnov test statistic plot
demonstrating cumulative distribution test function and KS distance.

A nuance that was discovered while exploring this technique is the need for a lower bound
on the standard deviation of the error distribution about the underlying trend. If this lower bound
did not exist (KS scale limit=1 in the examples in Figure 2 and Figure 3), the trend would try
to approximate the time series as closely as possible and incorporate the noise as well. Further
studies should be conducted to analyse the effect of this limit on trend estimation.
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Figure 3. Kolmogorov-Smirnov Singular Spectrum Analysis (KS-SSA) optimised trend estimation - compare
against the top image of Figure 1.

11.2 Singular Spectrum Decomposition

As stated in ‘Package CovRegpy: Regularised Covariance Regression and Forecasting in Python’,
the major difference between SSA and SSD is the formalisation of the relatively narrow band-
width downsampling (without decimation) to isolate structures based on energy densities of the
time series power spectral density (PSD). The additional features and steps outlined in Sections
11.2.1 and 11.2.2 are not necessary, but were included in the original formulation of the technique
in Bonizzi et al. (2014). These two additions are criticised here as they (particularly the modi-
fied embedding step detailed in 11.2.1) encourage or rather coerce the extracted structure to be
more cyclical and constant in frequency - this obstructs any meaningful analysis of modulated
structures which can be extracted using downsampling with an appropriately selected bandwidth.
Downsampling without decimation, as discussed in van Jaarsveldt et al. (2023), is an effective
filtering or smoothing technique.

11.2.1 Modified Embedding in SSD

This is a modified version of the embedding presented in Equation (17) in Section 3.4.1 of
‘Regularised Covariance Regression and Forecasting in Python’ and repeated here in Equation
(20) for easy reference:

X = [X1(t), . . . ,XK(t)], (20)

with Xj(t) = [x(tj), . . . , x(tj+L−1)]
T , K = T −L+ 1, and L being the embedding dimension.

The modified embedding of the time series, Xmod, is calculated as:

Xmod = [Xmod
1 (t), . . . ,Xmod

K (t)], (21)

such that Xmod
j (t) = [x(tj), . . . , x(tT ), x(t1), . . . , x(tj−1)]

T which is referred to in Bonizzi et al.
(2014) as ‘wrapping’ the time series around to promote a more cyclical structure. In Bonizzi
et al. (2014) this step and the subsequent step detailed in Section 11.2.2 are performed upon the
downsampled component to coerce out a more cyclical structure.
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Figure 4. Plot demonstrating downsampled estimate and the modified embedding estimate of downsampled
estimate with both being estimates of the next structure to be isolated from the detrended time series.

11.2.2 Scaling Factor in SSD

Once the component is extracted or isolated using the modified embedding step, the structure is
scaled using a scaling factor to optimise the MSE error of the optimised component compared
against the remaining time series:

mina||agj − vj ||22, (22)

with the component isolated being g̃j = aoptgj . This serves to scale the component that has been
smoothed and reduced as a result of the modified embedding discussed in Section 11.2.1 that
results in a more cyclical structure but scales down these structures that may also be amplitude
modulated.

11.2.3 Initial Trend Adjusting Singular Spectrum Decomposition Extension

As stated in Section 3.5.1 of ‘Package CovRegpy: Regularised Covariance Regression and
Forecasting in Python’, an embedding factor of L= T/3 is used if a significant trend is detected.
An embedding ratio in this setting would be 3, but with the Initial Trend Adjusting Singular
Spectrum Decomposition (ITA-SSD) technique such that this embedding ratio can be adjusted to
better extract the initial trend without hindering the remainder of the algorithm the initial trend
extraction can be both optimised, robustified, and automated. If an initial significant trend is not
sufficiently and wholly removed, it will be distributed amongst the remaining isolated components
- this is referred to as leakage or more specifically frequency leakage.

In Figure 6, Equation (22) of ‘Package CovRegpy: Regularised Covariance Regression and
Forecasting in Python’ with the initialised values as in Equation (24) of ‘Package CovRegpy:
Regularised Covariance Regression and Forecasting in Python’ is plotted as well as dashed lines
denoting the fixed means as in Equation (23) of ‘Package CovRegpy: Regularised Covariance
Regression and Forecasting in Python’. Each Gaussian function is plotted as well as the cumulative
function to demonstrate the initialised unfitted function.
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Figure 5. Plot demonstrating scaling factor used to scale decomposition component before extraction.

In Figure 7, Equation (22) of ‘Package CovRegpy: Regularised Covariance Regression and
Forecasting in Python’ has been fitted to the Energy spectral density of the detrended time
series. Once this has been fitted, Equation (27) of ‘Package CovRegpy: Regularised Covariance
Regression and Forecasting in Python’ is used to calculate the frequency boundary or bandwidth
that will be used to estimate this component. This bandwidth is then transformed into the temporal
space where it is embedded as in Section 11.2.1.

The seasonal component is very easily extracted using SSD owing to the downsampling com-
ponent of the algorithm followed by the modified embedding step which results in smoothing.
The ITA-SSD algorithmic variation is far more robust in estimating the original trend. These algo-
rithmic variations are therefore well-suited to both remove trends and fixed-frequency seasonal
components.

12. Supplemental Case Study 1: Regularised Covariance Regression

In this case study 15 synthetic implicit factors are constructed with sinusoids with a random phase
with frequencies of annual, semi-annually, tri-annually, et cetera. This case study can be found
in CovRegpy CASE STUDY LASSO synthetic.py. The base covariance of the 5 synthetic assets
is constructed using 3 years’ worth of data from the five largest assets in the S&P 500 at the
time. Cholesky decomposition is used to correlate the structures daily after which direct RCR and
LASSO RCR are used to estimate the true parameters as in Equation (26) in Section 12.2 and
Section 12.3, respectively.

12.1 Cholesky Decomposition and Instantaneous Correlation

In Benoit (1924), Cholesky decomposition was proposed where a Hermitian positive-definite
matrix, Σ, can be uniquely decomposed such that:

Σ=LL∗, (23)
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Figure 6. Plot of initialisation of Gaussian functions to be fitted to power spectral densities for the downsam-
pling step of SSD.

Figure 7. Plot of fitting of Gaussian functions to power spectral densities for the downsampling step of SSD.

where L is a lower triangular matrix consisting of real positive values along the diagonals and with
L∗ the conjugate transpose of L. If Σ is real, then it is symmetric and positive-definite which can
then be a covariance matrix. It can be shown that, given a matrix of realisations of the appropriate
size, x∈Rn, with covariance matrix In, i.e. that are uncorrelated multivariate standard normal,
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the covariance of the product of L and x can be calculated as:

cov(Lx) =E[LxxTLT ] =LE[xxT ]LT =LInL
∗ =Σ, (24)

which can be used to correlate a set of uncorrelated observations to the desired covariance of Σ.
To ensure a sensible and practical, base covariance structure, Ψ, the covariance of the log-returns
for MSFT, AAPL, GOOGL, AMZN, and TSLA over the period from 31 December 2018 until 1
January 2022. The covariance for this period is:

Ψ=


2.5571× 10−4 1.4417× 10−4 1.4559× 10−4 1.7278× 10−4 2.0255× 10−4

1.4417× 10−4 1.9108× 10−4 1.2254× 10−4 1.3834× 10−4 1.5510× 10−4

1.4559× 10−4 1.2254× 10−4 1.9731× 10−4 1.5425× 10−4 1.4630× 10−4

1.7278× 10−4 1.3834× 10−4 1.5425× 10−4 2.0196× 10−4 1.8464× 10−4

2.0255× 10−4 1.5510× 10−4 1.4630× 10−4 1.8464× 10−4 9.3950× 10−4

 . (25)

The covariance in Equation (25) is displayed graphically in Figure 8. This makes the comparison
with the base, unattributable covariance (Ψ) derived using direct RCR and LASSO RCR more
visually interpretable. It is this base covariance that is used in Equation (28) to construct the
dynamic covariance structure over the 3 years.

Figure 8. Base covariance of five synthetic assets derived from 3 years’ returns of MSFT, AAPL, GOOGL,
AMZN, and TSLA over the period from 31 December 2018 until 1 January 2022.
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Without lack of generalisation, the coefficients for the B matrix are randomly generated such
that they are all elements of the set Bij ∈ {−1, 0, 1}. The coefficients used can be seen below:

B=


1 −1 1 0 1 0 0 0 1 −1 0 0 0 −1 0

0 1 0 1 0 1 −1 0 −1 0 0 1 0 1 0

1 0 0 −1 0 0 0 −1 1 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0 0 −1 0 −1 1 −1

0 0 1 −1 1 0 0 −1 0 −1 0 −1 1 0 1

 . (26)

Three years’ worth of covariance data needs to be generated to construct instantaneous covariance
over the same period. Fifteen structures are generated to replicate annual structures, semi-annual
structures, quarterly structures, monthly structures as well as many others to construct the syn-
thetic example. In the first row, the annual structure is constructed, the semi-annual structure is in
the second row and so on as demonstrated in Equation (27).

x=


cos
(
2π×

(
3×0
1097 + u1

))
cos
(
2π×

(
3×1
1097 + u1

))
· · · cos

(
2π×

(
3×1097
1097 + u1

))
cos
(
2π×

(
6×0
1097 + u2

))
cos
(
2π×

(
6×1
1097 + u2

))
· · · cos

(
2π×

(
6×1097
1097 + u2

))
...

...
. . .

...

cos
(
2π×

(
45×0
1097 + u15

))
cos
(
2π×

(
45×1
1097 + u15

))
· · · cos

(
2π×

(
45×1097

1097 + u15

))

 ,

(27)
with ui ∼U(0, 1) ∀ i∈ {1, . . . , 15} to ensure a random phase. Therefore, the covariance of the
synthetic assets at time point it is then calculated as:

Σt =Ψ+Bxtx
T
t B

T , (28)

with xt being the tth column of matrix x. With this framework, the covariance structure over the

three years under investigation is synthesized. With
[
Σt

]
jj

being the variance of asset j at time
point t. With this, in Figure 9 ,

[
Σt

]
jj

is plotted for j ∈ {1, 2, 3, 4, 5}.
With this constructed dynamic covariance over the three years, the daily logarithmic returns

are then calculated using Equation (24). At each time point (t) the returns are initialised as:

r= [r1, r2, r3, r4, r5]
T , (29)

with rk ∼N (r, r) ∀ k ∈ {1, . . . , 5} and r being the approximate daily risk-free rate of r= 0.01
365 .

The returns are initialised before being correlated using Equation (24) as:

rt =Ltr, (30)

with Lt being the lower triangular matrix derived using Cholesky decomposition as shown in
Equation (23) with Σt being the covariance of the synthetic assets at time point t. This results in
the cumulative synthetic returns observable in Figure 10.
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Figure 9. Dynamic covariance structure of five synthetic assets over the three years from 1 January 2019 until
1 January 2022.

12.2 Direct Estimation

By applying the direct RCR, as in Section 5.3 in in “Package CovRegpy: Regularised Covariance
Regression and Forecasting in Python”, to this synthetic data one can arrive at Figure 11. The code
in CovRegpy CASE STUDY LASSO synthetic.py to calculate the underlying coefficients can be
seen below.

B_est, Psi_est = \

cov_reg_given_mean(A_est=np.zeros_like(coef),

basis=spline_basis_transform, x=x[:, :-1],

y=returns_subset.T, iterations=10,

technique=‘direct’)

It can be observed in Figure 11 that the estimated coefficients very closely estimate the true
underlying coefficients. This is confirmation of the effectiveness of the estimation method via
the random error formulation of covariance regression. One should note the impressive resolution
of the coefficients given the instantaneous Cholesky decomposition at each time point. It should
be noted that another possible solution would be a complete inversion of all the solutions owing
to the sign-indifference of the solution, provided that the signs of all coefficients are identically
opposite.



16 Annals of Actuarial Science

Figure 10. Cumulative returns of five synthetic assets over the three years from 1 January 2019 until 1 January
2022.

Figure 11. Direct estimation of coefficients (dashed orange line) using covariance regression overlaid upon
the true underlying coefficients (solid blue line).
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12.3 Lasso Estimation

As opposed to Section 12.2, the estimates are now derived using LASSO RCR as outlined
in Section 5.4 in “Package CovRegpy: Regularised Covariance Regression and Forecasting in
Python”. This code is also available in CovRegpy CASE STUDY LASSO synthetic.py. All other
available RCR methods can be applied to arrive at a solution, but it is advised to not use and
critique group-LASSO RCR as there is no grouping of the coefficients in this synthetic data case
study.

B_est, Psi_est = \

cov_reg_given_mean(A_est=np.zeros_like(coef),

basis=spline_basis_transform, x=x[:, :-1],

y=returns_subset.T, iterations=10,

technique=‘lasso’, alpha=1e-8)

In Figure 12 it is observable that all the coefficients are estimated to be identically zero
for the first month. The penalty is relatively minute, but as one can note by running
CovRegpy CASE STUDY LASSO synthetic.py, it results in erroneous coefficients half of the time
over the first year. From this solution, it can be inferred that no attributable covariance is present.
It can be observed in Figure 13 that as a result of the attributable covariance being estimated to
be not present, the unattributable covariance (Ψ) is estimated to be far larger (several orders of
magnitude) than the base covariance as can be seen in Figure 8.

Figure 12. LASSO estimation of coefficients (dashed orange line) using covariance regression overlaid upon
the true underlying coefficients (solid blue line) showing identically zero estimates.
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Figure 13. Lasso estimation of base unattributable covariance (Ψ) using covariance regression - note large
(several orders of magnitude) difference between this figure and Figure 8 owing to apparent lack of attributable
covariance.

In the following month the results are far more pleasing as can be seen in Figure 14. This incon-
sistency in the solutions derived using LASSO RCR can be attributed to instantaneous Cholesky
decomposition and correlating of returns based on dynamic synthetic covariates.

In Figure 15 the base unattributable covariance (Ψ̂) is much closer to the true underlying base
unattributable covariance (Ψ) as in Figure 8. Small deviations from both the true coefficients in
Figure 14 and the true underlying unattributable covariance (Ψ), as can be seen by comparing
Figure 8 and Figure 15, can be attributed, again, to the random error formulation of covariance
regression and the instantaneous Cholesky decomposition and correlating. This is not a significant
error when the relative magnitude of the attributable covariance is taken into account.

13. Supplemental Case Study 2: Explicit Forecasting

An amplitude and frequency-modulated sinusoid is synthesized to replicate common IMF
structures that are isolated in EMD. With:

t∈
{
0,

1

200
π,

2

200
π, . . . , 5π

}
, (31)

the following is plotted in Figure 16:
gt = atsin

(
ft
)
, (32)

with

at =
t+ 5

4π
5
4π

, (33)

and

ft = t+
t2

10π
. (34)
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Figure 14. LASSO estimation of coefficients (dashed orange line) using covariance regression overlaid upon
the true underlying coefficients (solid blue line).

13.1 Forecasting Approaches

Broadly speaking, there are two ways to address the problem of forecasting an independent vari-
able given a dependent variable. One can implicitly forecast the dependent variable by simply
regressing a lagged version of the independent variable. This results in a remaining interval of
independent variables that can be used to forecast the dependent variables. This approach is
briefly discussed in Section 13.1.1. An alternative, that requires additional assumptions, would
be to regress the entirety of the independent variables against the dependent variables after which
one would have to explicitly forecast or extrapolate the independent variables to then estimate
the dependent variables over the same interval. Several techniques for doing this are discussed in
Sections 13.1.2, 13.1.3, and 13.1.4.

13.1.1 Implicit Forecasting using a Lagged Effect Assumption

In Figure 17 implicit forecasting is demonstrated. Rather than making restrictive assumptions
to explicitly forecast the independent variable which may then be used to predict the dependent
variable, this model assumes that there is a delayed causative relationship between the variables.
This also, with the ever-increasingly restrictive regulation of banking and related sectors, requires
fewer assumptions and therefore is more defensible.

13.1.2 Multivariate Regression or Unactivated Single Neuron Neural Network Forecasting

While this is referred to as the Neural Network Edge Effect in Deng et al. (2001) and van Jaarsveldt
et al. (2023), in the absence of an activation function (or with an identity activation function) it
is merely a multivariate regression. There are several ways to estimate the weights, but owing to
the smooth nature of the IMFs or implicit factors, ridge regression is recommended. The objective
function is:

minw||wP− y||22 + α||w||22, (35)

with
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Figure 15. Lasso estimation of base unattributable covariance (Ψ̂) using covariance regression demonstrating
the accuracy of unattributable estimate when attributable correct ascertained.

w=
[
w1 w2 . . . wk

]
, (36)

and

P=


yT−(m+k) yT−(m+k−1) · · · yT−(k+1)

yT−(m+k−1) yT−(m+k−2) · · · yT−k

...
...

. . .
...

yT−(m+1) yT−m · · · yT−2

 , (37)

and
y=

[
yT−m yT−(m−1) . . . yT−1

]
. (38)

In this setting and for consistency with the code, the k= no sample and m= fit window.
The no sample is recommended to encompass at least one wavelength of the structure to accu-
rately forecast the structure. The implementable code can be seen below and can be found in
CovRegpy CASE STUDY forecasting.py:

neural_network_forecast = CovRegpy_neural_network(time_series,

no_sample=300,

fit_window=200,

alpha=1.0)

13.1.3 Gaussian Processes used in Forecasting

Gaussian processes can be used to forecast the IMF structure. The difficulty lies in the flexibility
of the structures which need to be forecast. The recommended kernel should utilize the periodic
kernel named the Exponentiated Sine Squared kernel in Equation (39).
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Figure 16. Discrete synthetic modulated frequency and amplitude example time series to which the explicit
forecasting techniques in this section are applied.

kESS(t1, t2) = σ2exp
(
−
2 · sin2

(π|t1−t2|
p

)
l2

)
. (39)

In addition to the periodic kernel, owing to the flexibility of the potential structures, one should
utilise compound kernels such as those described in Equation (40) and Equation (41) below:

kcomp1
(t1, t2) = σ2exp

(
− (t1 − t2)

2

2l21

)
exp
(
−
2 · sin2

(π|t1−t2|
p

)
l22

)
, (40)

and

kcomp2
(t1, t2) = σ2

(
1 +

(t1 − t2)
2

2αl21

)−α

exp
(
−
2 · sin2

(π|t1−t2|
p

)
l22

)
. (41)

The compound kernels in Equation (40) and Equation (41) utilise the Squared Exponential
Kernel or the Radial Basis Kernel (RBK):

kRBF (t1, t2) = σ2exp
(
− (t1 − t2)

2

2l2

)
, (42)

and the Rational Quadratic Kernel (RQK):

kRQ(t1, t2) = σ2

(
1 +

(t1 − t2)
2

2αl2

)−α

, (43)
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Figure 17. Plot demonstrating a simple example of a lagged effects model constructed at time point 12 in
which the one time period delay is used for implicit forecasting.

respectively. These decaying functions allow more flexibility for locally periodic structures that
do not exactly repeat themselves as is mostly observed in the real world. With σ= 1, t2(or t1) = 5,
l1 = 1, p= 1, l2 = 1, and α= 1, Equation (40) and Equation (41) are plotted over t1(or t2)∈ [0, 10]
in Figure 19. To replicate Figure 20 one can apply the code below by reconstructing the example as
described in this section or one can run the script titled CovRegpy CASE STUDY forecasting.py.

y_forecast, sigma, y_forecast_upper, y_forecast_lower = \

gp_forecast(time, time_series, time_extended,

kernel, 0.95, plot=False)

13.1.4 Instantaneous Frequency Forecasting

In Fourier and Darboux (1822), it was shown that periodic functions can be written as an infinite
sum of harmonics. This implies that functions can be transformed into the frequency space. In this
space, the structures may be less complex than in the temporal space leading to easier forecasting.
The Hilbert transform of the synthetic time series in Figure 16 can be seen in Figure 21. This
structure has been slightly perturbed by the sifting algorithm, but the linearly modulated frequency
is visible with the true linear structure overlaid.

The instantaneous amplitude is not as discernible in the Hilbert transform in Figure 21 as the
instantaneous frequency. Independently plotting the instantaneous amplitude results in Figure 22.
The linear modulation, or any modulation of the amplitude for that matter, is less obscured by inac-
curacies in the sifting process owing to the lack of an inverse transform when compared against
the instantaneous frequency calculation. The resulting instability in the instantaneous frequency
when compared against the relative instability of the instantaneous amplitude can be observed by
comparing Figure 22 and Figure 23.
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Figure 18. Plot of the multivariate regression forecasting example explained in Equation (35) and applied to
Equation (32) to extrapolate 200 time points.

14. Supplemental Case Study 3: Real-World Equity Case Study

In this real-world example entitled CovRegpy CASE STUDY appendix.py, available at this link:

https://github.com/Cole-vJ/CovRegpy,

the script utilizes a sister package called “AdvEMDpy”, which can be found here:

https://github.com/Cole-vJ/AdvEMDpy.

The purpose of the script is to isolate different frequency components from the daily closing
stock prices of AAPL, AMZN, GOOGL, MSFT, and TSLA, and forecast the next day’s covariance
structure using RCR (Regularized Covariance Regression). The raw equity data is decomposed
using EMD, although the reader may also attempt the decomposition using the implicit factor
models described within this work for comparison. The following code is present in the script:

emd = AdvEMDpy.EMD(time_series=np.asarray(all_data.iloc[:, j]),

time=time[lag:int(model_days + lag + 1)])

imfs, _, _, _, _, _, _ = \

emd.empirical_mode_decomposition(knot_envelope=

np.linspace(time[lag:int(model_days + lag + 1)][0],

time[lag:int(model_days + lag + 1)][-1],

knots), matrix=True)

This code instantiates an EMD object with the daily equity data of the jth asset before decom-
posing it. The decomposed data is stored in the matrix x. Once the equity data for each asset has
been decomposed and stored in matrix x, the RCR model can be fitted using the following script.
It should be noted that the script uses ridge regression RCR or L2-RCR, which is developed in the
“CovRegpy” package. For a better understanding of the coefficients required for mean isolation

https://github.com/Cole-vJ/CovRegpy
https://github.com/Cole-vJ/AdvEMDpy
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Figure 19. Compound kernels allowing decaying periodicity using Radial Basis Function kernel and Rational
Quadratic kernel.

(coef) and the basis required with the associated coefficients (spline basis transform), the
reader is encouraged to experiment with the scripts contained within the case study folder.

B_est, Psi_est = \

cov_reg_given_mean(A_est=coef, basis=spline_basis_transform,

x=x[:, :-1], y=realised_returns.T,

iterations=10, technique=’ridge’,

max_iter=500)

Furthermore, with the forecasted covariance structure, one can calculate the risk premia parity
weighting as described above and plot the resulting returns and risk. This can be compared against
various common benchmarks such as the stocks themselves, the equally weighted portfolio, the
principal component portfolio, the global minimum variance portfolio, the maximum Sharpe ratio,
and the resulting efficient frontier as in Figure 26.

weights_Model = \

equal_risk_parity_weights_summation_restriction(variance_Model).x

model_variance = global_obj_fun(weights_Model,

variance_Model)

model_returns = sum(weights_Model * np.mean(realised_returns,

axis=0) * 365)

This example provides a brief overview and utilizes data from Yahoo! Finance (2021) for users to
explore and consider potential model extensions, as well as the final analysis.
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Figure 20. Gaussian process forecasting with confidence intervals - the outputs from the above code
y forecast, y forecast upper, y forecast lower being plotted with sigma being the uncertainty level.

15. Appendices

In these appendices, helpful pseudo-code is presented for the sifting EMD algorithm and the
sifting X11 algorithm. For further reading on the EMD method, its extensions, and algorithmic
variations see van Jaarsveldt et al. (2023) and van Jaarsveldt et al. (2021). For the Python code and
package dedicated to EMD and its algorithmic variations see:

https://github.com/Cole-vJ/AdvEMDpy.

The two core features (for discrete time series) that an intrinsic mode function (IMF) must satisfy
are repeated here in C1 and C2 for easy reference in Algorithm 2. An additional condition that
prevents over-sifting is presented in C3. A detailed analysis as well as recommendations for those
interested can be found in van Jaarsveldt et al. (2023).

The pseudo-code for the original X11 technique proposed in Shiskin et al. (1967) can be found
in Algorithm 3. The code can be found in this package in the script titled CovRegpy X11.py with
accompanying notes detailing the asymmetric Henderson weighting conundrum.

Appendix A. EMD Sifting Algorithm

As noted above, these conditions are repeated here for ease of reference when reading and
translating the pseudo-code in Algorithm 2. The conditions are:

C1 abs
(∣∣∣{dγk(t)

dt = 0 : t∈ (0, T )
}∣∣∣− ∣∣∣{γk(t) = 0 : t∈ (0, T )

}∣∣∣)≤ 1,

C2
∑

t abs
(
γ̃µ
k (t)

)
≤ ϵ2, and

C3 SD(p,q) =
∑tN

t=t0

[∣∣(h(p,q−1)(t)− h(p,q)(t))
∣∣2

h2
(p,q−1)(t)

]
< ϵ3.

https://github.com/Cole-vJ/AdvEMDpy


26 Annals of Actuarial Science

Figure 21. Hilbert transform of amplitude and frequency modulated time series with true underlying instan-
taneous frequency overlaid and increasing instantaneous amplitude indicated with increasingly intense blue
spectrum.

Figure 22. Instantaneous amplitude linear regres-
sion extrapolation.

Figure 23. Instantaneous frequency linear regres-
sion extrapolation.

with ϵ2 and ϵ2 being adjustable parameters in the algorithm. The most robust version of C3
combined four conditions, but this is not the focus of this work, see van Jaarsveldt et al. (2023).

Appendix B. X11 Sifting Algorithm

In the code in Section 3.3 of ‘Package CovRegpy: Regularised Covariance Regression and
Forecasting in Python’, trend window width 1=13 corresponds to a in maa(·) in Algorithm
3, trend window width 2=13 corresponds to b in Hmab(·), and trend window width 3=13

corresponds to c in Hmac(·).
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Figure 24. Instantaneous frequency forecasting
without fitting.

Figure 25. Instantaneous frequency forecasting
with phase fitted.
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Figure 26. Efficient frontier formed by AAPL, AMZN, GOOGL, MSFT, and TSLA stock indices from 15
October 2018 until 16 September 2020.
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Algorithm 2 Sifting Process
Require: x(t) = h(1,0)(t) = r1(t)

Initialize:
(1) M(ti) of h(1,0)(t)
(2) m(tj) of h(1,0)(t)
while |{M(ti)}|+ |{m(tj)}|> 2 do

fit h̃M (t) through M(ti)

fit h̃m(t) through m(tj)

calculate h̃µ(t) =
h̃M (t) + h̃m(t)

2
if C1 and C2 or C3 then

store γp(t) = h(p,q)(t)
calculate rp+1(t) = rp(t)− γp(t)
set h(p+1,0)(t) = rp+1(t)
find M(ti) of h(p+1,0)(t)
find m(tj) of h(p+1,0)(t)

else
calculate h(p,q+1)(t) = h(p,q)(t)− h̃µ(t)
find M(ti) of h(p,q+1)(t)
find m(tj) of h(p,q+1)(t)

end if
end while
store rK(t)

Algorithm 3 X11
Require: x(t), k, l, m, n

T ∗
1 (t) = maa(x(t))

S∗
1 (t) = x(t)− T ∗

1 (t)
S∗
2 (t) = Sm×n(S

∗
1 (t))

T ∗
2 (t) = x(t)− S∗

2 (t)
T ∗
3 (t) = Hmab(T ∗

2 (t))
S∗
3 (t) = x(t)− T ∗

3 (t)
S(t) = Sm×n(S

∗
3 (t))

T ∗
4 (t) = x(t)− S(t)

T (t) = Hmac(T ∗
4 (t))

ϵ(t) = T (t)− T ∗
4 (t)
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