
TPLP : Page 1–8. © The Author(s), 2021. Published by Cambridge University Press 2021

doi:10.1017/xxxxx

1

Supplementary Material
Quantifying over Optimum Answer Sets

GIUSEPPE MAZZOTTA FRANCESCO RICCA MIREK TRUSZCZYNSKI
University of Calabria, Italy University of Calabria, Italy University of Kentucky

submitted xx xx xxxx; revised xx xx xxxx; accepted xx xx xxxx

1 Preliminaries on complexity classes

In this section, we recall some basic definitions of complexity classes that are used

to study the complexity of the introduced formalism. For further details about NP -

completeness and complexity theory we refer the reader to dedicated literature (Pa-

padimitriou 1994). We recall that the classes ∆P
k , Σ

P
k , and ΠP

k of the polynomial time

hierarchy (PH)(Stockmeyer 1976) are defined as follows (rf. Garey and Johnson (1979)):

∆P
0 = ΣP

0 = ΠP
0 = P

and, for all k > 0

∆P
k+1 = PΣP

k , ΣP
k+1 = NPΣP

k , ΠP
k+1 = coNPΣP

k ,

where, NP = ΣP
1 , coNP = ΠP

1 , and ∆2 = PNP .

In general, PC (resp. NPC) denotes the class of problems that can be solved in poly-

nomial time on a deterministic (resp. nondeterministic) Turing machine with an oracle

in the class C. Note that, the usage of an oracle O ∈ C for solving a problem π is referred

to as a subroutine call, during the evaluation of π, to O. The latter is evaluated in a unit

of time. Among such complexity classes, the classes ∆P
k , with k ≥ 2, have been refined

by the class ∆P
k [O(log n)] (also called ΘP

k), where the number of oracle calls is bounded

by O(log n), with n being the size of the input (Krentel 1992; Wagner 1990).

2 Modeling ∆P
2 in ASPω(Q)

According to the complexity study carried out by Eiter and Gottlob (1995), given a PAP

A = ⟨V, T,H,M⟩ and a set S ⊆ H, the task of verifying if S ∈ sol(A) is in ∆P
2 . In

particular, this task can be modeled with an ASPω(Q) Π of the form ∃P : C, where

P is not plain. More in detail, the program C contains only one constraint, which is

← notEntail whereas the program P is defined as follows:

2

P =

v(x) ← ∀ x ∈ V
lit(Ci, a, t) ← ∀ a ∈ V | a ∈ Ci

lit(Ci, a, f) ← ∀ a ∈ V | ∼a ∈ Ci

h(x) ← ∀ x ∈ H
m(x) ← ∀ x ∈M
s(x) ← ∀ x ∈ S

cl(X) ← lit(X, ,)
{tau(X, t); tau(X, f)} = 1 ← v(X)

satCl(C) ← lit(C,A, V), tau(A, V)
unsatTS ← cl(C),∼satCl(C)
unsatTS ← s(X), tau(X, f)

← unsatTS
{tau′(X, t); tau′(X, f)} = 1 ← v(X)

satCl′(C) ← lit(C,A, V), tau′(A, V)
unsatTS′ ← cl(C),∼satCl′(C)
unsatTS′ ← s(X),∼tau′(X, f)

satTS ← ∼unsatTS′

notEntail ← satTS,m(X), tau′(X, f)
←w ∼notEntail [1@1]

Intuitively, the program P is used to verify that T ∪ S is consistent and T ∪ S entails

the manifestation M . Verifying that T ∪ S ⊨ M requires checking that for every truth

assignment M is satisfied whenever T ∪ S is satisfied. Thus, the main intuition is that,

in this case, we can simulate this entailment check by means of weak constraints. More

precisely, an answer set M ∈ AS(P) contains a pair of truth assignments τ and τ ′ such

that τ guarantee the consistency of T∪S, whereas τ ′ either violates the entailment T∪S ⊨
M and so notEntail ∈ M or satisfies the entailment and so notEntail /∈ M . According

to the weak constraint in P , an answer set containing notEntail is preferred to an answer

set not containing notEntail. Thus, if there exists an answer set M ∈ OptAS(P) such

that notEntail ∈ M then T ∪ S ⊭ M , and so, S is not a solution for A. Moreover,

since M is optimal then does not exist M ′ ∈ OptAS(P) such that notEntail /∈M ′, and

so, Π is incoherent. Conversely, if there exists an answer set M ∈ OptAS(P) such that

notEntail /∈ M then every answer set M ′ ∈ OptAS(P) is such that notEntail /∈ M ′.

This means that T ∪ S ⊨ holds and so S is a solution for A. Since notEntail /∈ M then

the program C is coherent and so, Π is coherent.

3 Stratified definition assumption

In this section, we demonstrate that we can assume without loss of generality that

ASPω(Q) programs satisfy the stratified definition assumption.

Definition 1

Let Π = □1P1 . . .□nPn be an ASPω(Q) program. Π satisfies the stratified definition

assumption if for each 1 ≤ i ≤ n, H(Pi) ∩ at(Pj) = ∅, with 1 ≤ j < i.

We demonstrate in the following that any ASPω(Q) program Π can be transformed into

a program Π′ such that Π′ satisfies the stratified definition assumption and is coherent

whenever Π is coherent.

To this end, we recall that for an ASP expression ϵ and an alphanumeric string s,

clones(ϵ) is the expression obtained by substituting all occurrences of each predicate p

in ϵ with ps that is a fresh predicate ps of the same arity.

Quantifying over Optimum Answer Sets 3

It is easy to see that there is a one-to-one correspondence between answer sets of a

program P and its clone program clones(P).

Proposition 1

Let P be an ASP program, and s be an alphanumeric string. Then M ∈ AS(P) if and

only if clones(M) ∈ AS(clones(P)).

We now introduce the remap function, which will be used to modify the signature of

a subprogram.

Definition 2

Let P1 and P2 be two ASP programs, then remap(P2, P1) is the program clonec(P2) ∪
{clonec(a)← a | a ∈ BP1} ∪ {← clonec(a),∼a | a ∈ BP1}

Observation 1

Let P1 and P2 be two ASP programs, and P = remap(P2, P1), then H(P) ∩ at(P1) = ∅.

The above transformation has some important properties that follow from the splitting

set (Lifschitz and Turner (1994)) theorem.

Given a program P , a splitting set (Lifschitz and Turner (1994)) for P is a set of atoms

U ⊆ BP , such that for every r ∈ P such that Hr∩U ̸= ∅, at(Br) ⊆ U . Let U be a splitting

set for P , botU (P) denotes the set of rules r ∈ P such that at(r) ⊆ U . Given two sets of

atoms, U and X, eU (P,X) denotes the set of rules obtained from rules r ∈ P such that

(B+
r ∩U) ⊆ X and X \ (at(B−

r)∩U) = X, by removing from Br all those literals whose

atom is in U .

Theorem 1 (Lifschitz and Turner (1994))

Let P be an ASP program and U be a splitting set for P , then M ∈ AS(P) if and only

if M = X ∪ Y , where X ∈ AS(botU (P)), and Y ∈ AS(eU (P \ botU (P))

Now, we observe some properties of any pair of ASP programs.

Lemma 1

Let P1, P2 be two ASP programs such that at(P1)∩H(P2) = ∅, and M1 ∈ AS(P1). Then,

each model M such that M ∈ AS(P2 ∪ fixP1
(M1)) is of the form M = M1 ∪M2, where

M2 ∈ AS(eat(P1)(P2,M1)).

Proof

Let M1 ∈ AS(P1), since P1, P2 are such that at(P1) ∩ H(P2) = ∅, then U = at(P1) is a

splitting set for program P = P2∪fixP1
(M1). According to Theorem 1,M ∈ AS(P) if and

only if M = X ∪ Y , where X ∈ AS(botU (P)), and Y ∈ AS(eU (P \ botU (P), X)). Now,

we have that program botU (P) = fixP1
(M1) that by definition admits only on model M1.

Also, observe that P \ botU (P) = P2, thus M = M1 ∪M2 where M2 ∈ AS(eU (P2,M1)).

Lemma 2

Let P1 and P2 be two ASP programs,M1 ∈ AS(P1), and P ′
2 = P2∪fixP1

(M1). ThenM2 ∈
AS(P ′

2) if and only if M = M1 ∪ clonec(M2) is an answer set of P ′ = remap(P2, P1) ∪
fixP1

(M1).

4

Proof

Let P1 and P2 be two ASP programs and M1 ∈ AS(P1). For simplicity, we denote by P =

remap(P2, P1), and P ′ = P ∪ fixP1
(M1), where M1 ∈ AS(P1). Applying Observation 1

to P , we have that H(P) ∩ at(P1) = ∅, and so from Lemma 1 we have that each M ∈
AS(P ′) is such that M = M1 ∪M ′

2, where M ′
2 ∈ AS(eU (P,M1)), where U = at(P1).

By definition eU (P,M1) = eU (remap(P2, P1),M1) = clonec(P2) ∪ {clonec(a) ←| a ∈
M1}∪{← clonec(a) | a ∈ BP1 \M1} = clonec(P2∪fixP1 (M1)). Since P

′
2 = P2∪fixP1 (M1)

then eU (P,M1) = clonec(P ′
2). Thus, each answer set M ′

2 ∈ AS(clonec(P ′
2)) is such that

M ′
2 = clonec(M2) with M2 ∈ AS(P ′

2). Thus, M = M1 ∪ clonec(M2) iff M2 ∈ AS(P ′
2).

Corollary 1.1

Let P1 and P2 be two ASP programs, possibly with weak constraints, and M1 ∈ AS(P1),

then M ∈ OptAS(remap(P2, P1) ∪ fixP1
(M1)) if and only if M = M1 ∪ clonec(M2),

where M2 ∈ OptAS(P2 ∪ fixP1 (M1)).

Proof

Let P1 and P2 be two ASP programs, possibly with weak constraints, M1 ∈ AS(P1),

P = remap(P2, P1) ∪ fixP1
(M1), and P ′

2 = P2 ∪ fixP1
(M1).

From Lemma 2, M2 ∈ AS(P ′
2) if and only if M = M1 ∪ clonec(M2) ∈ AS(P).

If M2 /∈ OptAS(P ′
2) this means that there exists M ′

2 ∈ AS(P ′
2) such that M ′

2 dominates

M2, and so M is dominated by M ′ = M1 ∪ clonec(M ′
2). Thus M /∈ OptAS(P).

Conversely, if M2 ∈ OptAS(P ′
2) then for every M ′

2 ∈ AS(P ′
2), M2 is not dominated by

M ′
2 and so for every M ′ = M1 ∪ clone(M ′

2) ∈ AS(P), M is not dominated by M ′ and so

M ∈ OptAS(P).

We are now ready to introduce our main program transformation.

Definition 3

Given an ASPω(Q) program Π of the form □1P1 . . .□nPn : C, and 1 < i ≤ n we

define the function remap(Π, i) that computes the ASPω(Q) program: remap(Π, i) =

□1P
′
1 . . .□nP

′
n : C ′, and 1 ≤ j ≤ n such that:

P ′
j =

 Pj j <= i
remap(Pj , Pi) j = i+ 1
clonec(Pj) j > i+ 1

and C ′ = clonec(C).

Proposition 2

Let Π be an ASPω(Q) program of the form □1P1 . . .□nPn : C, and 1 ≤ i ≤ n, then Π is

coherent if and only if remap(Π, i) is coherent.

Proof

The thesis follows from the definition of quantified answer set, Proposition 1.1 and

Lemma 2.

Proposition 3

Quantifying over Optimum Answer Sets 5

Given an ASPω(Q) program Π. We define the sequence of ASPω(Q) programs

Πj =

{
remap(Π, 2) j = 2

remap(Πj−1, j) 2 < j ≤ n

Then Πn is coherent iff Π is coherent.

Corollary 1.2

Given an ASPω(Q) program Π such that □1 = ∃, then QAS(Πn) = QAS(Π).

Proof

It follows from Proposition 3 once we observe that the first programs of Πn and Π are

the same.

Thus, without loss of generality, we assume that an ASPω(Q) program is of the form

□1P1 . . .□nPn, where for each 1 ≤ i ≤ n, H(Pi) ∩ at(Pj) = ∅, with 1 ≤ j < i.

4 Rewriting into plain ASP(Q)

In this section, we are going to prove the correctness of the transformation outlined in

the corresponding section of the main paper. In what follows we assume that Π is an

ASPω(Q) program of the form

□1P1 □2P2 · · · □nPn : C : Cw, (1)

where, for each i = 1, . . . , n, □i ∈ {∃st,∀st}, Pi is an ASP program possibly with weak

constraints, C is a (possibly empty) stratified program with constraints, and Cw is a

(possibly empty) set of weak constraints such that BCw ⊆ BP1
.

We recall some useful definitions introduced in the main paper. Given program Π of

the form (1) we say that two consecutive subprograms Pi and Pi+1 are alternating if □i ̸=
□i+1, and are uniform otherwise. A program Π is quantifier-alternating if □i ̸= □i+1 for

1 ≤ i < n. A subprogram Pi is plain if it contains no weak constraints W(Pi) = ∅, and
Π is plain if both all Pi are plain, and Cw = ∅.

4.1 Rewriting uniform plain subprograms.

First of all, we show how two plain uniform subprograms can be absorbed in a single

equi-coherent subprogram. This is done by the transformation col1(·) as follows.

Lemma 3 (Correctness col1(·) transformation)

Let program Π be such that n ≥ 2 and the first two subprograms are plain and uniform,

i.e., □1 = □2, and W(P1) = W(P2) = ∅, then Π is coherent if and only if col1(Π) =

□1P1 ∪ P2□3P3 . . .□nPn : C is coherent.

Proof

The proof follows from the stratified definition assumption. In particular, since at(P1) ∩
H(P2) = ∅ then U = at(P1) is a splitting set for P = P1 ∪ P2, where botU (P) = P1 and

P \botU (P) = P2. From Theorem 1,M ∈ AS(P) if and only ifM = M1∪M2, whereM1 ∈
AS(P1) and M2 ∈ AS(eU (P2,M1)), and so, from Lemma 1, M ∈ AS(P2 ∪ fixP1

(M1)).

6

Thus, accordingly, the program P preserves all the answer sets of P1 and P2. Since no

weak constraints appear in P1 and P2, then AS(P) = OptAS(P) and so the coherence

is preserved.

4.2 Rewriting uniform notplain-plain subprograms.

Next transformations apply to pairs of uniform subprograms P1, P2 such that P1 is not

plain and P2 is plain. To this end, we recall the definition of or(·, ·) transformation.

Definition 4

Let P be an ASP program, and l be a fresh atom not appearing in P , then or(P, l) =

{Hr ← Br,∼l | r ∈ P}

Observation 2 (Trivial model existence)

Let P be an ASP program, and l be a fresh literal not appearing in P , then the following

hold: {l} is the unique answer set of or(P, l)∪{l←}; and AS(or(P, l) ∪ {← l}) = AS(P).

Intuitively, if the fact l ← is added to or(P, l) then the interpretation I = {l} trivially

satisfies all the rules and is minimal, thus it is an answer set. On the other hand, if we

add the constraint ← l, requiring that l is false in any answer set, then the resulting

program behaves precisely as P since literal ∼l is trivially true in all the bodies of the

rules of the program.

We are now ready to introduce the next rewriting function col2(·).

Definition 5 (Collapse notplain-plain existential subprograms)

Let Π be an ASPω(Q) program of the form ∃P1∃P2 . . .□nPn : C, where W(P1) ̸= ∅,
W(Pi) = ∅, with 1 < i ≤ n, and □i ̸= □i+1 with 1 < i < n, then:

col2(Π) =

 ∃P1 ∪ or(P2, unsat) ∪W : C ∪ {← unsat} n = 2
∃P1 ∪ or(P2, unsat) ∪W ∀P ′

3 : C ∪ {← unsat} n = 3
∃P1 ∪ or(P2, unsat) ∪W ∀P ′

3 ∃P4 ∪ {← unsat} . . .□nPn : C n > 3

where W = {{unsat} ←}∪ {←w unsat [1@lmin − 1]}, with lmin be the lowest level in

W(P1) and unsat is a fresh symbol not appearing anywhere else, and P ′
3 = or(P3, unsat).

Lemma 4 (Correctness col2(·) transformation)

Let Π be an ASPω(Q) program of the form ∃P1∃P2 . . .□nPn : C, where W(P1) ̸= ∅,
W(Pi) = ∅, with 1 < i ≤ n, and □i ̸= □i+1 with 1 < i < n. Then Π is coherent if and

only if col2(Π) is coherent.

Proof (sketch)

First observe that if P1 is not coherent then both Π (by definition) and ∃P1∪or(P2, unsat)

(for the splitting theorem) are not coherent, and thus (by definition of quantified answer

set) also col2(Π) is not coherent. Next observe that, if P1 is coherent, an optimal answer

set of P1 ∪ or(P2, unsat) contains unsat only if any optimal answer set m of P1 is such

that P2∪fixP1 (m) is incoherent. In this case, Π is not coherent, and since the subprogram

following P2 contains the constraint ← unsat, also col2(Π) is not coherent. On the other

hand, if unsat is false in any optimal answer set of the first subprogram of col2(Π),

then (if n ≥ 3) P3′ behaves as P3, and the constraint ← unsat occurring in the next

Quantifying over Optimum Answer Sets 7

subprogram (i.e., P4 or C) is trivially satisfied. Thus (by the definition of quantified

answer set) col2(Π) is coherent whenever Π is coherent.

Proof

Let P = P1 ∪ or(P2, unsat) ∪W , where W = {{unsat} ←} ∪ {←w unsat [1@lmin − 1]},
with lmin being the lowest level in W(P1) and unsat is a fresh symbol not appearing in

Π.

Since P1 and P2 satisfy the stratified definition assumption, then, from the splitting

theorem, each answer set of P can be computed by fixing any answer set M1 ∈ AS(P1)

in the program or(P2, unsat) ∪W . In turn, M ∈ AS(P) if and only if ∃M1 ∈ AS(P1)

and M ∈ AS(or(P2, unsat) ∪W ∪ fixP1
(M1)).

From the definition of quantified answer set, if P1 is incoherent then Π is incoherent.

Analogously, P is incoherent and so, also col2(Π) is incoherent.

On the other hand, i.e. P1 is coherent, then AS(P) = {M1∪{unsat} |M1 ∈ AS(P1)}∪
{M | ∃M1 ∈ AS(P1) ∧M ∈ AS(P2 ∪ fixP1 (M1))}.
Let M in AS(P) such that M is obtained from M1 ∈ AS(P1) \OptAS(P1) (i.e. either

M = M1 ∪{unsat} or M ∈ AS(P2 ∪ fixP1 (M1))). In this case, we know that there exists

M ′ = M ′
1 ∪ {unsat} ∈ AS(P), where M ′

1 ∈ OptAS(P1), and so, since weak constraints

in P1 are defined at the highest priority level, then M is dominated by M ′. In turn

M /∈ OptAS(P).

Let M = M1 ∪ {unsat} ∈ AS(P), with M1 ∈ OptAS(P). In this case, according to

the weak constraint ←w unsat [1@lmin − 1], M is dominated only by any M ′ ∈ AS(P)

such that M ′ ∈ AS(P2 ∪ fixP1
(M ′

1)), with M ′
1 ∈ OptAS(P1), since M ′ does not violate

the weak constraint ←w unsat [1@lmin − 1].

Thus, if there exists M ∈ OptAS(P) such that unsat ∈ M then OptAS(P) = {M1 ∪
{unsat} | M1 ∈ OptAS(P1)}. This means that for every M1 ∈ OptAS(P1) the program

P2 ∪ fixP1
(M1) is incoherent and so, from the definition of quantified answer set, Π is

incoherent. Since unsat is true, in this case, in every optimal answer set of P and the

subprogram following P2 contains the constraint← unsat then also col2(Π) is incoherent.

On the other hand, if there exists M ∈ OptAS(P) such that unsat /∈ M then

OptAS(P) = {M | M ∈ AS(P2 ∪ fixP1 (M1)) ∧M1 ∈ OptAS(P1)}. In this case, since

unsat is false in any optimal answer set of P , then (if n ≥ 3) P3′ behaves as P3, and the

constraint ← unsat occurring in the next subprogram (i.e., P4 or C) is trivially satis-

fied. Thus (by the definition of quantified answer set) col2(Π) is coherent whenever Π is

coherent.

Definition 6 (Collapse notplain-plain universal subprograms)

Let Π be an ASPω(Q) program of the form ∀P1∀P2 . . .□nPn : C, where W(P1) ̸= ∅,
W(Pi) = ∅, with 1 < i ≤ n, and □i ̸= □i+1 with 1 < i < n, then:

col3(Π) =

 ∀P1 ∪ or(P2, unsat) ∪W : or(C, unsat) n = 2
∀P1 ∪ or(P2, unsat) ∪W ∃P ′

3 : or(C, unsat) n = 3
∀P1 ∪ or(P2, unsat) ∪W ∃P ′

3 ∀P4 ∪ {← unsat} . . .□nPn : C n > 3

where W = {{unsat} ←}∪ {←w unsat [1@lmin − 1]}, with lmin be the lowest level in

W(P1) and unsat is a fresh symbol not appearing anywhere else, and P ′
3 = or(P3, unsat).

8

Lemma 5 (Correctness col3(·) transformation)

Let Π be an ASPω(Q) program of the form ∀P1∀P2 . . .□nPn : C, where W(P1) ̸= ∅,
W(Pi) = ∅, with 1 < i ≤ n, and □i ̸= □i+1 with 1 < i < n. Then Π is coherent if and

only if col3(Π) is coherent.

Proof (sketch)

The proof follows the same idea used for proving Lemma 4. In this case, if P1 is not

coherent then Π (by definition) is coherent. At the same time ∀P1∪or(P2, unsat) (for the

splitting theorem) is also incoherent, and thus (according to the coherence of ASPω(Q))

also col2(Π) is coherent. On the other hand, if P1 is coherent then an optimal answer set

of ∀P1∪or(P2, unsat) contains unsat only if any optimal answer set m of P1 is such that

P2 ∪ fixP1
(m) is incoherent. In this case, Π is coherent, and, according to the definition

of optimal answer set, every optimal answer set of ∀P1 ∪ or(P2, unsat) contains unsat.

Thus, the subprogram following P2 are trivially satisfied (or(C, unsat), or(P3, unsat)

or ∀P4 ∪ {← unsat}), and so also col2(Π) is coherent. On the other hand, if unsat is

false in any optimal answer set of the first subprogram of col2(Π), then (if 2 ≤ n ≤ 3)

or(C, unsat) behaves as C, (if n ≥ 3) P ′
3 behaves as P3, and the constraint ← unsat

occurring in the next subprogram (i.e. P4) is trivially satisfied. Thus (according to the

coherence of ASPω(Q)) col2(Π) is coherent whenever Π is coherent.

Proof

Let P = P1 ∪ or(P2, unsat) ∪W , where W = {{unsat} ←} ∪ {←w unsat [1@lmin − 1]},
with lmin being the lowest level in W(P1) and unsat is a fresh symbol not appearing in

Π.

As it has been observed in the proof of Lemma 4, since P1 and P2 satisfy the stratified

definition assumption, then, from the splitting theorem, each answer set of P can be com-

puted by fixing any answer set M1 ∈ AS(P1) in the program or(P2, unsat)∪W . In turn,

M ∈ AS(P) if and only if ∃M1 ∈ AS(P1) and M ∈ AS(or(P2, unsat) ∪W ∪ fixP1
(M1)).

According to the coherence of ASPω(Q) programs, if P1 is incoherent then Π is coher-

ent. Analogously, P is incoherent and so, also col2(Π) is coherent.

On the other hand, i.e. P1 is coherent, then AS(P) = {M1∪{unsat} |M1 ∈ AS(P1)}∪
{M | ∃M1 ∈ AS(P1) ∧M ∈ AS(P2 ∪ fixP1

(M1))}.
Thus, from the observation made in the proof of Lemma 4, if there exists M ∈

OptAS(P) such that unsat ∈M then OptAS(P) = {M1 ∪ {unsat} |M1 ∈ OptAS(P1)}.
This means that for every M1 ∈ OptAS(P1) the program P2 ∪ fixP1

(M1) is incoherent

and so, from the coherence of ASPω(Q), Π is coherent. Since unsat is true in every op-

timal answer set of P then, in this case, the subprogram following P2 (i.e. or(C, unsat),

or(P3, unsat) or ∀P4 ∪{← unsat}) are trivially satisfied, and so also col2(Π) is coherent.

On the other hand, if there exists M ∈ OptAS(P) such that unsat /∈ M then

OptAS(P) = {M | M ∈ AS(P2 ∪ fixP1
(M1)) ∧M1 ∈ OptAS(P1)}. In this case since

unsat is false in any optimal answer set of P , then (if 2 ≤ n ≤ 3) or(C, unsat) behaves

as C, (if n ≥ 3) P ′
3 behaves as P3, and the constraint ← unsat occurring in the next

subprogram (i.e. P4) is trivially satisfied. Thus (according to the coherence of ASPω(Q))

col2(Π) is coherent whenever Π is coherent.

Quantifying over Optimum Answer Sets 9

4.3 Rewrite subprograms with weak constraints.

The following transformations have the role of eliminating weak constraints from a sub-

program by encoding the optimality check in the subsequent subprograms. To this end,

we recall the definition of check(·) transformation that is useful for simulating the cost

comparison of two answer sets of an ASP program P .

Definition 7 (Transform weak constraints)

Let P be an ASP program with weak constraints, then

check(P) =

vc(w, l, T)← b1, . . . , bm ∀c : ←w b1, . . . , bm[w@l, T] ∈ P
clP (C,L)← level(L), C = #sum{wc1 ; . . . ;wcn}

cloneo(vc(w, l, T)← b1, . . . , bm) ∀c : ←w b1, . . . , bm[w@l, T] ∈ P
cloneo(clP (C,L)← level(L), C = #sum{wc1 ; . . . ;wcn})

diff (L)← clP (C1, L), cloP (C2, L), C1 ̸= C2
hasHigher(L)← diff (L), diff (L1), L < L1

higest(L)← diff (L),∼hasHigher(L)
domP ←higest(L), clP (C1, L), cloP (C2, L), C2 < C1

where each wci is an aggregate element of the form W,T : vci(W,L, T).

Thus, the first two rules compute in predicate clP the cost of an answer set of P w.r.t.

its weak constraints, and the following two rules do the same for cloneo(P). Then, the

last four rules derive domP for each answer set of P that is dominated by cloneo(P).

Observation 3

Let P be an ASP program with weak constraints, and M1,M2 ∈ AS(P), then M1

is dominated by M2 if and only if check(P) ∪ fixP (M1) ∪ cloneo(fixP (M2)) admits an

answer set M such that domP ∈M .

Definition 8 (Transform existential not-plain subprogram)

Let Π be an existential alternating ASPω(Q) program such that all subprograms are

plain except the first one (i.e. W(P1) ̸= ∅, W(Pi) = ∅, 1 < i ≤ n), then

col4(Π) =

 ∃R(P1)∀cloneo(R(P1)) ∪ check(P1) : {← domP1
} ∪ C n = 1

∃R(P1)∀P ′
2 : {← domP1

} ∪ C n = 2
∃R(P1)∀P ′

2∃P3 ∪ {← domP1} . . .□nPn : C n ≥ 3

where P ′
2 = cloneo(R(P1)) ∪ check(P1) ∪ or(P2, domP1

).

Lemma 6 (Correctness col4(·) transformation)

Let Π be an existential alternating ASPω(Q) program such that all subprograms are

plain except the first, then Π is coherent if and only if col4(Π) is coherent.

Proof (sketch)

Intuitively, col4(Π) is structured in such a that if there exists an answer set m1 of P1

(any, also not optimal ones), such that for any other answer set of mo
i of P1 (computed

by cloning P1 in the second subprogram of col4(Π)) either domP1 is derived or m1 is

optimal. In the first case, if n ≥ 2 domP1
inhibits the rules of P2, and the next subprogram

discards m1, as expected since it is not optimal. In the second case, the next subprograms

of col4(Π) behave as those of Π, and the constraint ← domP1
occurring next is trivially

satisfied. Thus, m1 is a quantified answer set of col4(Π) only if m1 is a quantified answer

set of Π.

10

Proof

Let Π be an existential alternating ASPω(Q) program such that all subprograms are plain

except the first. First of all we observe that AS(R(P1)) = AS(P1) ⊆ OptAS(P1). Thus,

if P1 is incoherent then AS(R(P1)) = AS(P1) = ∅, and so, also R(P1) is incoherent.

Indeed, from the definition of quantified answer set, both Π and col4(Π) are incoherent.

On the other hand, let M1 ∈ AS(P1) and P denotes the second subprogram of col4(Π)

(P = cloneo(R(P1)) ∪ check(P1), if n = 1, otherwise P = cloneo(R(P1)) ∪ check(P1) ∪
or(P2, domP1

)).

If M1 /∈ OptAS(P1) then M1, from the definition of quantified answer set, is not

a quantified answer set for Π. Since M1 is not optimal then we know that there

exists M ′
1 ∈ OptAS(P1) such that M1 is dominated by M ′

1, and so there exists

M ∈ AS(P ∪ fixR(P1)(M1)) such that cloneo(M ′
1) ⊆ M and domP1 ∈ M . Thus, M

violates the strong constraint ← domP1
in the following subprograms and so, from the

definition of quantified answer set, M1 is not a quantified answer set of col4(Π).

Conversely, if M1 ∈ OptAS(P1) then for every M ∈ AS(P ∪ fixR(P1)(M1)), domP1
/∈

M and so the constraint ← domP1
added in the subsequent subprograms is trivially

satisfied. Since atoms in cloneo(R(P1)) and check(P1) do not appear anywhere else then

they do not affect the coherence of col4(Π) and so M1 is a quantified answer set of col4(Π)

whenever M1 is a quantified answer set for Π.

Definition 9 (Transform universal not-plain subprogram)

Let Π be a universal alternating ASPω(Q) program such that all subprograms are plain

except the first one (i.e. W(P1) ̸= ∅, W(Pi) = ∅ 1 < i ≤ n), then

col5(Π) =

 ∀R(P1)∃cloneo(R(P1)) ∪ check(P1) : or(C, domP1
) n = 1

∀R(P1)∃P ′
2 : or(C, domP1

) n = 2
∀R(P1)∃P ′

2∀P3 ∪ {← domP1
} . . .□nPn : C n ≥ 3

where P ′
2 = cloneo(R(P1)) ∪ check(P1) ∪ or(P2, domP1

).

Lemma 7 (Correctness col5(·) transformation)

Let Π be a universal alternating ASPω(Q) program such that all subprograms are plain

except the first, then Π is coherent if and only if col5(Π) is coherent.

The proof of Lemma 7 can be established using a dual argument with respect to that

employed for Lemma 6.

4.4 Translate ASPω(Q) to ASP(Q).

Algorithm 1 defines a procedure for rewriting an ASPω(Q) program Π into an ASP(Q)

program Π′, made of at most n + 1 alternating quantifiers, such that Π is coherent

if and only if Π′ is coherent. We recall that in Algorithm 1, we make use of some

(sub)procedures and dedicated notation. More precisely, for a program Π of the form

(1), Π≥i denotes the i-th suffix program □iPi . . .□nPn : C, with 1 ≤ i ≤ n. (i.e.,

the one obtained from Π removing the first i − 1 quantifiers and subprograms). More-

over, procedure removeGlobal(Π) builds an ASP(Q) program from a plain one in input

(roughly, it removes the global constraint program Cw). Given two programs Π1 and Π2,

replace(Π1, i,Π2) returns the ASPω(Q) program obtained from Π1 by replacing program

Quantifying over Optimum Answer Sets 11

Algorithm 1 Rewrite from ASPω(Q) to ASP(Q)

Input : An ASPω(Q) program Π
Output: A quantifier-alternating ASP(Q) program

1 begin
2 s := 0; Π0 := Π
3 do
4 stop := ⊤
5 for all ProgramType ∈ [1, 5] do
6 Let i ∈ [1, n] be the largest index such that Π>i

s is of the type ProgramType
7 if i ̸= ⊥ then

8 Πs+1 := replace(Πs, i, colProgramType(Π
≥i
s))

9 s := s+ 1;
10 stop := ⊥
11 break // go to line 12

12 while stop ̸= ⊤;
13 return removeGlobal(Πs)

Π≥i
1 by Π2, for example replace(∃P1∀P2∃P3 : C, 2,∃P4 : C) returns ∃P1∃P4 : C. With

a little abuse of notation, we write that a program is of type T ∈ [1, 5] if it satisfies the

conditions for applying the rewriting colT defined above (cfr., Lemmas 3-7). For example,

when type T = 1 we check that the first two subprograms of Π are plain and uniform so

that col1 can be applied to program Π.

In order to obtain a quantifier alternating ASP(Q) program from the input Π, Al-

gorithm 1 generates a sequence of programs by applying at each step one of the colT
transformations. In particular, at each iteration s, the innermost suffix program, say

Π≥i
s , that is of current type T is identified. Then the next program Πs+1 is built by re-

placing Π>i
s by colT (Π

>i
s). Algorithm terminates when no transformation can be applied,

and returns the program removeGlobal(Πs).

Theorem 2 (ASPω(Q) to ASP(Q) convergence and correctness)

Given program Π, Algorithm 1 terminates and returns an alternating ASP(Q) program

Π′ that is Π′ is coherent iff Π is coherent, and nQuant(Π′) ≤ nQuant(Π) + 1.

Proof. (Sketch)

Algorithm 1 repeatedly simplifies the input by applying colT (·) procedures (T ∈ [1, 5])

until none can be applied. So, the results follow from the Lemmas 3-7 that ensures the

input can be converted to an equi-coherent plain ASPω(Q) program. Note that, unless

the innermost subprogram of Π is not plain, no additional quantifier is added during

the execution of Algorithm 1 (if anything, some may be removed), so nQuant(Π′) ≤
nQuant(Π) + 1.

Proof

At each step s, Algorithm 1 searches for the innermost suffix subprogram Π≥i
s such that ei-

ther (i) Π≥i
s begins with two consecutive quantifiers of the same type (i.e., it is of type 1,2

or 3), or (ii) Π≥i
s begins with a not plain subprogram followed by a quantifier alternating

sequence of plain subprograms (i.e., it is of type 4 or 5). In case (i), one of the subpro-

cedures col1, col2, or col3 is applied, which results in the computation of program Πs+1

having one less pair of uniform subprograms (i.e., nQuant(Πs+1) = nQuant(Πs) − 1).

In case (ii), one of the subprocedures col4, col5 is applied, which results in the compu-

12

tation of program Πs+1 such that its i-th subprogram is plain. After applying col4, col5
we have that nQuant(Πs+1) ≤ nQuant(Πs) + 1, indeed if i = nQuant(Πs) one more

quantifier subprogram is added. So the algorithm continues until neither condition (i)

nor (ii) holds. This happens when Πs is a plain quantifier alternating program. Note

that, unless the innermost subprogram of Π is not plain, no additional quantifier is

added during the execution of Algorithm 1 (if anything, some may be removed), so

nQuant(Π′) ≤ nQuant(Π) + 1.

5 Complexity issues

In this section, we recall the complexity results related to verifying the coherence of

ASPω(Q) programs and provide full proof for completeness results.

Theorem 3 (Upper bound)

The coherence problem of an ASPω(Q) program Π is in: (i) Σp
n+1 for existential programs,

and (ii) Πp
n+1 for universal programs, where n = nQuant(Π).

Proof

Let Π′ be the result of applying Algorithm 1 to Π. Then, Π′ is a quantifier-alternating

plain program with at most n = nQuant(Π) + 1 quantifiers that is coherent iff Π is

coherent (Theorem 2). Thesis follows from Theorem 3 in the paper by Amendola et al.

(2019).

Theorem 4 (Lower bound)

The coherence problem of an ASPω(Q) program is hard for (i) Σp
n for existential pro-

grams, and hard for (ii) Πp
n for universal programs, where n = nQuant(Π).

Proof

The proof trivially follows from the observation that any quantifier-alternating ASP(Q)

program with n quantifiers is a plain ASPω(Q) program where Cw = ∅.

Corollary 4.1 (First completeness result)

The coherence problem of an ASPω(Q) program where the last subprogram is plain

(i.e., W(Pn) = ∅) is (i) Σp
n-complete for existential programs, and (ii) Πp

n-complete for

universal programs, where n = nQuant(Π).

Proof

The statement follows from Theorem 3 of Amendola et al. (2019).

(Membership) Let Π be an ASPω(Q) program where the last subprogram is plain. We

observe that by applying Algorithm 1 we obtain a quantifier-alternating plain ASP(Q)

program Π′ with at most n + 1 quantifiers such that Π′ is coherent if and only if Π

is coherent. Since the only case in which an extra quantifier is added is when the last

subprogram is not plain (i.e. W(Pn) ̸= ∅) then nQuant(Π′) ≤ n then the membership

follows.

(Hardness) The hardness trivially follows by observing that any quantifier-alternating

ASP(Q) program with n quantifiers is trivially encoded as a plain ASPω(Q) program

where Cw = ∅.

Quantifying over Optimum Answer Sets 13

Note that, in plain ASP(Q) (as well as in related formalisms (Stockmeyer 1976;

Fandinno et al. 2021)), the complexity of coherence correlates directly with the num-

ber of quantifier alternations (Amendola et al. 2019). Perhaps somewhat unexpectedly

at first glance, it is not the case of ASPω(Q), where one can “go up one level” with two

consecutive quantifiers of the same kind. This observation is exemplified below.

Theorem 5 (Second completeness results)

Deciding coherence of uniform existential ASPω(Q) programs with two quantifiers (i.e.

n = 2) such that P2 is not plain is Σp
2-complete.

Proof. (Sketch)

Membership follows from Theorem 3. Hardness is proved by a reduction of an existential

2QBF in DNF by modifying the QBF encoding in ASP(Q) presented in Theorem 2

of Amendola et al. (2019). In particular, a weak constraint in P2 simulates the forall

quantifier by preferring counterexamples that are later excluded by the final constraint

C.

Proof

(Hardness) Let us consider a QBF formula Φ = ∃X1∀X2ϕ, where X1, X2 are two disjoint

sets of propositional variables, and ϕ is a 3-DNF formula over variables in X1, X2 of the

form D1 ∨ . . . ∨Dn, where each conjunct Di = li1 ∧ li2 ∧ li3, with 1 ≤ i ≤ n. It is known

that the task of verifying the satisfiability of Φ is a ΣP
2 -complete problem (Stockmeyer

1976), thus, we reduce Φ to an ASPω(Q) program Π of the form ∃P1∃P2 : C where

P1 =
{
{x} ← ∀x ∈ X1

}
P2 =

 {x} ← ∀x ∈ X2

sat← li1, l
i
2, l

i
3 ∀Di ∈ ϕ

←w sat[1@1]

 C = {← ∼sat}

We recall that 2-QBF formula Φ of the form ∃X1∀X2 ϕ where is satisfiable if and

only if there exists a truth assignment τ1 for variables in X1 such that for every truth

assignment τ2 of variables in X2, the formula ϕ is satisfied w.r.t. τ1 and τ2 (i.e. at least

a conjunct in ϕ is true w.r.t. τ1 and τ2).

To this end, the program P1 encodes the truth assignments of variables in X1 by

means of a choice rule for each x ∈ X1. Analogously, P2 encodes the truth assignments

of variables in X2, by means of a choice rule for each x ∈ X2, and checks whether ϕ

is satisfied or not by means of a rule for each conjunct Di, that derives the atom sat

whenever Di is true.

Thus, if Φ is satisfiable then there exists M1 ∈ AS(P1) = OptAS(P1), such that M1

encodes τ1, and for every answer set M2 ∈ AS(P ′
2), sat ∈M2, where P

′
2 = P2∪fixP1

(M1).

Since sat appears in everyM2 ∈ AS(P ′
2) then for everyM2 ∈ AS(P ′

2), C(P ′
2,M2, 1) = 1,

and so, AS(P ′
2) = OptAS(P ′

2). Thus, for every M2 ∈ OptAS(P ′
2), C ∪ fixP ′

2
(M2) is

coherent and so, M1 ∈ QAS(Π).

Conversely, if Φ is unsatisfiable then for every truth assignment τ1 over variables X1,

there exists a truth assignment τ2 over variables X2 such that ϕ is unsatisfiable w.r.t.

τ1 and τ2. This means that each conjunct of ϕ is false w.r.t. τ1 and τ2. Thus, for every

M1 ∈ AS(P1) there exists M2 ∈ AS(P ′
2) such that sat /∈M2, with P ′

2 = P2 ∪ fixP1
(M1).

14

This means that C(P ′
2,M2, 1) = 0, and so, OptAS(P ′

2) = {M2 ∈ AS(P ′
2) | sat /∈ M2}.

Thus, there exists M2 ∈ OptAS(P ′
2), C ∪ fixP ′

2
(M2) is incoherent and so Π is incoherent.

At this point, it is easy to see that we can trivially add in the program P1 a weak

constraint of the form ←w a [1@1] where a is a fresh atom not appearing anywhere else

without affecting the optimal answer set of P1. Thus, this hardness holds both if P1 is

plain or not.

(Membership) Let Π be an ASPω(Q) program of the form ∃P1∃P2 : C where P2 is not

plain. By applying Algorithm 1 on Π, no matter if P1 contains weak constraints or not,

we obtain an existential ASP(Q) program Π′, made of two alternating quantifiers, such

that Π is coherent if and only if Π′ is coherent. Since verifying the coherence of Π′ is in

ΣP
2 (Amendola et al. 2019)-complete then verifying the coherence of Π is also in ΣP

2 .

The proof provides insights into this phenomenon. Indeed, the second quantifier, the one

over optimal answer sets, “hides” a universal quantifier.

Theorem 6

Deciding coherence of uniform existential ASPω(Q) programs with at most two quanti-

fiers (i.e. n ≤ 2) such that only P1 contains weak constraints (i.e. W(P1) ̸= ∅ and (if

n = 2) W(P2) = ∅) is ∆P
2 -complete.

Proof

From Lemma 4 we observe that each program Π = ∃P1∃P2 : C, where P1 is not plain

and P2 is plain, can be transformed into an ASPω(Q) program Π′ = col2(Π) such that Π

is coherent if and only if Π′ is coherent. Thus it is sufficient to prove that the statement

holds for n = 1.

(Hardness) Given a program P , it is known that the task of verifying that an atom

a ∈ BP appears in some optimal answer sets is ∆P
2 -complete, for a normal program

with weak constraints (Buccafurri et al. 2000). Given a normal program P with weak

constraints and an atom a ∈ BP , we can construct an ASPω(Q) program Π of the form

∃P : {← ∼a}. According to the semantics of ASPω(Q), Π is coherent if there exists

M ∈ OptAS(P) such that C ∪ fixP (M) is coherent. By construction, C ∪ fixP (M) if and

only if a ∈ M . Thus, M ∈ QAS(Π) (i.e. Π is coherent) if and only if M ∈ OptAS(P)

and a ∈M .

(Membership) Given an ASPω(Q) program Π of the form ∃P : C, we can construct an

ASP program P ∗ such that Π is coherent if and only if P ∗ admits an optimal answer set

M such that C(P ∗,M, 1) = 0. It is known that the task of verifying the existence of an

optimal answer set whose cost is c at level l is ∆P
2 -complete (Amendola et al. 2024).

Let Π = ∃P : C, we construct (1) the program P ′ obtained by uniformly increasing

the level of weak constraints in P in such a way that the lowest level is 2; (2) the program

C ′ by translating each strong constraint r ∈ C is into a normal rule unsat← Br, where

unsat is a fresh atom not appearing anywhere else.

Let P ∗ = P ′ ∪ C ′ ∪ {←w unsat[1@1]}, from the stratified definition assumption

we know that H(C ′) ∩ at(P ′) = ∅, and so, U = at(P) is a splitting set for P ∗

and so each M ∈ AS(P ∗) is of the form M1 ∪ M2 where M1 ∈ AS(botU (P
∗)) and

M2 ∈ AS(eU (P
∗ \ botU (P ∗),M1)). In particular, botU (P

∗) = P ′ and P ∗\botU (P ∗) = C ′,

and so M1 ∈ AS(P ′) and M2 ∈ AS(eU (C
′,M1)). Thus, from Lemma 1, M ∈

AS(C ′ ∪ fixP ′(M1)).

Quantifying over Optimum Answer Sets 15

By construction, weak constraints in P ′ have the highest levels and so, M is an optimal

answer set of P ∗ if and only if M1 ∈ OptAS(P ′), and M ∈ AS(C ′ ∪ fixP ′(M1)).

Moreover, since C is a stratified program with strong constraints then the incoherence

of C can only be caused by strong constraint violations, that are encoded as normal rules

in C ′ defining the fresh atom unsat. Thus, C ′∪fixP ′(M1) admits always a unique answer

M . In particular, if unsat ∈ M then some strong constraints in C are violated and so

C ∪ fixP (M1) is incoherent, otherwise, no strong constraints in C are violated and so,

C ∪ fixP (M1) is coherent.

By construction, P ∗ contains the weak constraint ←w unsat[1@1], and so, if there

exists M ∈ OptAS(P ∗) such that unsat ∈ M then C(P ∗,M, 1) = 1 and does not exist

M ′ ∈ OptAS(P ∗) such that unsat /∈M with C(P ∗,M ′, 1) = 0.

Thus, if there exists M ∈ OptAS(P ∗) such that unsat /∈M then P ∗ admits an optimal

answer set that costs 0 at level 1. Accordingly, since unsat /∈ M then every constraint

in C is satisfied, and so Π is coherent. Conversely, if there exists M ∈ OptAS(P ∗) such

that unsat ∈M then each M ′ ∈ OptAS(P ∗) contains unsat then P ∗ does not admit an

optimal answer set that costs 0 at level 1. Accordingly, since unsat appears in every M ′

then at least one constraint in C is violated, and so Π is incoherent.

Proposition 4 (Third completeness results)

Deciding coherence of plain uniform ASPω(Q) programs with 2 quantifiers is (i) NP-

complete for existential programs; and (i) coNP-complete for universal programs.

The result follows trivially from Lemma 3, once we observe that one application of col1
builds an equi-coherent program with one quantifier.

Finally, the suitability of ASPω(Q) for modeling optimization problems is witnessed

by the following.

Lemma 8 (Krentel (1992))

Let X1, . . . , Xn be disjoint sets of propositional variables and ϕ be a propositional for-

mulas over X1, . . . , Xn. Given a pair of truth assignments τ1, τ2 over a set of variables

X = x1, . . . , xm, we say that τ1 is lexicographically greater that τ2 if τ1(xi) = ⊤ and

τ2(xi) = ⊥ with 1 ≤ i ≤ m being the smallest index for which τ1(xi) ̸= τ2(xi). Let

Φ be a QBF formula of the form ∀X2∃X3 . . .QXn ϕ, where each Q ∈ {∃,∀}, and ϕ

is a formula in 3-DNF if n is even, otherwise it is in 3-CNF, and X1 = {x1, . . . , xm}.
Deciding whether the lexicographically minimum truth assignment τ of variables in X1,

such that ∀X2∃X3 . . .QXn ϕτ is satisfied (assuming such τ exists), satisfies the condition

τ(xm) = ⊤ is a ∆P
n+1-complete problem.

Theorem 7 (Fourth completeness results)

Deciding whether an atom a belongs to an optimal quantified answer set of a plain

alternating existential ASPω(Q) program with n quantifiers is ∆P
n+1-complete.

Proof

(Hardness) Starting from the ∆P
n+1-complete problem introduced by Lemma 8, we can

construct a plain alternating ASPω(Q) program with n quantifier Π such that an atom,

namely xm, appears in some optimal quantified answer set of Π if and only if the answer

to the problem is “yes”.

16

Without loss of generality we assume that n is even, ϕ is propositional formula in

3-DNF, and X1 = {x1, . . . , xm}.
For simplicity, we introduce some set of rules that will be used in the construction

of Π. More precisely, sat(ϕ) denotes the set of rules of the form satϕ ← li1, l
i
2, l

i
3, where

Di = li1 ∧ li2 ∧ li3 is a conjunct in ϕ; whereas for a set of variables Z = {z1, . . . , zk},
choice(Z) denotes the program made of a single choice rule of the form {z1; . . . ; zk} ←.

We are now ready to construct the program Π of the form ∃P1∀P2 . . . ∀Pn : C : Cw,

where Pi = choice(Xi), for each 1 ≤ i ≤ n, and the programs C and Cw are of the form:

C =

{
sat(ϕ)

← ∼satϕ

}
Cw =

{
←w xi [1@m− i+ 1] ∀1 ≤ i ≤ m

}
Intuitively, the program P1 is used to guess a possible assignment τ over variables inX1,

for which we want to verify the satisfiability of the QBF formula Φ : ∀X2∃X3 . . . ∀Xn ϕτ .

The following subprograms Pi, with 2 ≤ i ≤ n, precisely match the quantifier alternation

of Φ and are used for guessing possible truth assignments for variables in Xi. Once the

final constraint program C is reached, we can evaluate the 3-DNF formula ϕ according to

the truth assignments guessed by previous subprograms. The rules in sat(ϕ) will derive

the atom sat if there is at least one conjunct in ϕ that is satisfied. Finally the last

constraint in C impose that at least one conjunct must be satisfied.

Thus, there exists a quantified answer set of Π if and only if there exists a assignment

of variables in X1 such that Φ is satisfiable. Since the program Cw contains the set of

weak constraints of the form ←w xi [1@m− i+1] for each i ∈ [1, . . . ,m] then the cost of

each quantified answer set is given by the true atoms in the guessed τ . Thus, by assigning

the highest priority to the atom x1 (i.e. m−1+1 = m) and the lowest priority to xm (i.e.

m−m+1 = 1) we can simulate the lexicographical order described above. In conclusion,

the optimal quantified answer set Π corresponds to the lexicographically minimum truth

assignment τ , such that Φ is coherent. By construction xm is derived if and only if τ(xm)

is true, and so the thesis follows.

(Membership) According to Theorem 3 of Amendola et al. (2019), we know that the

coherence of an existential plain alternating program with n quantifiers falls within the

complexity class ΣP
n -complete. By following similar observations employed in the proofs

by Buccafurri et al. (2000); Simons et al. (2002) an optimal solution can be obtained,

by implementing a binary search on the value of k, with a logarithmic number of calls

to an oracle in ΣP
n (checking that no better solution than current exists). A final call

to the oracle can ensure the existence of an optimal solution containing a. Since k can

be exponential w.r.t. the input size (Buccafurri et al. (2000); Simons et al. (2002)) the

thesis follows.

Theorem 8 (Fifth completeness results)

Deciding whether an atom a belongs to an optimal quantified answer set of a plain

alternating existential ASPω(Q) program with n quantifiers is ΘP
n+1-complete if there is

only one level and all the weights are the same.

Proof

(Hardness) Let a QBF formula Φ be an expression of the form Q1X1 . . .QnXnϕ, where

X1, . . . , Xn are disjoint sets of propositional variables, Qi ∈ {∃,∀} for all 1 ≤ i ≤ n,

Qi ̸= Qi+1 for all 1 ≤ i < n, and ϕ is a 3-DNF formula over variables in X1, X2, . . . , Xn

Quantifying over Optimum Answer Sets 17

of the form D1 ∨ . . . ∨ Dn, where each conjunct Di = li1 ∧ li2 ∧ li3, with 1 ≤ i ≤ n. A

k-existential QBF formula Φ is a QBF formula where n = k and Q1 = ∃.
Given a sequence of m k-existential QBF formulas Φ1, . . . ,Φm, with k being even

and greater than or equal to 2, and such that if Φj is unsatisfiable then also Φj+1 is

unsatisfiable, where 1 ≤ j < m, deciding whether v(Φ1, . . . ,Φm) = max{j | 1 ≤ j ≤
m ∧ Φj is satisfiable} is odd is Θk+1-complete (Buccafurri et al. 2000).

The above problem can be encoded into an ASPω(Q) program Π such that a lit-

eral, namely odd, appears in some optimal quantified answer set of Π if and only if

v(Φ1, . . . ,Φm) is odd. For simplicity, we introduce notation for some sets of rules that

will be used in the construction of Π. More precisely, given a QBF formula Φ, sat(Φ)

denotes the set of rules of the form satΦ ← li1, l
i
2, l

i
3, where Di = li1 ∧ li2 ∧ li3 is a conjunct

in ϕ; whereas for a set of variables Xi = {xi
1, . . . , x

i
n} in Φ, and an atom a, choice(Xi, a)

denotes the choice rule {xi
1; . . . ;x

i
n} ← a. We are now ready to construct the program Π.

First of all, we observe that all the formulas Φ1, . . . ,Φm have the same alternation

of quantifiers. Thus, there is a one-to-one correspondence between the quantifiers in the

QBF formulas and those in Π. Let Π be of the form □1P1□2P2 . . .□kPk : C : Cw where

□i = ∃ if Qi = ∃ in a formula Φj , otherwise □i = ∀ . The program P1 is of the form

P1 =

{solve(1); . . . ; solve(m)} = 1 ←

unsolved(i) ← solve(j) ∀ j, i ∈ [1, . . . ,m]s.t. i > j
odd ← solve(j) ∀j ∈ [1, . . . ,m]s.t. j is odd

choice(Xj
1 , solve(j)) ∀1 ≤ j ≤ m

 ,

while, for each 2 ≤ i ≤ k, the program Pi is of the form

Pi =
{

choice(Xj
i , solve(j)) ∀1 ≤ j ≤ m

}
,

where each Xj
i denotes the set of variables appearing in the scope of the i-th quantifier

of the j-th QBF formula Φj . Finally, the programs C and Cw are of the form

C =

{
sat(Φj) ∀1 ≤ j ≤ m

← solve(j), ∼satΦj
∀1 ≤ j ≤ m

}
Cw =

{
←w unsolved(i) [1@1, i] ∀1 ≤ i ≤ m

}
.

Intuitively, the first choice rule in P1 is used to guess one QBF formula, say Φj , among

the m input ones, for which we want to verify the satisfiability. The guessed formula

is encoded with the unary predicate solve, whereas, all the following formulas Φi, with

i > j, are marked as unsolved by means of the unary predicate unsolved.

Then, P1 contains different rules of the form odd ← solve(j) for each odd index j

in [1,m]. Thus the literal odd is derived whenever a QBF formula Φj in the sequence

Φ1, . . . ,Φm is selected (i.e. solve(j) is true) and j is odd. The remaining part of P1 shares

the same working principle of the following subprograms Pi, with i ≥ 2. More precisely,

for each QBF formula Φj in the sequence Φ1, . . . ,Φm, they contain a choice rule over

the set of variables quantified by the i-th quantifier of Φj . Note that the atom solve(j)

in the body of these choice rules guarantees that only one gets activated, and so the

activated choice rule guesses a truth assignment for the variables in the i-th quantifier

of Φj . Similarly, the constraint program C contains, for each QBF formula Φj in the

sequence Φ1, . . . ,Φm, (i) a set of rules that derives an atom satϕj
whenever the truth

assignment guessed by the previous subprograms satisfies ϕj , and (ii) a strong constraint

imposing that is not possible that we selected the formula Φj (i.e. solve(j) is true) and ϕj

is violated (i.e. satΦj is false). Thus, there exists a quantified answer set of Π if and only if

there exists a formula Φj in the sequence Φ1, . . . ,Φm such that Φj is satisfiable. Since the

18

program Cw contains the set of weak constraints of the form ←w unsolved(j) [1@1, j]

for each j ∈ [1, . . . ,m], the cost of each quantified answer set is given by the index j

of the selected formula. Thus, by minimizing the number of unsolved formulas we are

maximizing the index of the satisfiable formula Φj . Thus, an optimal quantified answer

set corresponds to a witness of coherence for a formula Φj , s.t. for each Φj′ , with j′ > j,

Φj′ is unsatisfiable. By construction odd is derived whenever j is odd and so the hardness

follows.

(Membership) According to Theorem 3 of Amendola et al. (2019), we know that the

coherence of an existential plain alternating program with n quantifiers falls within the

complexity class ΣP
n -complete. By following an observation employed in the proofs by

Buccafurri et al. (2000), the cost of an optimal solution can be obtained by binary

search that terminates in a logarithmic, in the value of the maximum cost, number

of calls to an oracle in ΣP
n that checks whether a quantified answer set with a lower

cost with respect to the current estimate of the optimum exists. Once the cost of an

optimal solution is determined, one more call to the oracle (for an appropriately modified

instance), allows one to decide the existence of an optimal solution containing a. Since

each weak constraint has the same weight and the same level, then we can consider as

the maximum cost the number of weak constraint violations. Thus, the number of oracle

calls is at most logarithmic in the size of the problem and the membership follows.

References

Amendola, G., Berei, T., Mazzotta, G., and Ricca, F. 2024. Unit testing in ASP revisited:
Language and test-driven development environment. CoRR, abs/2401.02153.

Amendola, G., Ricca, F., and Truszczynski, M. 2019. Beyond NP: quantifying over answer
sets. Theory Pract. Log. Program., 19, 5-6, 705–721.

Buccafurri, F., Leone, N., and Rullo, P. 2000. Enhancing disjunctive datalog by con-
straints. TKDE, 12, 5, 845–860.

Eiter, T. and Gottlob, G. 1995. The complexity of logic-based abduction. J. ACM, 42, 1,
3–42.

Fandinno, J., Laferrière, F., Romero, J., Schaub, T., and Son, T. C. 2021. Planning
with incomplete information in quantified answer set programming. TPLP, 21, 5, 663–679.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman.

Krentel, M. W. 1992. Generalizations of opt P to the polynomial hierarchy. Theor. Comput.
Sci., 97, 2, 183–198.

Lifschitz, V. and Turner, H. Splitting a logic program. In Proc. of ICLP 1994 1994, pp.
23–37.

Papadimitriou, C. H. 1994. Computational complexity. Addison-Wesley.

Simons, P., Niemelä, I., and Soininen, T. 2002. Extending and implementing the stable
model semantics. Artif. Intell., 138, 1-2, 181–234.

Stockmeyer, L. J. 1976. The polynomial-time hierarchy. Theor. Comput. Sci., 3, 1, 1–22.

Wagner, K. W. 1990. Bounded query classes. SIAM J. Comput., 19, 5, 833–846.

