Appendix 1: Model Implementation Details

All Code used to prepare data, run the simulations, produce figures and run analyses is available for download at: <u>https://github.com/bubalis/VT_pIndex</u>

Parameter	Explanation	Details		
Tile Drain	Does the field have	If Soil is drainage class D:		
	pattern tile drainage?	True if Corn or Small-Grain is in rotation, else		
		Bernoulli(.5)		
		If Soil is drainage Class C:		
		Bernoulli(.75) if Corn or Small Grain is in Rotation, else		
		Bernoulll(.3)		

Table S 1 Details on Simulation of Parameters for All Scenarios

Parameter	Explanation	Details			
# manure		1 if Current Crop is Corn or Small Grain			
applications		Random integer between 1 and 3 if Current Crop is Hay			
		0 if Fallow			
Cover Crop	Is there a	Bernoulli(.25) Current Crop is Corn or Small Grain			
	winter cover	Else False			
	crop?				
Tillage	What type of	If crop is corn:			
method	tillage, if	If soil is clay:			
	any, is used	(10% no-till, 45% chisel, 35% disk, 10% moldboard)			
	on the field?	Else			
		(40% no-till, 30% chisel, 30% disk, 0% moldboard)			
		If crop is Hay and previous year was corn:			
		(20% no-till, 40% chisel, 20% disk, 20% moldboard)			
		If crop is small-grain:			
		(20% no-till, 50% chisel, 20% disk, 10% moldboard)			
Manure	How is	If tillage is No-till:			
Incorporation	manure	If Crop is Corn or Small-Grain			
Method	mixed into	(40% injected, 60% not incorporated)			
	soil? Or is it				
	left on	If Crop is Hay:			
	surface?	(10% injected 90% not incorporated)			
		Else:			
		Manure Incorporation Method = Tillage Method			
Time until	Days manure	0 if Incorporation Method = Injected			
manure is	is left on soil	Else: Poisson(4)			
incorporated	surface				
Manure	Season of	If Crop is Corn:			
Season	Manure	(60% spring, 40% Fall)			
	Spreading	Otherwise:			
	Event	(30% Spring, 30% Fall, 40% Summer)			

Table S 2 Details of Simulation of Parameters for Base Scenario

Parameter	Explanation	Details		
Manure	How much	Default: Calculated based on total manure available at the		
Rate	manure is	County Level		
	spread?	0 If Soil Test Phosphorus >15		
		If P-Index> 100:		
		Re-run with no manure spread		
		If P-Index >60:		
		Re-run at 50%		
Manure	How close to	If P-Index >60:		
Setback	edge-of-field	Re-run with 25-foot setback		
	is manure			
	spread?			
Cover Crop	Is there a	If P-Index> 100:		
	cover crop?	Re-run with Bernoulli(.9)		

Table S 3: Differences in Parameter Simulation for Nutrient Management Planning

Parameter	Explanation	Details			
Cover Crop	Is there a	If crop is Corn or Small Grain Bernoulli(.9)			
	winter cover	Else False			
	crop?				
Tillage	What type of	If crop is Corn:			
method	tillage, if	If soil is clay:			
	any, is used	(60% no-till, 30% chisel, 10% disk)			
	on the field?	Else			
		(80% no-till, 15% chisel, 5% disk, 0% moldboard)			
		-			
		If crop is Hay and previous year was corn:			
		(40% no-till, 50% chisel, 10% disk)			
		If crop is Small Grain:			
		(50% no-till, 40% chisel, 10% disk)			
Manure	How is	If tillage is No-till:			
Incorporation	manure	If Crop is Corn or Small-Grain			
Method	mixed into	(90% injected, 10% not incorporated)			
	soil? Or is it	If Crop is Hay:			
	left on	(50% injected 50% not incorporated)			
	surface?				
		Else:			
		Tillage Method is also manure-incorporation method			
Time until	Days manure	If incorporation is injection, 0			
manure is	is left on soil	Else: Poisson(1)			
incorporated	surface				

 Table S 4: Differences in Parameter Simulation for Best Management Practices

Appendix 2: Soil Test Phosphorus Values Validation

We compared our simulated soil test phosphorus data with summary data from the Cornell Nutrient Analysis Laboratory reported by Ketterings and colleagues (2005). Table S5 compares the distribution of our simulated data as compared with results from 38876 samples analyzed from the top 10 dairy-producing counties in NY state. The comparison shows that our simulated data are biased towards moderate values of soil test phosphorus, but for other ranges, it is similar to this dataset. While the extent of farmer error in soil sampling is unknown, we would expect it to make the data more extreme, so the modest moderation of soil test P values in our simulated data may ameliorate this effect.

Figure S1 compares the cumulative distribution functions of the actual soil test phosphorus data from the UVM Soil Lab and the simulated data, showing that the data line up

well, but once again our simulated values are somewhat biased towards more moderate values of soil test phosphorus.

Figures S2 and S3 show the difference between the sorted values of the empirical distribution and the simulated distribution. For each value of soil test phosphorus from the actual data, the chart plots the actual value minus the simulated value at the same percentile. Figure S2 shows that the simulated distribution slightly inflates values for the middle of the distribution. Figure S3 shows that our simulated values trims the highest values from the distribution.

Soil P category	Range of Soil Test P Values	Simulated Data	Top Dairy-Producing Counties in New York		
			Mean	Low	High
Low	0 - 1.5	19%	27%	12%	43%
Medium	1.5 -4.5	42%	25%	20%	29%
High	4.5 - 20	34%	39%	28%	53%
Very High	> 20	5%	8%	1%	17%

Table S 5 Percent of soil test P values in 4 bins for our Simulated Data and the top 10 dairy-producing counties in New York State. NY Data From (Ketterings et al., 2005)

Figure S 1 Cumulative Distribution Functions for Actual and Simulated Soil Test Phosphorus Data

Figure S 2 Differences between values of actual and simulated soil test phosphorus up to the 90th percentile

Figure S 3 Differences Between actual and simulated soil test phosphorus for all values

Appendix 3: Supplementary Figures by County

Inset of Little Otter Creek

Figure S 4 Simulated P Indices for Addison County in the Base+NMP Scenario

Simulated P Indexes for Chittenden County

Figure S 5 Simulated P Indices for Chittenden County in the Base+NMP Scenario

Figure S 6 Simulated P Indices for Franklin County in the Base+NMP Scenario

Simulated P Indexes for Grand Isle County

