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1 Introduction

The purpose of this document is to provide complete proofs for all non-trivial claims. It

is divided into two main sections. The first of which concerns the completion and loop

formulas, while the second concerns the related sets of nogoods.

2 Completion and Loop Formulas Proofs

Throughout this section we routinely need to consider MKNF interpretations, and the

K-interpretations which they induce or extend from. In order to quickly reason about the

properties of one, based on the properties of the other, we rely on the following lemma.

It provides alternative characterizations of what it means for a K-interpretation to be

saturated. The reason saturated K-interpretations are of interest, is largely due to char-

acterization 3. As it means that all MKNF models induce saturated K-interpretations.

Lemma 1

The following are equivalent for a K-interpretation Î

1. Î is saturated.

2. Î extends to an MKNF interpretation M which induces Î.

3. Î is induced by some MKNF interpretation M such that M |=MKNF Kπ(O).

4. Î |= Osatr(Î).

5. OBO,Î ̸|= a for every atom a ∈ (KA(K) ∪ {⊥}) \ Î.

Proof

1 to 2: Since Î is saturated,

OBO,Î ̸|= ⊥ (1)

and ∧
a∈KA(K)

(
(OBO,Î |= a) ⊃ (a ∈ Î)

)
. (2)

From (1) there exists a first-order interpretation I, such that I |= OBO,Î and I ̸|= ⊥,

therefore M = {J | J |= OBO,Î} is a non-empty set of first-order interpretations and

thus an MKNF interpretation. Clearly, Î extends to M .
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Now we show that M induces Î. By construction ∀I ∈M, I |= OBO,Î consequently

∀I ∈M,∀a ∈ Î , I |= a (3)

and therefore

∀a ∈ Î ,M |=MKNF Ka. (4)

Assume M |=MKNF Ka for some a ∈ KA(K) \ Î. From the construction of M this

means that for any first-order interpretation I which satisifes OBO,Î , I |= a. Equivalently,

∃a ∈ KA(K) \ Î , OBO,Î |= a. (5)

This is contradictory with (2) so it must be the case that

∀a ∈ KA(K) \ Î ,M ̸|=MKNF Ka. (6)

Combining (4) and (6) gives that

Î = {a ∈ KA(K) | M |=MKNF Ka} (7)

and it follows that M induces Î.

2 to 3: Since Î extends to M ,

M = {I | I |= OBO,Î} (8)

From this,

∀I ∈M, I |=
(
π(O) ∧

∧
a∈KA(K)

I |= a
)

(9)

consequently ∀I ∈M, I |= π(O), and therefore

M |=MKNF Kπ(O). (10)

Î is induced by M , thereby there is an MKNF interpretation M such that M |=MKNF

Kπ(O), which induces Î.

3 to 4: Since M |=MKNF Kπ(O),

∀I ∈M, I |= π(O). (11)

Since M induces Î, Î = {a ∈ KA(K) | M |=MKNF Ka}, or equivalently

Î = {a ∈ KA(K) | ∀I ∈M, I |= a}. (12)

This means that

∀a ̸∈ Î , ∃I ∈M s.t. I ̸|= a. (13)

(12) also means that

∀I ∈M, I |=
∧
a∈Î

a. (14)

By (11) and (14),

∀I ∈M, I |= π(O) ∧
∧
a∈Î

a (15)
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equivalently,

∀I ∈M, I |= OBO,Î . (16)

By (13) and (16)

∀a ∈ (KA(K) \ Î),∃I ∈M s.t. I |= OBO,Î ∧ I ̸|= a (17)

consequently

∀a ∈ (KA(K) \ Î), OBO,Î ̸|= a. (18)

Since M is an MKNF interpretation, it contains at least one first-order interpretation I,

by (16) this means there is at least one first-order interpretation I such that I |= OBO,Î .

Therefore

OBO,Î ̸|= ⊥. (19)

From (18) and (19),

{a ∈ KA(K) ∪ {⊥} | OBO,Î |= a} ⊆ Î (20)

it directly follows that

Î |= Osatr(Î). (21)

4 to 5: Here we will prove the contra-positive, if ∃a ∈ (KA(K) ∪ {⊥}) \ Î such that

OBO,Î |= a then Î ̸|= Osatr(Î).

As a ∈ (KA(K) ∪ {⊥}) \ Î, clearly a ̸∈ Î, Therefore

Î ̸|= a. (22)

Furthermore since a ∈ (KA(K) ∪ {⊥}) and OBO,Î |= a,

Î ̸|= Osatr(Î). (23)

5 to 1: KA(K) contains only atoms a which appear within as Ka or nota within

π(P), ⊥ will never appear within π(P), so ⊥ ̸∈ KA(K), thereby ⊥ ̸∈ Î. This combined

with the fact that OBO,Î ̸|= a for any a ∈ (KA(K) ∪ {⊥}) \ Î, means that,

OBO,Î ̸|= ⊥. (24)

Since OBO,Î ̸|= a for any atom a ∈ (KA(K) ∪ {⊥}) \ Î, for an atom a ∈ KA(K) such

that OBO,Î |= a, a ̸∈ (KA(K) ∪ {⊥}) \ Î. Equivalently since Î ⊆ KA(K),∧
a∈KA(K)

(
(OBO,Î |= a) ⊃ (a ∈ Î)

)
. (25)

From (24) and (25), Î is saturated.

Now we bring our attention to Theorem 1, with regard to the connection between

K-interpretations satisfying the completion and those induced by MKNF models of tight

HMKNF-KBs. In order to do so we start with weaker claims, which build upon each

other.
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Lemma 2

For any K-interpretation of an HMKNF-KB K = (P,O), if Î |= Prule ∧ Osatr(Î), then

it extends to an MKNF interpretation M , such that M |=MKNF π(K).

Proof

AsM extends from Î,M = {I | I |= OBO,Î}. Consequently, ∀I ∈M, I |= π(O) therefore

M |=MKNF Kπ(O). (26)

It remains to show that M |=MKNF π(P). From Î |= Prule we have that

Î |=
∧
r∈P

(
Body(r) ⊃

∨
head(r)

)
. (27)

Therefore for all rules r ∈ P Î |=
∨
head(r) or Î |= Body(r). Equivalently for all rules

r ∈ P

(∃h ∈ head(r), h ∈ Î),

or (28)

(∃p ∈ body+(r), p ̸∈ Î , or

∃n ∈ body−(r), n ∈ Î).

From the fact that M induces Î, ∀a ∈ Î ,M |=MKNF Ka, and ∀b ∈ KA(K), b ̸∈
Î ,M ̸|=MKNF Kb. As a consequence, for all rules r ∈ P,

∀r ∈ P,
(∃h ∈ head(r),M |=MKNF Kh),

or (29)

(∃p ∈ body+(r),M ̸|=MKNF Kp, or

∃n ∈ body−(r),M |=MKNF Kn)

Equivalently, since (M ̸|=MKNF Kϕ) ≡ (M |=MKNF notϕ),

∀r ∈ P,M |=MKNF π(r). (30)

Consequently, M |=MKNF π(P). In combination with (26), M |=MKNF π(K).

The following proposition, effectively extends Lemma 2 with another direction.

Proposition 1

For any K-interpretation Î of an HMKNF-KB K = (P,O), Î |= Prule ∧ Osatr(Î), if and

only if, there exists an MKNF interpretation M , such that M induces Î and M |=MKNF

π(K).

Proof

(⇒) From Lemma 2, Î extends to an MKNF model M , such that M |=MKNF π(K). The

fact that Î |= Osatr(Î) along with Lemma 1, means that M induces Î as well.

(⇐) For a ground MKNF knowledge base all rules in π(P) are of the form

π(r) = (Kh0 ∨ ... ∨Khz) ⊂ (Kp0 ∧ · · · ∧Kpj ∧ notn0 ∧ ... ∧ notnk).
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M |=MKNF π(K) by assumption and thereby M |=MKNF π(P), so

∀r ∈ P,M |=MKNF π(r). (31)

Equivalently, since M ̸|=MKNF Kϕ ≡M |=MKNF notϕ, for all rules r ∈ P,

(∃h ∈ head(r),M |=MKNF Kh),

or (32)

(∃p ∈ body+(r),M ̸|=MKNF Kp, or

∃n ∈ body−(r),M |=MKNF Kn1).

Î is induced by M so by defintion,

Î = {a ∈ KA(K) | M |=MKNF Ka}. (33)

As ∀r ∈ P, (head(r) ∪ body+(r) ∪ body−(r)) ⊆ KA(K), this means that ∀r ∈ P,

(∃h ∈ head(r), h ∈ Î),

or (34)

(∃p ∈ body+(r), p ̸∈ Î , or

∃n ∈ body−(r), n ∈ Î).

As a consequence,

∀r ∈ P, Î |=
∨
head(r) ∨

(
Î ̸|=

∧
body+(r) ∨ Î |=

∨
body−(r)

)
. (35)

This can be simplified further using the shorthand ‘Body(r) =
∧
body+(r)∧¬

∨
body−(r)’

to

Î |=
∧
r∈P

(
Body(r) ⊃

∨
head(r)

)
, (36)

therefore Î |= Prule. Î is induced by M and M |=MKNF π(K), so by Lemma 1, Î |=
Osatr(Î). It is clear then, that Î |= Prule ∧ Osatr(Î).

The gap between this claim and Theorem 1, is that Proposition 1 only requires that

M |=MKNF π(K), but not that M is a model. For M to be a model, it must be that

there is no MKNF interpretation M ′ ⊃M , for which ∀I ′ ∈M ′, (I ′,M ′,M) |= π(K). We

reason about the existence of M ′, by considering the MKNF interpretation Î ′ it induces,

in particular how it differs from Î. In the following lemma we show Î ′ is a strict subset

of Î.

Lemma 3

Let Î be a saturated K-interpretation of an HMKNF-KB K = (P,O), which extends to

an MKNF interpretation M . If M |=MKNF π(K) and there is an MKNF interpretation

M ′ ⊃ M such that ∀I ′ ∈ M ′, (I ′,M ′,M) |= π(K), then M ′ induces a K-interpretation

Î ′ such that Î ′ ⊂ Î.

Proof

Proof by contradiction. If M ′ induces Î for any first-order interpretation I ′ ∈ M ′,

{a | I ′ |= a} ⊇ Î. Also it follows from the fact that ∀I ′ ∈ M ′, (I ′,M ′,M) |= π(K)



6 Riley Kinahan, Spencer Killen, Kevin Wan, and Jia-Huai You

that for any I ′ ∈ M ′, I ′ |= π(O). Consequently for any I ′ ∈ M ′, I ′ |= OBO,Î . This

implies it must be a subset of the MKNF interpretation which Î extends to therefore

M ′ ⊆M , This is a contradiction of the fact that M ′ ⊃M , therefore M ′ induces Î ′ such

that Î ′ ̸= Î. Furthermore since M ′ ⊃M , Î ′ ⊂ Î.

As aforementioned we have interest in showing that given two MKNF interpretations

M and M ′ of an HMKNF-KB K, which induce the K-interpretations Î and Î ′, that

∀I ′ ∈ M ′, (I ′,M ′,M) ̸|= π(K). To do so we can consider the set of atoms (Î \ Î ′). The
general strategy is to show that Î ′ is sufficient to imply some atom p ∈ (Î \ Î ′), in order

to reason that ∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K). Under the assumptions that Î |= Kcomp(Î)

and M |=MKNF π(K), we do so by analyzing the section of the dependency graph G(K)

which (Î \ Î ′) exists within. The approach is to take any individual atom g ∈ (Î \ Î ′)
and restrict the graph to only those atoms which g can reach within (Î \ Î ′). We denote

this subgraph as G. If G is acyclic then the following lemma applies. It relies on the fact

that there is some atom p ∈ (Î \ Î ′) which has no outgoing edges within G, and the

restrictions imposed on the full graph G(K) by the fact that Î |= Kcomp(Î). In doing so

it is able to show p is implied by the knowledge contained within Î ′, and thereby that

∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K).

Lemma 4

For two MKNF interpretations M and M ′ of the knowledge base K = (P,O), which

induce the K-interpretations Î and Î ′ respectively. Let G be the subgraph of the depen-

dency graph G(K), containing only the atoms within (Î \ Î ′) reachable in G(K) from

some atom g ∈ (Î \ Î ′). If M ′ ⊃ M , (Î \ Î ′) ̸= ∅, Î |= Kcomp(Î), M |=MKNF π(K) and G

is acyclic, then ∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K).

Proof

As Î |= Kcomp(Î), Î |= Ksup(Î) and

Î |=
∨
r∈P,

a∈head(r)

(
Body(r) ∧

∧
p∈head(r)\{a}

¬p
)
. (37)

for all a ∈ KA(K) such such that OBO,Î\{a} ̸|= a. As G is acyclic, there is at least one

atom a ∈ G which has no outgoing edges. By the fact that all atoms in G are from (Î \ Î ′),
Î |= a. As a ∈ KA(K) either

OBO,Î\{a} |= a

or (38)

Î |=
∨
r∈P,

a∈head(r)

(
Body(r) ∧

∧
p∈head(r)\{a}

¬p
)
. (39)

Case 1:

OBO,Î\{a} |= a. (40)
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Since M |=MKNF π(K), Lemma 1 tells us that Î is saturated, meaning that OBO,Î ̸|= ⊥.

Consequently,

∀S ⊆ Î , OBO,S ̸|= ⊥. (41)

From (40) and (41)

∃S ⊆ (Î \ {a}) such that OBO,S |= a, (42)

a ̸∈ S,OBO,S ̸|= ⊥, and (43)

∀S′ ⊆ S,OBO,S′ ̸|= a. (44)

Therefore there is an edge in G(K) from a to each atom in S. As a has no outgoing edges

within (Î \ Î ′), this means that S ⊆ Î ′. Therefore

OBO,Î′ |= a. (45)

By defintion this means that for any first-order interpretation I such that I |=
OBO,Î′ , I |= a. Conversely, M ′ must contain at least one first-order interpretation I ′

such that I ′ ̸|= a, since it induces Î ′ and a ̸∈ Î ′. Therefore

∃I ′ ∈M ′, I ′ ̸|= OBO,Î′ (46)

As M ′ induces Î ′, ∀I ′ ∈ M ′, I ′ |=
∧

p∈Î′ p, therefore (46) implies that ∃I ′ ∈ M ′, I ′ ̸|=
π(O). Consequently,

M ′ ̸|=MKNF Kπ(O). (47)

This implies that ∀I ′ ∈M ′, (I ′,M ′,M) ̸|= Kπ(O), and thereby

∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K). (48)

Case 2:

Î |=
∨
r∈P,

a∈head(r)

(
Body(r) ∧

∧
p∈head(r)\{a}

¬p
)
. (49)

For the above to be true, there must be a rule r ∈ P such that,

a ∈ head(r), (50)

head(r) \ {a} ∩ Î = ∅, (51)

body+(r) ⊆ Î, and (52)

body−(r) ∩ Î = ∅. (53)

From the fact that a has no outgoing edges in G, along with (50) proves body+(r) ∩
(Î \ Î ′) = ∅. This and (52) mean that

body+(r) ⊆ Î ′. (54)

As a ∈ (Î \ Î ′), a ̸∈ Î ′ and since M ′ induces Î ′ this means that M ′ ̸|=MKNF Ka,

consequently

∀I ′ ∈M ′, (I ′,M ′,M) ̸|= Ka. (55)
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From (51) we can also derive that

∀h ∈ head(r), s.t. h ̸= a, h ̸∈ Î (56)

therefore ∀h ∈ head(r), s.t. h ̸= a,M ̸|=MKNF Kh which together with (55) implies

∀I ′ ∈M ′, (I ′,M ′,M) ̸|= (Kh0 ∧ · · · ∧Khi). (57)

From (52), M |=MKNF (Kp0 ∧ · · · ∧Kpj) which implies that

∀I ′ ∈M ′, (I ′,M ′,M) |= (Kp0 ∧ · · · ∧Kpj). (58)

Similarly from (53), M |=MKNF (notn0 ∧ ... ∧ notnk) implying that

∀I ′ ∈M ′, (I ′,M ′,M) |= (notn0 ∧ ... ∧ notnk). (59)

Clearly from (57) (58) and (59),

∀I ′ ∈M, (I ′,M ′,M) ̸|=
(
(Kh0 ∧ · · · ∧Khi) ⊃ (60)

(Kp0 ∧ · · · ∧Kpj ∧ notn0 ∧ ... ∧ notnk)
)

(61)

more simply ∀I ′ ∈ M ′, (I ′,M ′,M) ̸|= π(r). Therefore ∀I ′ ∈ M ′, (I ′,M ′,M) ̸|= π(P) and

thereby

∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K). (62)

In either case the conclusion holds, so the lemma is proven.

We are now ready to prove Theorem 1. The first direction is massively aided by the

previous lemmas, while the other is relatively straightforward.

Theorem 1

For any K-interpretation Î, of a tight HMKNF-KB K = (P,O), Î |= Kcomp(Î), if and

only if, K has an MKNF model M , such that M induces Î.

Proof

(⇒) Let M be the interpretation which Î extends to. As Î |= Prule∧Osatr(Î), Lemma 2,

implies that M |=MKNF π(K). Also, since Î |= Osatr(Î), by Lemma 1, M induces Î.

It remains to show that there is no MKNF interpretation M ′ ⊃ M such that

∀I ′ ∈ M ′, (I ′,M ′,M) |= π(K), therefore we let M ′ be any MKNF interpretation

such that M ′ ⊃ M . Take Î ′ to be the K-interpretation that M ′ induces, and assume

∀I ′ ∈M ′, (I ′,M ′,M) |= π(K). By Lemma 3 Î ′ ⊂ Î.

Let G be the subgraph of the dependency graph G(K) containing only atoms in (Î \ Î ′)
which are reachable from any atom g ∈ (Î \ Î ′). Clearly by the assumption that the

knowledge base is tight, G(K) is acyclic, and so is G. Therefore by Lemma 4, ∀I ′ ∈
M ′, (I ′,M ′,M) ̸|= π(K). Consequently M is a model of π(K), which induces Î.

(⇐) M |=MKNF π(K) so by Proposition 1, Î |= Prule ∧ Osatr(Î).

Let a ∈ KA(K), be any atom such that OBO,Î\{a} ̸|= a clearly

{a ∈ KA(K) | OBO,Î\{a} |= a} ⊆ {a ∈ KA(K) | OBO,Î |= a} (63)

therefore since Î is saturated, Î\{a} ⊆ {a ∈ KA(K) | OBO,Î\{a} |= a} ⊆ Î. Consequently,

{a ∈ KA(K) | OBO,Î\{a} |= a} = Î \ {a}. (64)
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therefore Î \ {a} is saturated. Let M ′ be the MKNF model which induces Î \ {a}. As

Î \ {a} is saturated, by Lemma 1 M ′ |=MKNF Kπ(O), and ∀I ′ ∈ M ′, I ′ |= π(O). M

is a model so it is also the case that ∀I ∈ M, I |= π(O). Let M ′′ be M ∪M ′, clearly

M ′′ |=MKNF Kπ(O). As π(O) is a standard first order formula with no MKNF modal

operators

∀I ′′ ∈M ′′, (I ′′,M ′′,M) |= Kπ(O). (65)

Conversely, since M is a model by assumption, and M ′′ ⊃M ,

∀I ′′ ∈M ′′, (I ′′,M ′′,M) ̸|= π(K). (66)

Consequently,

∀I ′′ ∈M ′′, (I ′′,M ′′,M) ̸|= π(P) (67)

equivalently there is some rule r in P such that ∀I ′′ ∈ M ′′, (I ′′,M ′′,M) ̸|= π(r). This

means that

∀I ′′ ∈M ′′, (I ′′,M ′′,M) |= (Kp0 ∧ · · · ∧Kpj ∧ notn0 ∧ ... ∧ notnk) (68)

but

∀I ′′ ∈M ′′, (I ′′,M ′′,M) ̸|= (Kh0 ∨ ... ∨Khz). (69)

As M ⊂M ′′,

∀I ∈M, (I,M,M) |= (Kp0 ∧ · · · ∧Kpj ∧ notn0 ∧ ... ∧ notnk) (70)

therefore as M induces Î,

Î |= Body(r). (71)

Also since M |=MKNF π(r),

M |=MKNF (Kh0 ∨ ... ∨Khz). (72)

Consequently, ∃h ∈ head(r) such that h ∈ Î. Conversely, from (69),

M ′′ ̸|=MKNF (Kh0 ∨ ... ∨Khz), (73)

and M ′′ induces Î ∩ (Î \ {a}) = Î \ {a}, therefore ∄h ∈ head(r) such that h ∈ (Î \ {a}).
This means that a is the only atom in head(r) and Î. As a result

Î |=
∧

p∈head(r)\{a}

¬p. (74)

It follows from (71) and (74) that

Î |=
∨
r∈P,

a∈head(r)

(
Body(r) ∧

∧
p∈head(r)\{a}

¬p
)
. (75)

As this is the case for any arbitrary atom a ∈ KA(K) such that OBO,Î\{a} ̸|= a, Î |=
Ksup(Î).

We now bring our attention to proving Theorem 2. The previous theorem relied on an

assumption that there exists a subgraph G of G(K), containing all atoms within (Î \ Î ′)
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reachable from some atom g ∈ (Î \ Î ′), which is acyclic. This assumption is sure to hold

in the case where K is tight, as G(K) itself is acyclic, however it cannot be relied on in

general. A better approach when G(K) is not acyclic, is to find a loop L, whose atoms

reach no other loop which is not its subset. The following lemma states that such a loop

must always exist.

Lemma 5

Within a (finite) dependency graph with at least one loop, there is a loop L, from which

no loop L′ ⊈ L can be reached via any atom l ∈ L.

The proof for this lemma is ommitted as it is both intuitive and well established.

Given a loop L which reaches no other loops which are not its subset, we can take a

similar approach to the case of an acyclic graph. In the simple case, there exists some

atom h ̸∈ L which L reaches, in which case we can take H to be the subgraph of G(K)

containing only atoms from (Î\Î ′) reachable from h.H will be acyclic so Lemma 4 directly

applies. Otherwise the set of atoms reachable from any atom within L is simply L. Under

the additional assumption that Î |= Kloop(Î), we can show that some atom within L is

implied by the knowledge of Î ′. Once again showing that ∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K).

This result is characterized by the following lemma.

Lemma 6

For two MKNF interpretations M and M ′ of the knowledge base K = (P,O), which

induce the K-interpretations Î and Î ′ respectively. Let G be any subgraph of the de-

pendency graph G(K), containing only the atoms within (Î \ Î ′) reachable in G(K) from

some atom g ∈ (Î \ Î ′). If M ′ ⊃ M , M |=MKNF π(K), (Î \ Î ′) ̸= ∅, Î |= Kloop(Î), and G

contains only atoms from a single loop L, then ∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K).

Proof

Since L is a loop within G, which contains only atoms in (Î \ Î ′), L ⊆ Î, thereby

Î |=
∨
L. (76)

Since Î |= Kloop(Î) and L ∈ Loops(K) this means that either

OBO,Î\L |=
∨
L

or (77)

Î |=
∨
r∈P

head(r)∩L̸=∅
body+(r)∩L=∅

(
Body(r) ∧

∧
a∈head(r)\L

¬a
)
.

Case 1:

OBO,Î\L |=
∨
L (78)

Since M |=MKNF π(K), Lemma 1 tells us that Î is saturated, meaning that OBO,Î ̸|= ⊥.

Consequently,

∀S ⊆ Î , OBO,S ̸|= ⊥. (79)
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From (78) and (79)

∃l ∈ L,∃S ⊆ (Î \ L) such that OBO,S |= l, (80)

l ̸∈ S,OBO,S ̸|= ⊥, and (81)

∀S′ ⊆ S,OBO,S′ ̸|= l. (82)

For this l and S there is an edge in G(K) from l to each atom in S. As l has no outgoing

edges in (Î \ Î ′) \L meaning that S ⊆ (Î ′ ∪L). Of course since S ⊆ (Î \L), it is actually
the case that S ⊆ Î ′. Therefore

OBO,Î′ |= l. (83)

By defintion this means that for any first-order interpretation I such that I |=
OBO,Î′ , I |= l. Conversely, M ′ must contain at least one first-order interpretation I ′

such that I ′ ̸|= l, since it induces Î ′ and a ̸∈ Î ′. Therefore

∃I ′ ∈M ′, I ′ ̸|= OBO,Î′ (84)

As M ′ induces Î ′, ∀I ′ ∈ M ′, I ′ |=
∧

p∈Î′ p, therefore (84) implies that ∃I ′ ∈ M ′, I ′ ̸|=
π(O). Consequently,

M ′ ̸|=MKNF Kπ(O). (85)

This implies that ∀I ′ ∈M ′, (I ′,M ′,M) ̸|= Kπ(O), and thereby

∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K). (86)

Case 2:

Î |=
∨
r∈P

head(r)∩L ̸=∅
body+(r)∩L=∅

(
Body(r) ∧

∧
a∈head(r)\L

¬a
)
. (87)

For the above to be true, there must be a rule r ∈ P such that,

head(r) ∩ L ̸= ∅, (88)

body+(r) ∩ L = ∅ (89)

(head(r) \ L) ∩ Î = ∅, (90)

body+(r) ⊆ Î, and (91)

body−(r) ∩ Î = ∅. (92)

From the fact that no atom outside L in G is reachable from any atom in L, along with

(88), body+(r) ∩ ((Î \ Î ′) \L) = ∅. Combined with (91) this means body+(r) ⊆ Î ′ ∪L, of
course due to (89)

body+(r) ⊆ Î ′. (93)

As L ⊆ (Î \ Î ′), L ∩ Î ′ = ∅, and since M ′ induces Î ′ this means that for each l ∈ L,

M ′ ̸|=MKNF Kl. Consequently,

∀l ∈ L,∀I ′ ∈M ′, (I ′,M ′,M) ̸|= Kl. (94)
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From (90) we can also derive that

∀h ∈ head(r), s.t. h ̸= a, h ̸∈ Î (95)

therefore ∀h ∈ head(r), s.t. h ̸∈ L,M ̸|=MKNF Kh which together with (94) implies

∀I ′ ∈M ′, (I ′,M ′,M) ̸|= (Kh0 ∧ · · · ∧Khi). (96)

From (91), M |=MKNF (Kp0 ∧ · · · ∧Kpj) which implies that

∀I ′ ∈M ′, (I ′,M ′,M) |= (Kp0 ∧ · · · ∧Kpj). (97)

Similarly from (92), M |=MKNF (notn0 ∧ ... ∧ notnk) implying that

∀I ′ ∈M ′, (I ′,M ′,M) |= (notn0 ∧ ... ∧ notnk). (98)

Clearly from (96) (97) and (98),

∀I ′ ∈M, (I ′,M ′,M) ̸|=
(
(Kh0 ∧ · · · ∧Khi) ⊃ (99)

(Kp0 ∧ · · · ∧Kpj ∧ notn0 ∧ ... ∧ notnk)
)

(100)

more simply ∀I ′ ∈ M ′, (I ′,M ′,M) ̸|= π(r). Therefore ∀I ′ ∈ M ′, (I ′,M ′,M) ̸|= π(P) and

thereby

∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K). (101)

In both cases the conclusion holds, so the lemma is proven.

We are now able to prove Theorem 2. As with the Theorem 1, the first direction relies

heavily on the previous lemmas. The other direction is relatively straightforward.

Theorem 2

For any K-interpretation Î, of an HMKNF-KB K = (P,O), Î |= Kcomp(Î) ∧ Kloop(Î), if

and only if, K has an MKNF model M such that M induces Î.

Proof

(⇒) Let M be the interpretation which Î extends to. As Î |= Prule∧Osatr(Î), Lemma 2,

implies that M |=MKNF π(K). Also, since Î |= Osatr(Î), by Lemma 1, M induces Î.

It remains to show that there is no MKNF interpretation M ′ ⊃ M such that

∀I ′ ∈ M ′, (I ′,M ′,M) |= π(K), therefore we let M ′ be any MKNF interpretation

such that M ′ ⊃ M . Take Î ′ to be the K-interpretation that M ′ induces, and assume

∀I ′ ∈M ′, (I ′,M ′,M) |= π(K). By Lemma 3 Î ′ ⊂ Î.

Let G be the subgraph of the dependency graph G(K) containing only atoms in (Î \ Î ′)
which are reachable from any atom g ∈ (Î \ Î ′). Either G is acyclic or it is not.

Case 1: If G is acyclic, by Lemma 4, ∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K).

Case 2: If G is not acyclic, then (Î \ Î ′) must contain at least one loop. Take L to be

a loop in G such that no other loop L′ ⊈ L in G is reachable from any atom in l ∈ L.

Such a loop exists by Lemma 5.

Case 2.1: If there is an atom h ∈ (Î \ Î ′) such that h ̸∈ L and which is reachable

from L. Then take H to be the subgraph of G(K) reachable from h, and containing only

atoms in (Î \ Î ′). As h is reachable from L and is not in L it cannot be part of a loop,

thereby H is acyclic. Consequently by Lemma 4, ∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K).
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Case 2.2: Otherwise the set of atoms reachable by L within (Î \ Î ′) is L. By Lemma 6

this means that ∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K).

As in all cases ∀I ′ ∈M ′, (I ′,M ′,M) ̸|= π(K). M is an MKNF model which induces Î.

(⇐) Assume that there is an MKNF model M of π(K), such that M induces Î. Clearly

by Theorem 1,

Î |= Kcomp(Î). (102)

Assume that there exists L ∈ Loops(K) such that ψ(L) ∈ Kloop(Î) and Î ̸|= ψ(L).

Clearly Î |= ψ(L) for any loop L such that Î ∩ L = ∅. Therefore

Î ∩ L ̸= ∅. (103)

It is also clear that OBO,I\L ̸|=
∨
L, since ψ(L) ∈ Kloop(Î). Due to the fact that Î is

saturated, OBO,I\L ̸|= p for any atom p ∈ (KA(K)∪{⊥})\Î, it follows that OBO,I\L ̸|= p

for any atom p ∈ (KA(K)∪ {⊥} \ (Î \L)). By Lemma 1 (Î \L) is saturated. As a result

for any clause ψ(L) ∈ Kloop(Î),

(Î \ L) is a saturated K-interpretation. (104)

Consequently by Lemma 1, (Î \ L) is induced by some MKNF interpretation M ′ such

that M ′ |=MKNF Kπ(O). Let M ′′ = M ∪ M ′, since all interpretations in M and M ′

satisfy π(O), M ′′ |=MKNF Kπ(O). As π(O) has no atoms under the ‘not’ quantifer,

∀I ′′ ∈M ′′, (I,M ′′,M) |= Kπ(O). (105)

In contrast, since M is an MKNF model of π(K) and M ⊂M ′′,

∀I ′′ ∈M ′′, (I,M ′′,M) ̸|= π(K). (106)

It follows that ∀I ′′ ∈ M ′′, (I,M ′′,M) ̸|= π(P). Of course this means that there is some

rule r ∈ P such that ∀I ′′ ∈M ′′, (I,M ′′,M) ̸|= π(r). Therefore

∀I ′′ ∈M ′′, (I,M ′′,M) |= Kp0 ∧ · · · ∧Kpj ∧ notn0 ∧ ... ∧ notnk (107)

but

∀I ′′ ∈M ′′, (I,M ′′,M) ̸|= Kh0 ∧ · · · ∧Khi (108)

where head(r) = {h0, . . . , hi}, body+(r) = {p0, . . . , pj}, and body−(r) = {n0, . . . , nk}. It
follows that

M ′′ |=MKNF Kp0 ∧ · · · ∧Kpj (109)

and that

M ′′ ̸|=MKNF Kh0 ∧ · · · ∧Khi. (110)

M induces Î andM ′ induces Î \L, thereforeM ′′ induces Î ∩ (Î \L), aka Î \L. This along
with (109) means that,

(Î \ L) |=
∧
body+(r) (111)

and similarly from (110),

(Î \ L) ̸|=
∨
head(r). (112)
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Of course since Î ⊇ (Î \ L), it is also true that

M ′′ ⊇M , so by (107),

M |=MKNF Kp0 ∧ · · · ∧Kpj ∧ notn0 ∧ ... ∧ notnk. (113)

As M is a model this also means that

M |=MKNF Kh0 ∧ · · · ∧Khi. (114)

Consequently,

Î |=
∧
body+(r), (115)

Î |=
∧
body−(r), and (116)

Î |=
∨
head(r). (117)

It is clear from (115) and (116) that

Î |= Body(r). (118)

From (112) and (117)

Î |=
∧

p∈head(r)\L

¬p, and (119)

head(r) ∩ L ̸= ∅. (120)

Furthermore from (111),

body+(r) ∩ L = ∅. (121)

The combination of (118), (119), (120), and (121), directly imply that Î |= ψ(L), therefore

there can be no loop L ∈ Loops(K) for which ψ(L) ∈ Kcomp(Î) and Î ̸|= ψ(L) as it leads

to a contradiction. Clearly this implies that Î |= Kcomp(Î).

3 Nogood Proofs

The focus of this section is on showing that solutions to our nogoods correspond with K-

interpretations which satisfy our formulas. As is described in Theorem 3 and Theorem 4.

To help us with these goals we first introduce two lemmas, which aid in characterizing

the relationship between a K-interpretation and the assignment it induces.

In order for an assignment to be a solution with respect to a set of nogoods it must be

total. The following lemma shows this to be the case for the assignment induced by any

K-interpretation of an HMKNF-KB, with respect to either relevant sets of nogoods.

Lemma 7

Let Î be a K-interpretation of an HMKNF-KB K = (P,O), then the assignment Î

induces, AÎ
K, is a total assignment for ∆K ∪ {T⊥} and ∆K ∪ ΛK ∪ {T⊥}.

Proof

∆K contains the sets ΦP , ΦO, ΨO, ΓP , and ΓO.

ΦP = {ϕ(r) | r ∈ P} where ϕP(r) = {Fp1, . . . ,Fpt,Tβ(r) | head(r) = {p1, . . . , pt}}.
Clearly ϕP(r)

T = {β(r)} and ϕP(r)
F = {p | p ∈ head(r)}. Consequently ΦT

P =
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{β(r) | r ∈ P} and ΦF
P = {p ∈ head(r) | r ∈ P}. It follows that

var(ΦP) = {β(r) | r ∈ P} ∪ {p ∈ head(r) | r ∈ P}. (122)

ΦO = {ϕO(p) | p ∈ KA(O) ∪ {⊥}} where ϕO(p) = {Fp,TβO(p)}. Clearly ϕO(p)T =

{βO(p)} and ϕO(p)
F = {p}. Consequently ΦT

O = {βO(p) | p ∈ KA(O) ∪ {⊥}}, and
ΦF

O = {p | p ∈ KA(O) ∪ {⊥}}. It follows that

var(ΦO) = {βO(p) | p ∈ KA(O) ∪ {⊥}} ∪KA(O) ∪ {⊥}. (123)

ΨK = {ψK(p) | p ∈ KA(K)} where ψK(p) = {Tp}∪{FβP(r, p) | r ∈ P, p ∈ head(r)}∪
{FβO(p)} if p ∈ KA(O) and ψK = ψK(p) = {Tp} ∪ {FβP(r, p) | r ∈ P, p ∈ head(r)}
otherwise. Clearly ψT

K = {p}, ψF
K = {βP(r, p) | r ∈ P, p ∈ head(r)} ∪ {βO(p)} for all

p ∈ KA(O), and ψF
K = {βP(r, p) | r ∈ P, p ∈ head(r)} for all p ∈ KA(K) \ KA(O).

Consequently ΨT
K = KA(K), and ΨF

K = {βP(r, p) | r ∈ P, p ∈ head(r)} ∪ {βO(p) | p ∈
KA(O)}. It follows that

var(ΨK) = KA(K) ∪ {βP(r, p) | r ∈ P, p ∈ head(r)}
∪ {βO(p) | p ∈ KA(O)}. (124)

ΓP =
⋃

β∈{β(r)|r∈P}∪{βP(r,p)|r∈P,p∈head(r)} γ(β) where γP(β) = {{Fβ} ∪ β} ∪
{{Tβ, σ} | σ ∈ β}. It should be clear that for any β ∈ {β(r)|r ∈ P}∪{βP(r, p)|r ∈ P, p ∈
head(r)}, var(γP(β)) ⊆ {KA(K) ∪ {β(r) | r ∈ P} ∪ {β(r, p) | r ∈ P, p ∈ head(r)}}. It
follows that

var(ΓP) ⊆{KA(K) ∪ {β(r) | r ∈ P}
∪ {β(r, p) | r ∈ P, p ∈ head(r)}}. (125)

The entailment nogoods of π(K) are

ΓO =
⋃

p∈KA(O)∪{⊥},S⊆KA(O),
OBO,S\{p}|=p

γ+O(p, S) ∪
⋃

p∈KA(O),S⊆KA(O),
OBO,KA(O)\(S∪{p}) ̸|=p

γ−O(p, S). (126)

where γ+O(p, S) = {FβO(p)} ∪ {Ts | s ∈ S} and γ−O(p, S) = {TβO(p)} ∪ {Fs | s ∈ S}.
Clearly var(γ+O(p, S)) = var(γ−O(p, S)) = {s | s ∈ S} ∪ {βO(p)}. It follows that

var(ΓO) ⊆ KA(O) ∪ {⊥} ∪ {βO(p) | p ∈ KA(O) ∪ {⊥}}} (127)

From (122), (123), (124), (125), (127), and since {p ∈ head(r) | r ∈ P} ⊆ KA(K) and

KA(O) ⊆ KA(K) it directly follows that

var(∆K) = KA(K) ∪ {⊥} ∪ {β(r) | r ∈ P}
∪ {βP(r, p) | r ∈ P, p ∈ head(r)}
∪ {βO(p) | p ∈ KA(O) ∪ {⊥}} (128)

ΛK =
⋃

L⊆KA(K),S⊆KA(O),
L∩S=∅,OBO,KA(K)\(S∪L)̸|=

∨
L

λK(L, S) where

λK(L, S) = {{Tp, σ1, . . . , σk,Fs1, . . . ,Fsn} | p ∈ L, EP(L) = {r1, . . . , rk},
σ1 ∈ ρ(r1, L), . . . , σk ∈ ρ(rk, L), S = {s1, . . . , sn}}, (129)

EP(L) = {r ∈ P | head(r)∩L = ∅, body+(r)∩L = ∅}, and ρ(r, L) = {Fβ(r)}∪{Tp | p ∈
head(r) \ L}. Clearly for any r ∈ P and L ⊆ KA(K), var(ρ(r, L)) ⊆ {{β(r) | r ∈
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P}∪ {p | p ∈ KA(K)}}. As a result for any L ⊆ KA(K), S ⊆ KA(O), var(λK(L, S)) ⊆
{{p | p ∈ KA(K)} ∪ {β(r) | r ∈ P}}. It follows that

var(ΛK) ⊆ {KA(K) ∪ {β(r) | r ∈ P}}. (130)

Combined with (128) this means

var(∆K) = var(∆K ∪ ΛK) ={p | p ∈ KA(K)} ∪ {⊥}
∪ {β(r) | r ∈ P}
∪ {βP(r, p) | r ∈ P, p ∈ head(r)}
∪ {βO(p) | p ∈ KA(O) ∪ {⊥}}. (131)

For all p ∈ KA(K) either p ∈ Î or p ∈ KA(K) \ Î therefore

KA(K) ⊆ (AÎ
K
T
∪AÎ

K
F
) (132)

Clearly since F⊥ ∈ AÎ
K

⊥ ∈ (AÎ
K
T
∪AÎ

K
F
). (133)

For all r ∈ P either Î |= Body(r) or Î ̸|= Body(r) therefore

{β(r) | r ∈ P} ⊆ (AÎ
K
T
∪AÎ

K
F
). (134)

For all (r, p) such that r ∈ P and p ∈ head(r), Î |= Body(r), head(r) ∩ (Î ∪ {p}) = {p},
or either Î ̸|= Body(r) or head(r) ∩ Î ̸⊆ {p}, therefore

{β(r, p) | r ∈ P, p ∈ head(r)} ⊆ (AÎ
K
T
∪AÎ

K
F
). (135)

Finally for all p ∈ KA(O) ∪ {⊥} either OBO,Î\{p} |= p or OBO,Î\{p} ̸|= p, therefore

{βO(p) | p ∈ KA(O) ∪ {⊥}} ⊆ (AÎ
K
T
∪AÎ

K
F
). (136)

From (132), (133), (134), (135), and (136), it follows that

(AÎ
K
T
∪AÎ

K
F
) ⊇{{p | p ∈ KA(K)} ∪ {⊥} ∪ {β(r) | r ∈ P}

∪ {βP(r, p) | r ∈ P, p ∈ head(r)}
∪ {βO(p) | p ∈ KA(O) ∪ {⊥}}}. (137)

The construction of AÎ
K makes it impossible for any kind of literal to appear within it,

therefore

(AÎ
K
T
∪AÎ

K
F
) ={p | p ∈ KA(K)} ∪ {⊥} ∪ {β(r) | r ∈ P}

∪ {βP(r, p) | r ∈ P, p ∈ head(r)}
∪ {βO(p) | p ∈ KA(O) ∪ {⊥}}. (138)

It is clear from (131) and (138) that

(AÎ
K
T
∪AÎ

K
F
) = var(∆K) = var(∆K ∪ ΛK). (139)

As ⊥ is already within each of these sets its addition makes no difference

(AÎ
K
T
∪AÎ

K
F
) = var(∆K ∪ {⊥}) = var(∆K ∪ ΛK ∪ {⊥}). (140)
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Thus AÎ
K is a total assignment for both var(∆K ∪ {⊥}) and var(∆K ∪ ΛK ∪ {⊥}).

The final lemma characterizes the relationship between a K-interpretation satisfying

the body of a rule, and the literals which appear within its induced assignment.

Lemma 8

For any K-interpretation Î of an HMKNF-KB K = (P,O), and any rule r ∈ P, Î |=
Body(r), if and only if, ∀p ∈ body+(r),Tp ∈ AÎ

K and ∀n ∈ body−(r),Fp ∈ AÎ
K.

Proof

(⇒) Assume Î |= Body(r). By definition Î |=
∧
body+(r) ∧ ¬

∨
body−(r). Consequently,

∀p ∈ body+(r), p ∈ Î ∧ ∀n ∈ body−(r), n ̸∈ Î. Note that ∀n ∈ body−(r), n ∈ KA(K)

therefore ∀n ∈ body−(r), n ∈ KA(K) \ Î. Clearly then ∀p ∈ body+(r),Tp ∈ AÎ
K and

∀n ∈ body−(r),Fp ∈ AÎ
K.

(⇐) Assume ∀p ∈ body+(r),Tp ∈ AÎ
K and ∀n ∈ body−(r),Fp ∈ AÎ

K. As a result ∀p ∈
body+(r), p ∈ Î ∧ ∀n ∈ body−(r), n ̸∈ Î. Clearly this means that Î |= Body(r).

We now are able to prove Theorem 3. In order to do this, we show that there is no

nogood which is a subset of AÎ
K, whenever Î |= Kcomp(Î), and that there is such a nogood

when Î ̸|= Kcomp(Î).

Theorem 3

Let Î be a K-interpretation for an HMKNF-KB K = (P,O), then we have that Î |=
Kcomp(Î) if and only if AÎ

K is a solution to ∆K ∪ {T⊥}.

Proof

(⇒) Let Î be a K-interpretation of the HMKNF-KB K = (P,O) such that Î |= Kcomp(Î),

then AÎ
K is well defined.

Assume there exists δ ∈ ΓO such that δ ⊆ AÎ
K. Clearly since δ ∈ ΓO either δ = γ+O(p, S)

for p ∈ KA(O) ∪ {⊥}, S ⊆ KA(O), such that OBO,S\{p} |= p or, δ = γ−O(p, S) for

p ∈ KA(O), S ⊆ KA(O) such that OBO,KA(O)\(S∪{p}) ̸|= p.

Case 1: δ = γ+O(p, S) for p ∈ KA(O) ∪ {⊥}, S ⊆ KA(O), such that OBO,S\{p} |= p.

γ+O(p, S) ⊆ AÎ
K implies that ∀s ∈ S, s ∈ Î, or more simply S ⊆ Î. This also means that

OBO,Î\{p} |= p. Consequently,TβO(p) ∈ AÎ
K. Conversely, by the fact that γ+O(p, S) ⊆ AÎ

K,

FβO(p) ∈ AÎ
K. Thereby this case results in a contradiction.

Case2: δ = γ−O(p, S) for p ∈ KA(O), S ⊆ KA(O) such that OBO,KA(O)\(S∪{p}) ̸|= p.

γ−O(p, S) ⊆ AÎ
K implies that ∀s ∈ S, s ̸∈ Î, or more simply S ⊆ (KA(O) \ Î). This

also means that OBO,KA(O)\((KA(O)\Î)∪{p}) ̸|= p, or equivalently OBO,Î\{p} ̸|= p. Con-

sequently, FβO(p) ∈ AÎ
K. Conversely, by the fact that γ−O(p, S) ⊆ AÎ

K, TβO(p) ∈ AÎ
K.

Thereby this case also results in a contradiction.

As both cases where there exists δ ∈ ΓO such that δ ⊆ AÎ
K result in a contradiction,

∄δ ∈ ΓO, s.t. δ ⊆ AÎ
K. (141)

Assume there exists some nogood δ ∈ ΓP such that δ ⊆ AÎ
K. Clearly for some β ∈

{β(r) |r ∈ P} ∪ {βP(r, p) | r ∈ P, p ∈ head(r)}, δ ∈ γP(β). As a result either Fβ ∈ AÎ
K

and β ⊆ AÎ
K, or Tβ ∈ AÎ

K and σ ∈ AÎ
K for some σ ∈ β.
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Case 1: β ∈ {β(r) | r ∈ P}.
Case 1.1: Fβ ∈ AÎ

K and β ⊆ AÎ
K. In this case Î ̸|= Body(r), so by Lemma 7 and

Lemma 8 Tp ̸∈ AÎ
K or Fn ̸∈ AÎ

K. Conversely, since p ∈ body+(r), Tp ∈ β(r) ⊆ AÎ
K and

since n ∈ body−(r), Fn ∈ β(r) ⊆ AÎ
K. This leads to a contradiction.

Case 1.2: Tβ ∈ AÎ
K and σ ∈ AÎ

K for some σ ∈ β. In this case Î |= Body(r), so

by Lemma 7 and Lemma 8, ∀p ∈ body+(r),Fp ̸∈ AÎ
K and ∀n ∈ body−(r),Tn ̸∈ AÎ

K.

Conversely, either for some p ∈ body+(r), σ = Fp or for some n ∈ body−(r) σ = Tp.

Therefore either ∃p ∈ body+(r),Fp ∈ AÎ
K or ∃n ∈ body−(r),Tp ∈ AÎ

K. This leads to a

contradiction.

Case 2: β ∈ {β(r, p) | r ∈ P, p ∈ head(r)}. In this case either σ = Fβ(r) or σ = Tq

for some q ∈ head(r) \ {p}.
Case 2.1: Fβ ∈ AÎ

K and β ⊆ AÎ
K. In this case Tβ(r) ∈ AÎ

K and ∀q ∈ head(r)\{p},Fq ∈
AÎ

K. Also either I ̸|= Body(r) or head(r)∩ Î ̸⊆ {p}. This means that Fβ(r) ∈ AÎ
K or ∃q ∈

head(r)\{p},Tq ∈ AÎ
K. Following Lemma 7, Tβ(r) ̸∈ AÎ

K or ∃q ∈ head(r)\{p},Fq ̸∈ AÎ
K,

so we have a contradiction.

Cases 2.2: Tβ ∈ AÎ
K and σ ∈ AÎ

K for some σ ∈ β. In this case either σ = Fβ(r) or

σ = Tq for some q ∈ head(r) \ {p}. Also Î |= Body(r), and head(r) ∩ (Î ∪ {p}) = {p}.
This means that Tβ(r) ∈ AÎ

K, and ∀q ∈ head(r) \ {p},Fq ∈ AÎ
K. Following Lemma 7,

Fβ(r) ̸∈ AÎ
K and ∀q ∈ head(r) \ {p},Tq ̸∈ AÎ

K, so we have a contradiction.

As all possible cases where there exists a nogood δ ∈ ΓP such that δ ⊆ AÎ
K result in a

contradiction.

∄δ ∈ ΓP , s.t. δ ⊆ AÎ
K. (142)

Assume that there is some nogood δ ∈ ΦP such that δ ⊆ AÎ
K. Clearly δ = ϕP(r)

for some rule r ∈ P. As a consequence ∀p ∈ head(r),Fp ∈ AÎ
K and Tβ(r) ∈ AÎ

K. This

means that ∀p ∈ head(r), Î ̸|= p and Î |= Body(r). More simply Î ̸|=
∨
head(r) and

Î |= Body(r). This contradicts the assumption that Î |= Prule, therefore

∄δ ∈ ΦP , s.t. δ ⊆ AÎ
K. (143)

Assume that there is some nogood δ ∈ ΦO such that δ ⊆ AÎ
K. Clearly δ = ϕO(p) for

some p ∈ KA(O) ∪ {⊥}. As a consequence Fp ∈ AÎ
K and TβO(p) ∈ AÎ

K. This means

that p ∈ KA(K) \ Î, and that OBO,Î\{p} |= p. More simply p ̸∈ Î and OBO,Î |= p. This

contradicts the assumption that Î |= Osatr(Î), therefore

∄δ ∈ ΦO s.t. δ ⊆ AÎ
K. (144)

Assume that there is some nogood δ ∈ ΨK such that δ ⊆ AÎ
K. Clearly δ = ψK(p)

for some p ∈ KA(K). As a consequence Tp ∈ AÎ
K, FβP(r, p) ∈ AÎ

K for each r ∈ P
such that p ∈ head(r), and FβO(p) ∈ AÎ

K if p ∈ KA(O). This means that p ∈ Î,

either Î ̸|= Body(r) or head(r) ∩ Î ̸⊆ {p} for each r ∈ P such that p ∈ head(r), and

OBO,Î\{p} ̸|= p if p ∈ KA(O). Equivalently, Î |= p, Î ̸|= Body(r) ∧
∧

q∈head(r)\{p} ¬q for

each r ∈ P such that p ∈ head(r). More simply,

Î ̸|= p ⊃
∨
r∈P,

p∈head(r)

(
Body(r) ∧

∧
q∈head(r)\{p}

¬q
)
. (145)
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As OBO,Î\{p} ̸|= p, Ksup(Î) includes this formula so Î ̸|= Ksup(Î). This is a contradiction,

therefore

∄δ ∈ ΨK s.t. δ ⊆ AÎ
K. (146)

From (141), (142), (143), (144), and (146) it clearly follows that there is no nogood

δ ∈ ∆K such that δ ⊆ AÎ
K. Combined with Lemma 7, and the fact that T⊥ ̸∈ AÎ

K this

means that AÎ
K is a solution for ∆K ∪ {T⊥}.

(⇐) Assume that Î ̸|= Prule. Clearly there is some r ∈ P such that Î |= Body(r) and

Î ̸|=
∨
head(r). As a consequence Tβ(r) ∈ AÎ

K but ∀p ∈ head(r),Fp ∈ AÎ
K. This means

that ϕP(r) ⊆ AÎ
K, since ϕP(r) ∈ ΦP this violates the assumption that AÎ

K is a solution

for ∆K. Therefore

Î |= Prule. (147)

Assume that Î ̸|= Osatr(Î). Clearly there is some atom p ∈ KA(O) ∪ {⊥} such that

OBO,Î ̸|= p but p ̸∈ Î. As a result TβO(p) ∈ AÎ
K, however Fp ∈ AÎ

K. This means that

ϕO(p) ⊆ AÎ
K, since ϕO(p) ∈ ΦO this violates the assumption that AÎ

K is a solution for

∆K. Therefore

Î |= Osatr(Î). (148)

Assume that Î ̸|= Ksup(Î). Clearly there is some atom p ∈ Î such that OBO,Î\{p} ̸|= p

for which for all r ∈ P where p ∈ head(r) Î ̸|= Body(r) or ∃a ∈ head(r) \ {p} such

that a ∈ Î. From p ∈ Î, Tp ∈ AÎ
K. From OBO,Î\{p} ̸|= p, either p ∈ (KA(K) \KA(O))

or FβO ∈ AÎ
K. Finally, since for all r ∈ P where p ∈ head(r), Î ̸|= Body(r) or ∃a ∈

head(r) \ {p} such that a ∈ Î, FβP(r, p) ∈ AÎ
K. It follows that ψK(p) ⊆ AÎ

K, since

ψK(p) ∈ ΨK this violates the assumption that AÎ
K is a solution for ∆K. Therefore

Î |= Ksup(Î). (149)

From (147), (148), and (149), Î |= Kcomp(Î).

We now are able to prove Theorem 4, by expanding upon Theorem 3. In particular,

we show that when Î |= Kcomp(Î)∧Kloop(Î), there is no nogood which is a subset of AÎ
K,

but there is one whenever Î |= Kcomp(Î) but Î ̸|= Kloop(Î).

Theorem 4

Let Î be a K-interpretation for an HMKNF-KB K = (P,O), then we have that Î |=
Kcomp(Î) ∧ Kloop(Î) if and only if AÎ

K is a solution to ∆K ∪ ΛK ∪ {T⊥}.

Proof

(⇒) Assume that Î |= Kcomp(Î)∧Kloop(Î). By Theorem 3 AÎ
K is a solution for ∆K∪{T⊥}.

Meaning that no nogood δ ∈ ∆K ∪ {T⊥} such that δ ⊆ AÎ
K. We also know that AÎ

K is

a total assignment for ∆K ∪ ΛK ∪ {T⊥} by Lemma 7. Therefore we must simply show

that there is no nogood δ ∈ ΛK such that δ ⊆ AÎ
K. Suppose that there is such a nogood

δ. Clearly, δ ∈ λK(L, S) for some L ∈ Loops(K), S ⊆ KA(O) for which L ∩ S = ∅ and

OBO,KA(O)\(S∪L) ̸|=
∨
L.
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Consequently there is an atom p ∈ L such that Tp ∈ δ, so Tp ∈ AÎ
K, therefore

Î |=
∨
L. (150)

Since Î ⊆ KA(K), OBO,KA(O)\(S∪L) ̸|=
∨
L, and only atoms in KA(O) are relevant

for entailing other atoms through the ontology, OBO,Î\(S∪L) ̸|=
∨
L. Due to the fact that

∀s ∈ S,Fs ∈ δ, Fs ∈ AÎ
K thereby Î ∩ S = ∅. As a consequence

OBO,Î\L ̸|=
∨
L. (151)

For each rule r ∈ P for which L∩head(r) ̸= ∅ and body+(r)∩L = ∅, either Fβ(r) ∈ δ, or

Ta ∈ δ such that a ∈ head(r)\L. This means that for all such rules Fβ ∈ AÎ
K or Ta ∈ AÎ

K
for such a. Consequently for each rule either Î ̸|= Body(r) or Î |=

∨
a∈head(r)\L a. More

simply

Î ̸|=
∨
r∈P

head(r)∩L ̸=∅
body+(r)∩L=∅

(
Body(r) ∧

∧
a∈head(r)\L

¬a
)
. (152)

From (150), (151), (152), and the fact that L ∈ Loops(K), it is clear that Î ̸|= Kloop(Î).

Therefore there can be no nogood δ ∈ ΛK such that δ ⊆ AÎ
K, or else a contradiction

would occur. We have already shown all other necessary conditions, so AÎ
K is a solution

to ∆K ∪ ΛK ∪ {T⊥}.
(⇐) Assume that AÎ

K is a solution to ∆K ∪ ΛK ∪ {T⊥}, clearly by Lemma 7 it is also a

solution for ∆K ∪ {T⊥}, therefore by Theorem 3 Î |= Kcomp(Î).

Suppose Î ̸|= Kloop(Î). Then there would be some loop L ∈ Loops(K) for which

OBO,Î\L ̸|=
∨
L, Î |=

∨
L, and

Î ̸|=
∨
r∈P

head(r)∩L ̸=∅
body+(r)∩L=∅

(
Body(r) ∧

∧
a∈head(r)\L

¬a
)
. (153)

Clearly for S = KA(O) \ (Î ∪ L), L ∩ S = ∅, and since KA(O) \ (S ∪ L) = Î \ L,
OBO,KA(O)\(S∪L) ̸|=

∨
L. Therefore

λK(L, S) ⊆ ΛK (154)

As Î |=
∨
L, ∃p ∈ L, Î |= p, therefore

∃p ∈ L,Tp ∈ AÎ
K. (155)

Also since S = KA(O) \ (Î ∪ L), ∀s ∈ S, Î ̸|= s, and consequently

∀s ∈ S,Fs ∈ AÎ
K. (156)

From (153), for all rules r ∈ P such that head(r) ∩ L ̸= ∅ and body+(r) = ∅, either
Î ̸|= Body(r) or there is some atom a ∈ head(r) \ L for which Î |= a. Therefore either

Fβ(r) ∈ AÎ
K or a ∈ head(r) \ L such that Ta ∈ AÎ

K for each such rule. Note that these

rules make up the set EP(L), thereby

∀r ∈ EP(L),∃σ ∈ ρ(r, L), such that σ ∈ AÎ
K. (157)
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From (155), (156), and (157) there is some nogood δ ∈ λK(L, S) such that δ ⊆ AÎ
K.

Due to (154) this means that

∃δ ∈ ΛK, δ ⊆ AÎ
K. (158)

This directly contradicts the assumption that AÎ
K is a solution for ∆K ∪ΛK ∪ {T⊥}. As

the supposition that Î ̸|= Kloop(Î) leads to a contradiction, it must actually be the case

that Î |= Kloop(Î).
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