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1 Introduction

The purpose of this document is to provide complete proofs for all non-trivial claims. It
is divided into two main sections. The first of which concerns the completion and loop
formulas, while the second concerns the related sets of nogoods.

2 Completion and Loop Formulas Proofs

Throughout this section we routinely need to consider MKNF interpretations, and the
K-interpretations which they induce or extend from. In order to quickly reason about the
properties of one, based on the properties of the other, we rely on the following lemma.
It provides alternative characterizations of what it means for a K-interpretation to be
saturated. The reason saturated K-interpretations are of interest, is largely due to char-
acterization [3] As it means that all MKNF models induce saturated K-interpretations.

Lemma 1
The following are equivalent for a K-interpretation I

I is saturated.

I extends to an MKNF interpretation M which induces I.

[ is induced by some MKNF interpretation M such that M Eykne K7(O).
j ': Osatr(f)' R

OB, ; [~ a for every atom a € (KA(K) U {L})\ 1.

CL W

Proof
1 to 2: Since [ is saturated,
OBy ;= L (1)

and

A (0BgjEa) > @eD). (2)

acKA(K)

From there exists a first-order interpretation I, such that I = OB, ; and I [~ L,
therefore M = {J | J = OB, ;} is a non-empty set of first-order interpretations and
thus an MKNF interpretation. Clearly, I extends to M.
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Now we show that M induces 1. By construction VI € M, I = OBO’IA consequently
Vie MNael,IlEa (3)
and therefore
Va € I, M =yxnr Ka. (4)

Assume M |=yknr Ka for some a € KA(K) \ 1. From the construction of M this
means that for any first-order interpretation I which satisifes OB, ;, I |= a. Equivalently,

Ja € KA(K)\1,0B, ; k= a. (5)
This is contradictory with so it must be the case that
Va € KA(K)\ I, M gy Ka. (6)
Combining and @ gives that
I={aeKA(K) | M =yxnr Ka} (7)

and it follows that M induces I.
2 to 3: Since I extends to M,

M ={I|I} OBy } (8)
From this,
VIEM,I):(W(O)/\ A I}za) 9)
acKA(K)
consequently VI € M, I = 7(0O), and therefore
M ):MKNF KW(O) (10)

I is induced by M, thereby there is an MKNF interpretation M such that M =ykNr
K7 (0), which induces 1.
3 to 4: Since M E=pknr K7(O),

VI e M,I = r(O). (11)

Since M induces I, I = {a e KA(K) | M Eyknr Ka}, or equivalently

I={aecKA(K) |Vl e MI=a}. (12)
This means that
Va g I,3I € M st. I~ a. (13)
also means that
Vie M, IE \a. (14)
aef
By and ,
VIe M, IErO)A N a (15)

ael
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equivalently,
Vie M,I = OBy, ;- (16)
By and
Va € (KA(K)\1),3l € M s.t. [ = OBy ; Al - a (17)
consequently
Va € (KA(K)\1),0B,, ; i a. (18)

Since M is an MKNF interpretation, it contains at least one first-order interpretation I,
by this means there is at least one first-order interpretation I such that I = OB, ;.
Therefore

OBy ; [F L. (19)
From and ,
{a e KAK)U{L} | OBy FEa}t C I (20)
it directly follows that
Pl Owuin(d). (21)

4 to 5: Here we will prove the contra-positive, if 3o € (KA(K) U {L})\ I such that
OB, ; = a then I f£ Osatr ().
As a e (KAK)U{L})\ I, clearly a ¢ I, Therefore

I}~ a. (22)
Furthermore since a € (KA(K)U{L}) and OB,, ; |~ a,

5 to 1: KA(K) contains only atoms a which appear within as Ka or nota within
w(P), L will never appear within 7(P), so L ¢ KA(K), thereby L ¢ I. This combined
with the fact that OB, ; [~ a for any a € (KA(K) U {L})\ I, means that,

OB, ; # L. (24)

Since OBy, ; # a for any atom a € (KA(K) U {L}) \ I, for an atom a € KA(K) such
that OB, ; = a, a ¢ (KA(K) U{L}) \ I. Equivalently since I C KA(K),

A (0By;Fa) > @eD). (25)

acKA(K)

From and , I is saturated. [J

Now we bring our attention to Theorem [l with regard to the connection between
K-interpretations satisfying the completion and those induced by MKNF models of tight
HMKNF-KBs. In order to do so we start with weaker claims, which build upon each
other.
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Lemma 2
For any K-interpretation of an HMKNF-KB K = (P, 0), if I = Pruie A Osarr(I), then
it extends to an MKNF interpretation M, such that M Eyknr 7(K).

igoﬁ extends from I, M = {I | I = OB, ;}. Consequently, VI € M, I |= w(O) therefore
M Eugnre K7(O). (26)
It remains to show that M =ykne 7(P). From I = Pruie we have that
I'= A (Body(r) > \/ head(r)). (27)
rep

Therefore for all rules 7 € P I = \/ head(r) or I = Body(r). Equivalently for all rules
repP

(3h € head(r),h € I),
or (28)
(3p € body™ (r),p & I, or
In € body ™ (r),n € I).
Ii‘rom the fact that M induces I, Va € I,M Evknre Ka, and Vb € KA(K),b ¢
I, M FEnvknr Kb, As a consequence, for all rules r € P,
Vr e P,
(3h € head(r), M Enmknr Kh),
or (29)
(3p € body™ (r), M Fnkne Kp, or
In € body~ (r), M Evmnr Kn)

Equivalently, since (M fumkne Ko) = (M Euknr noto),
Vr € P, M Eyknr 7(r). (30)
Consequently, M =yknr 7(P). In combination with , M Eukne ©(K). O
The following proposition, effectively extends Lemma [2| with another direction.

Proposition 1

For any K-interpretation I of an HMKNF-KB K = (P, 0), I = Pruie A Osatr(I), if and
only if, there exists an MKNF interpretation M, such that M induces I and M EpmkNF
(k).

Proof

(=) From Lemma I extends to an MKNF model M, such that M Evinr 7(K). The
fact that I = Ogqatr(I) along with Lemma means that M induces I as well.

(<) For a ground MKNF knowledge base all rules in 7(P) are of the form

7m(r) = (Kho V... VKh;) C (Kpg A--- AKp; Anotng A ... A notny).
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M Eumxnr 7(K) by assumption and thereby M E=yknr m(P), so
Vr e 7), M ):MKNF 7T(7“). (31)
Equivalently, since M Fykne K¢ = M Eyknr note, for all rules r € P,

(3h € head(r), M Emxnr Kh),

or (32)
(3p € body™ (r), M Fyxnr Kp,or

In € body~ (r), M EvkNF K"EI)

I is induced by M so by defintion,
As Vr € P, (head(r) U body™ (r) U body~(r)) € KA(K), this means that Vr € P,

(3h € head(r),h € I),

or (34)
(3p € body™ (r),p & I,0r

In € body ™ (r),n € I).

As a consequence,
Vr € P, 1 |= \/ head(r) v (f i J\body* (r) v I |= \/body’(r)). (35)

This can be simplified further using the shorthand ‘Body(r) = A body™ (r)A—=\/ body~ (r)’
to

I'= )\ (Body(r) o \/ head(r)), (36)
reP
therefore [ E Prule- I is induced by M and M Euknr 7(K), so by Lemma I =
Osarr(I). Tt is clear then, that I = Pryie A Osarr (). O

The gap between this claim and Theorem [I] is that Proposition [I] only requires that
M Euknre 7(K), but not that M is a model. For M to be a model, it must be that
there is no MKNF interpretation M’ > M, for which VI’ € M’ (I', M', M) = w(K). We
reason about the existence of M’, by considering the MKNF interpretation I’ it induces,
in particular how it differs from 1. In the following lemma we show I’ is a strict subset

of I.

Lemma 3

Let I be a saturated K-interpretation of an HMKNF-KB K = (P, ©), which extends to
an MKNF interpretation M. If M Euknre 7(K) and there is an MKNF interpretation
M’ > M such that VI’ € M',(I',M', M) | =n(K), then M’ induces a K-interpretation
I’ such that I' c I.

Proof
Proof by contradiction. If M’ induces I for any first-order interpretation I' € M’,
{a | I' = a} D I. Also it follows from the fact that VI’ € M' (I',M', M) E =(K)
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that for any I' € M', I' = m(O). Consequently for any I" € M', I' = OB, ;. This
implies it must be a subset of the MKNF' interpretation which I extends to therefore
M’ C M, This is a contradiction of the fact that M’ > M, therefore M’ induces I’ such
that I’ # I. Furthermore since M’ > M, I’ c I. O

As aforementioned we have interest in showing that given two MKNF interpretations
M and M’ of an HMKNF-KB K, which induce the K-interpretations I and I’, that
vI'e M',(I',M', M) [~ n(K). To do so we can consider the set of atoms (A \ I'). The
general strategy is to show that I’ is sufficient to imply some atom p € (A \ I ), in order
to reason that VI’ € M’, (I', M', M) i~ m(K). Under the assumptions that I = Keomp(I)
and M Euminr 7(K), we do so by analyzing the section of the dependency graph G(K)
which (I \ I') exists within. The approach is to take any individual atom g € (I \ I")
and restrict the graph to only those atoms which g can reach within (I'\ I’). We denote
this subgraph as G. If G is acyclic then the following lemma applies. It relies on the fact
that there is some atom p € (f \ I ) which has no outgoing edges within G, and the
restrictions imposed on the full graph G(K) by the fact that I = Keomp(I ). In doing so
it is able to show p is implied by the knowledge contained within I [’ , and thereby that
vI'e M',(I', M', M) } =(K).

Lemma 4

For two MKNF interpretations M and M " of the knowledge base K = (P, ), which
induce the K-interpretations I and I’ respectively. Let G be the subgraph of the depen-
dency graph G(K), containing only the atoms within (I\T ') reachable in G(K) from
some atom g € (I\I'). If M" > M, (I\T) # 0, I = Keomp(I), M Enxnr 7(K) and G
is acyclic, then VI’ € M’ (I', M’', M) = =(K).

Proof
As T = Keomp(I), I | Keup(I) and

IE= \/ (Body(r) A /\ -p). (37)
reP, pehead(r)\{a}
achead(r)

for all a € KA(K) such such that OB, j\ (,, % a- As G is acyclic, there is at least one

atom a € G which has no outgoing edges. By the fact that all atoms in G are from (f \f ),
I=a. As a € KA(K) either

OB(’),f\{a} ': a

or (38)
IE= \/ (Body(r) A /\ -p). (39)
reP, pehead(r)\{a}
ac€head(r)

Case 1:

OBg j\(ay F @ (40)
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Since M Emgnr 7(K), Lemmatells us that [ is saturated, meaning that OB, ; i~ L.
Consequently,

VS CI,0Bos b L. (41)
From and
35S C (I'\ {a}) such that OBo 5 |= a, (42)
a¢ S,0Bp g~ L, and (43)
VS C S,0Bo. s - a. (44)

Therefore there is an edge in G(K) from a to each atom in S. As a has no outgoing edges
within (I \ I’), this means that S C I’. Therefore

OBy, ;v = a. (45)

By defintion this means that for any first-order interpretation I such that I
OB, ;.1 = a. Conversely, M' must contain at least one first-order interpretation I’

such that I’ j~ a, since it induces I’ and a ¢ I'. Therefore
' e M',I' = OB, ;, (46)

As M’ induces I', VI' € M', T |= /\pef/ p, therefore implies that 3I' € M', I’ £
7(0O). Consequently,

M/ I#MKNF Kﬂ'(O) (47)
This implies that VI’ € M', (I', M’, M) = K= (O), and thereby
vI'e M',(I',M', M) }£ =(K). (48)
Case 2:
I= \/ (Body(r) A /\ -p). (49)
reP, pehead(r)\{a}
achead(r)

For the above to be true, there must be a rule r € P such that,

a € head(r), (50)
head(r) \ {a} N1 =0, (51)
body™ (r) C I, and (52)
body™(ryN 1 =10. (53)

From the fact that ¢ has no outgoing edges in G, along with proves body™ (r) N
(I\I') = 0. This and mean that

body™ (r) C I (54)

Asa € (I\TI'), a ¢ I' and since M’ induces I’ this means that M’ Fyknr Ka,
consequently

vI' e M’ (I',M', M) i Ka. (55)
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From we can also derive that

Vh € head(r), s.t. h# a,h & I (56)
therefore Vh € head(r), s.t. h # a, M FEvkne Kh which together with implies
VI'e M',(I',M', M) | (Kho A --- ANKR). (57)
From , M f=mvkne (Kpo A -+ - AKpj) which implies that
VI e M',(I', M’ M) |= (Kpo A -+ AKp;). (58)
Similarly from , M Euminr (notng A ... A notny) implying that
vI'e M',(I',M', M) | (notng A ... A notny). (59)
Clearly from and ,
VI e M, (I',M', M) ((Kh0 A AKR) O (60)
(Kpo A--- AKp;j Anotng A ... A notnk)) (61)

more simply VI’ € M, (I',M', M) = n(r). Therefore VI' € M',(I',M', M) = n(P) and
thereby

vI'e M',(I',M', M) [~ =(K). (62)
In either case the conclusion holds, so the lemma is proven. []

We are now ready to prove Theorem [I} The first direction is massively aided by the
previous lemmas, while the other is relatively straightforward.

Theorem 1
For any K-interpretation I, of a tight HMKNF-KB K = (P,0), I = Kcomp(I), if and
only if, K has an MKNF model M, such that M induces I.

Proof
(=) Let M be the interpretation which I extends to. As [ E Pruie A Osatr(f), Lemma
implies that M Eyknre 7(K). Also, since I = Os(m(f), by Lemma M induces 1.

It remains to show that there is no MKNF interpretation M’ D> M such that
vI' e M',(I'yM',M) E =(K), therefore we let M’ be any MKNF interpretation
such that M’ > M. Take I' to be the K-interpretation that M’ induces, and assume
vI' e M, (I',M’, M) |= 7(K). By Lemmal3| I 1.

Let G be the subgraph of the dependency graph G(K) containing only atoms in (f \f ")
which are reachable from any atom g € (I \ I'). Clearly by the assumption that the
knowledge base is tight, G(K) is acyclic, and so is G. Therefore by Lemma 4| VI’ €
M’ (I',M’', M)}~ 7(K). Consequently M is a model of 7(K), which induces I.

(<) M Emknr 7(K) so by Proposition I E Pruie N Osatr(f).

Let a € KA(K), be any atom such that OBy, f ¢,y £ a clearly

{a € KA(K) | OBy j\ 4y F a} € {a € KA(K) | OBy ; = a} (63)
therefore since I is saturated, I\{a} C {a € KA(K) | OBy j\(ay F @} € I. Consequently,
{a € KA(K) | OBy j oy = a} =1\ {a}. (64)
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therefore I\ {a} is saturated. Let M’ be the MKNF model which induces I \ {a}. As
I'\ {a} is saturated, by Lemma [I| M’ Eyknr K7(0), and VI’ € M', I’ = 7n(O). M
is a model so it is also the case that VI € M,I | 7(O). Let M be M U M’, clearly
M" E=ykne Km(O). As w(0O) is a standard first order formula with no MKNF modal
operators

VI" € M, (I",M", M) |= Kn(O). (65)
Conversely, since M is a model by assumption, and M"” > M,
vIi"e M, (I",M" , M) = m(K). (66)
Consequently,
VI € M, (I",M", M) i n(P) (67)

equivalently there is some rule r in P such that VI € M", (I",M", M) (= m(r). This
means that

vI"e M",(I",M",M) = (Kpo A --- AKpj Anotng A ... A notny,) (68)
but
vI"e M",(I",M" , M) }= (Kho V ... VKh_). (69)
As M c M",
VIe M, (I,M,M) = (KpyA---ANKpj Anotng A ... A notny) (70)

therefore as M induces [ ,
I |= Body(r). (71)
Also since M Eyknr 7(r),
M Eykne (Kho V...V Khy). (72)
Consequently, 3h € head(r) such that h € I. Conversely, from ,
M" Fyvgne (Kho V... VKh), (73)

and M" induces I N (I'\ {a}) = I\ {a}, therefore A € head(r) such that h € (I \ {a}).
This means that a is the only atom in head(r) and I. As a result

IE= A » (74)
pEhead(r)\{a}

It follows from and that

IE= \/ (Body(r) A /\ -p). (75)
reP, pEhead(r)\{a}
ac€head(r)

As this is the case for any arbitrary atom a € KA(K) such that OBy, (., ¥ @, =
Keuwp(). O

We now bring our attention to proving Theorem |2} The previous theorem relied on an
assumption that there exists a subgraph G of G(K), containing all atoms within (I \ I’)
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reachable from some atom g € (f \ I "), which is acyclic. This assumption is sure to hold
in the case where K is tight, as G(K) itself is acyclic, however it cannot be relied on in
general. A better approach when G(K) is not acyclic, is to find a loop L, whose atoms
reach no other loop which is not its subset. The following lemma states that such a loop
must always exist.

Lemma 5
Within a (finite) dependency graph with at least one loop, there is a loop L, from which
no loop L' ¢ L can be reached via any atom [ € L.

The proof for this lemma is ommitted as it is both intuitive and well established.

Given a loop L which reaches no other loops which are not its subset, we can take a
similar approach to the case of an acyclic graph. In the simple case, there exists some
atom h ¢ L which L reaches, in which case we can take H to be the subgraph of G(K)
containing only atoms from (1\ ") reachable from h. H will be acyclic so Lemmadirectly
applies. Otherwise the set of atoms reachable from any atom within L is simply L. Under
the additional assumption that I = Kjeep(I), we can show that some atom within L is
implied by the knowledge of I’. Once again showing that VI’ € M, (I',M', M) = =n(K).
This result is characterized by the following lemma.

Lemma 6

For two MKNF interpretations M and M’ of the knowledge base K = (P, ), which
induce the K-interpretations I and I’ respectively. Let G be any subgraph of the de-
pendency graph G(K), containing only the atoms within (I \ I’) reachable in G(K) from
some atom g € (I'\ I'). It M' > M, M Engne 7(K), I\ 1) # 0, I = Kioop(I), and G
contains only atoms from a single loop L, then VI’ € M’ (I', M', M) }= =(K).

Proof
Since L is a loop within G, which contains only atoms in (f \ I ), L C I, thereby

I=\/L (76)
Since 1 = ICloop(f) and L € Loops(K) this means that either

OBy 1 \/ L
or (77)
I \/ (Body(r) A /\ —|a).
reP a€head(r)\L
head(r)NL#Q

body ™t (r)NL=0

Case 1:
OBy i F VL (78)

Since M Eumknr 7(K), Lemmatells us that I is saturated, meaning that OB, ; i~ L.
Consequently,

VS CI,0Bo.s i~ L. (79)
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From and

3l e L,35 C (I\ L) such that OBp 5 =1, (80)
l € S, OB@,S l;é J_, and (81)
VS C S,0Bo g L. (82)

For this [ and S there is an edge in G(K) from [ to each atom in S. As [ has no outgoing
edges in (I'\ I')\ L meaning that S C (I’UL). Of course since S C (I \ L), it is actually
the case that S C I’. Therefore

OBy j E L (83)

By defintion this means that for any first-order interpretation I such that I =
OB, ;.1 = 1. Conversely, M’ must contain at least one first-order interpretation I’

such that I’ j [, since it induces I’ and a & I’. Therefore
' e M',I' - OB, ;, (84)

As M’ induces I', VI' € M', T |= Npeir D, therefore implies that 3I' € M', I’ £
7(0O). Consequently,

This implies that VI’ € M', (I', M', M) = K= (O), and thereby
vI'e M',(I',M', M) | =(K). (86)
Case 2:
I \/ (Body(r) A /\ ﬁa). (87)
reP achead(r)\L
head(r)NL#Q

body™t (r)NL=0

For the above to be true, there must be a rule » € P such that,

head(r) N L # 0, (88)
body™ (r)NL =) (89)
(head(r)\ L)N 1 =0, (90)
body™ (r) C I, and (91)
body~(r) N1 =0. (92)

From the fact that no atom outside L in G is reachable from any atom in L, along with
(88), body™(r) N ((I\ I')\ L) = 0. Combined with this means body™(r) C I’ U L, of
course due to

body™ (r) C I (93)

As L C (I\I'), LNI" =0, and since M’ induces I’ this means that for each [ € L,
M’ vy Ki. Consequently,

Vie LNI' e M',(I',M', M) b KI. (94)
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From we can also derive that

Vh € head(r), s.t. h #a,h & I (95)
therefore Vh € head(r), s.t. h & L, M Fykne Kh which together with implies

vI'e M',(I',M', M) = (Kho A --- ANKh;). (96)
From , M E=nvkne (Kpo A -+ - AKpj) which implies that
VI'e M',(I',M', M) |= (Kpo A - - A Kp;). (97)

Similarly from , M Euknr (notng A ... A notny) implying that

vI'e M',(I',M', M) = (notng A ... A notny,). (98)

Clearly from and ,
VI' € M, (I',M', M) £ ((Kho A AKR) O (99)
(Kpo A--- AKp;j Anotng A ... A notnk)) (100)

more simply VI' € M’, (I', M', M) (= «(r). Therefore VI' € M',(I',M', M) = n(P) and
thereby

vI'e M',(I',M', M) £ =(K). (101)
In both cases the conclusion holds, so the lemma is proven. []

We are now able to prove Theorem [2| As with the Theorem [I] the first direction relies
heavily on the previous lemmas. The other direction is relatively straightforward.

Theorem 2
For any K-interpretation I, of an HMKNF-KB K = (P, 0), I = Keomp(1) A Kioop(I), if
and only if, K has an MKNF model M such that M induces 1.

Proof
(=) Let M be the interpretation which I extends to. As [ E Pruie A Osatr(f), Lemma
implies that M Epknr 7(K). Also, since I = OsatT(f), by Lemma M induces 1.

It remains to show that there is no MKNF interpretation M’ D> M such that
vI' € M',(I',M',M) E =(K), therefore we let M’ be any MKNF interpretation
such that M’ > M. Take I’ to be the K-interpretation that M’ induces, and assume
vI'e M',(I',M', M) = n(K). By Lemmaf’ cl.

Let G be the subgraph of the dependency graph G(K) containing only atoms in (I'\ ")
which are reachable from any atom g € (I'\ I’). Either G is acyclic or it is not.

Case 1: If G is acyclic, by Lemma[d] VI’ € M’ (I',M', M) |~ n(K).

Case 2: If G is not acyclic, then (I'\ I’) must contain at least one loop. Take L to be
a loop in G such that no other loop L’ ¢ L in G is reachable from any atom in [ € L.
Such a loop exists by Lemma [5]

Case 2.1: If there is an atom h € (I \ I) such that h ¢ L and which is reachable
from L. Then take H to be the subgraph of G(K) reachable from h, and containing only
atoms in (I \ I’). As h is reachable from L and is not in L it cannot be part of a loop,
thereby H is acyclic. Consequently by Lemma [d] VI' € M', (I', M’, M) [~ =(K).
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Case 2.2: Otherwise the set of atoms reachable by L within (I\I') is L. By Lemma@
this means that VI’ € M’ (I', M', M) = = (K).

As in all cases VI € M', (I, M', M) = n(K). M is an MKNF model which induces 1.
(<) Assume that there is an MKNF model M of m(K), such that M induces I. Clearly
by Theorem

I Keomp(I). (102)

Assume that there exists L € Loops(K) such that (L) € Kipop(I) and I f= ¢(L).
Clearly I = (L) for any loop L such that I N L = (). Therefore

INL#0. (103)

It is also clear that OBop nr ~ \ L, since ¢(L) € Kioop(I). Due to the fact that I is
saturated, OBo 1\ 1, [~ p for any atom p € (KA (K)U{L}\1, it follows that OBo.nr Ep
for any atom p € (KA (K)U {AJ_} \ (I\ L)). By Lemma (I'\ L) is saturated. As a result
for any clause (L) € Kioop(1),

(I'\ L) is a saturated K-interpretation. (104)

Consequently by Lemma (f \ L) is induced by some MKNF interpretation M’ such
that M’ Eumkne K7(O). Let M = M U M’, since all interpretations in M and M’
satisfy 7(O), M" Evgne K7(O). As 7(O) has no atoms under the ‘not’ quantifer,

VI" € M, (I, M", M) = Kn(O). (105)
In contrast, since M is an MKNF model of 7(K) and M C M”,
VI € M", (I, M", M) b (K). (106)

It follows that VI € M" (I, M", M) F= w(P). Of course this means that there is some
rule r € P such that VI € M" (I, M", M) }~ n(r). Therefore

vI"e M", (I, M",M) &= Kpo A--- AKp; Anotng A ... A notny (107)
but
VI" € M", (I, M", M) i Kho A --- AN Kh, (108)

where head(r) = {ho, ..., hi}, body™(r) = {po,...,p;}, and body™ (r) = {no,...,ng}. It
follows that

M" Enknr Kpo A -+ AKp (109)
and that
M" ey Kho A --- ANKh. (110)

M induces I and M" induces T\ L, therefore M" induces I N (I\ L), aka I\ L. This along
with (109) means that,

(I\ L) = \body™(r) (111)
and similarly from ,
(I\L) W \/ head(r). (112)
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Of course since I D (I'\ L), it is also true that
M" 2> M, so by ([107),

M ):MKNF KpogA--- A Kpj A notng A ... A notng. (113)

As M is a model this also means that

M =y Kho A+ AKh;. (114)
Consequently,
1=\ body™(r), (115)
I'= /\body™(r), and (116)
I =/ head(r). (117)
It is clear from and that
I |= Body(r). (118)
From and
I /\ —p, and (119)
pEhead(r)\L
head(r) N L # (. (120)
Furthermore from ,
body™ (r)N L = 0. (121)

The combination of (T18)), (T19), (120), and (121)), directly imply that I = (L), therefore
there can be no loop L € Loops(K) for which (L) € Keomp(I) and I = (L) as it leads

to a contradiction. Clearly this implies that I = Keomp(I). O

3 Nogood Proofs

The focus of this section is on showing that solutions to our nogoods correspond with K-
interpretations which satisfy our formulas. As is described in Theorem [3]and Theorem [
To help us with these goals we first introduce two lemmas, which aid in characterizing
the relationship between a K-interpretation and the assignment it induces.

In order for an assignment to be a solution with respect to a set of nogoods it must be
total. The following lemma shows this to be the case for the assignment induced by any
K-interpretation of an HMKNF-KB, with respect to either relevant sets of nogoods.

Lemma 7
Let I be a K-interpretation of an HMKNF-KB K = (P,0), then the assignment I
induces, AL, is a total assignment for A U{TL} and Ax UAx U{TL}.

Proof
Ay contains the sets &p, o, Yo, I'p, and I'p.

Op = {p(r) | r € P} where ¢p(r) = {Fp1,...,Fp:, TB(r) | head(r) = {p1,...,pt}}
Clearly ¢p(r)T = {B(r)} and ¢p(r)f = {p | p € head(r)}. Consequently ®% =
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{B(r) | 7 € P} and ®% = {p € head(r) | r € P}. It follows that
var(®p) ={B(r) | r e P} U{p € head(r) | r € P}. (122)

Do = {¢o(p) | p € KA(O) U{L}} where ¢o(p) = {Fp, TBo(p)}. Clearly ¢o(p)” =
{Bo(p)} and ¢o(p)" = {p}. Consequently @g = {Bo(p) | p € KA(O)U {L}}, and
oL ={p|pe KA(O)U{L}} It follows that

var(®p) = {Bo(p) | p € KA(O)U{L}}UKA(O)U{L}. (123)

Ve = {vx(p) | p € KA(K)} where ¢c(p) = {Tpt U{FBp(r,p) | 7 € P,p € head(r)}U
{FBo(p)} if p € KA(O) and ¢ = ¢x(p) = {Tp} U{FBp(r,p) [ r € P,p € head(r)}
otherwise. Clearly £ = {p}, v& = {Bp(r,p) | r € P,p € head(r)} U {Bo(p)} for all
p € KA(O), and ¢F = {Bp(r,p) | r € P.p € head(r)} for all p € KA(K) \ KA(O).
Consequently W% = KA(K), and ¥E = {Bp(r,p) | r € P,p € head(r)} U{Bo(p) | p €
KA(O)}. It follows that

var(Yx) = KAK)U{Bp(r,p) | r € P,p € head(r)}
U{Bo(p) | p € KA(O)}. (124)

e = Use(s)rePiuise (rp)reP pehead(ry V(B) where yp(8) = {{Fp} U B} U
{{TB,5} | o € B}. It should be clear that for any 3 € {B(r)|r € PYU{Bp(r,p)|r € P,p €

head(r)}, var(yp(8)) C {KAK)U{B(r) | r € PYU{B(r,p) | r € P,p € head(r)}}. It
follows that

var(Tp) C{KA(K)U{B(r) | r € P}

U{B(r,p) | r € P,p € head(r)}}. (125)
The entailment nogoods of 7(K) are
pEKA(O)U{L},SCKA(O), PeEKA(0),SCKA(O),
OBy, 5\{p}FP OBo kA (O)\(SU{p}) EP

where 'yg(p, S) ={FpBo(p)} U{Ts | s € S} and v, (p,S) = {TBo(p)} U{Fs | s € S}.
Clearly var(v3(p, S)) = var(v5(p, S)) = {s | s € S} U{Bo(p)}. It follows that

var(Po) S KA(O)U{L}U{Bo(p) | p € KA(O)U{L}}} (127)

From (122)), (123), (124), (125)), (127), and since {p € head(r) | r € P} C KA(K) and
KA (0O) CKA(K) it directly follows that
var(Ax) = KAK)U{L}u{p(r) | r € P}
U{Bp(r,p) | r € P,p € head(r)}
U{Bo(p) | p € KA(O)U{L}} (128)

Ax = rckak).scka©), Ax(L,S) where
LNS=0,0Bo kA (K)\(SUL) LY L

Mc(L,S)={{Tp,01,...,01,Fs1,...,Fsp,} | p€ L, Ep(L) = {r1,..., 1%},
o1 €p(ri,L),...,on € p(ri, L), S = {s1,...,8n}}, (129)

Ep(L) ={r € P | head(r)NL = (,body™ (r)NL =0}, and p(r, L) = {FB(r)} U{Tp | p €
head(r) \ L}. Clearly for any r € P and L C KA(K), var(p(r,L)) C {{B(r) | r €
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PrU{p|peKA(K)}}. Asaresult for any L C KA(K), S C KA(O), var(Ac(L,S)) C
{p | pe KA(K)} U{B(r) | r € P}}. It follows that
var(Ax) C{KAK)U{B(r) | r € P}}. (130)
Combined with this means
var(Ax) =var(Ax UA) ={p | p e KA(K)}U{L}
u{B(r) | reP}
U{Bp(r,p) | r € P,p € head(r)}
U{Bo(p) | p € KA(O)U{L}}. (131)
For all p € KA(K) either p € I or p € KA(K) \ I therefore
T S F
KA(K) C (Af. UAg ) (132)
Clearly since F_L € A,jC
T S F
1L e (AL UuAL ). (133)
For all 7 € P either I = Body(r) or I = Body(r) therefore
. T . F
{B(r) | reP}C (A UAL ). (134)

For all (r,p) such that » € P and p € head(r), I = Body(r), head(r) N (I U {p}) = {p},
or either I = Body(r) or head(r) N1 < {p}, therefore

T S F
{B(r,p) | r € P,p € head(r)} C (AL U AL ). (135)
Finally for all p € KA(O) U {L} either OB, f ¢,y = p or OBg p ¢,y [~ p, therefore

T S F
{Bo(p) | p € KA(O)U{L}} C (Ax UAL ). (136)
From (132)), (133), (134), (135), and (136)), it follows that
T . F
(Ak UAk ) 2{{p | p e KAK)}U{L}U{B(r) | r € P}

U{Bp(r,p) | r € P,p € head(r)}
U{Bo(p) | p € KA(O)U{L}}}. (137)

The construction of Aé makes it impossible for any kind of literal to appear within it,
therefore

AL VALY =(p | p e KAGO} U{L} U {B(r) | r € P}
U{Bp(r,p) | r € P,p € head(r)}
U {Bo(p) | p € KA(O) U {L}}. (138)

It is clear from (131)) and (138) that
- T S F
(Af- UAf ) =wvar(Ax) = var(Ax UAx). (139)
As | is already within each of these sets its addition makes no difference

(AL" UALTY = var(Ac U {1}) =
i i ) =var(Ax U{Ll}) =var(Ax UAcU{L}). (140)



Foundations of Conflict Driven Solving For Hybrid MKNF 17

Thus Aé is a total assignment for both var(Ax U{L}) and var(Ax UAcU{L}). O

The final lemma characterizes the relationship between a K-interpretation satisfying
the body of a rule, and the literals which appear within its induced assignment.

Lemma 8
For any K-interpretation I of an HMKNF-KB K = (P,0), and any rule r € P, [ |=
Body(r), if and only if, Vp € body™ (r), Tp € AL and Vn € body~(r), Fp € AL.

Proof

(=) Assume I |= Body(r). By definition I |= A body™ (r) A —\/ body~ (r). Consequently,
Vp € bodyt(r),p € I AVn € body~(r),n & I. Note that Vn € body~(r),n € KA(K)
therefore Yn € body~(r),n € KA(K) \ I. Clearly then Vp € body™(r), Tp € AQ and
Vn € body~(r),Fp € Aé.

(<) Assume Vp € body™(r), Tp € Ai and Vn € body (r),Fp € A,fc. As a result Vp €
body™ (r),p € I AVn € body~(r),n & I. Clearly this means that I = Body(r). [

We now are able to prove Theorem [3} In order to do this, we show that there is no
nogood which is a subset of AL, whenever I |= Koomp(1), and that there is such a nogood
when I & Keomp(L).

Theorem 3
Let I be a K-interpretation for an HMKNF-KB K = (P, 0), then we have that IE

Keomp(I) if and only if A,IC is a solution to Ax U {TL}.

Proof
(=) Let I be a K-interpretation of the HMKNF-KB K = (P, ) such that I = Keomp(1),
then AL is well defined.

Assume there exists § € I'p such that 6 C A,fc. Clearly since § € ' either § = 74 (p, S)
for p € KA(O)U {L},S € KA(O), such that OBp s\(p} F p or, § = v5(p,S) for
pE KA(O), S C KA(O) such that OBO,KA(O)\(SU{p}) l;é p.

Case 1: § = 75 (p, S) for p € KA(O)U{L},S C KA(O), such that OBo s\ipy F D-
'V(Jor (p,S) C A£ implies that Vs € S,s € I, or more simply S C I. This also means that
OBo,i\{p} = p. Consequently, TS0 (p) € Aé. Conversely, by the fact that 'y(‘; (p,S) C A,jc,
FBo(p) € AQ. Thereby this case results in a contradiction.

Case2: § = 7, (p, S) for p € KA(O), S € KA(O) such that OBo ka(0)\(su{p}) # P-
70D, S) C Aé implies that Vs € S,s & I, or more simply S C (KA(O) \ f) This
also means that OBO,KAA(O)\((KA(O)\IA)U{p}) £ p, or equivalently OB(?)IA\{p} K p. Cor}-
sequently, FBo(p) € Af.. Conversely, by the fact that v, (p,S) C Ak, TBo(p) € Ak.
Thereby this case also results in a contradiction.

As both cases where there exists 6 € I'o such that § C A,fC result in a contradiction,

16 € To, st. 6 C AL, (141)

Assume there exists some nogood § € I'p such that § C A,fc. Clearly for some 8 €
{B(r) |r € PYU{Bp(r,p) | 7 € P,p € head(r)}, § € yp(B). As a result either F3 € AL

and 8 C A%, or T € AL and 7 € A,I; for some o € (.
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Case 1: f € {B(r) | r € P}. )

Case 1.1: F3 € AL and B C Af. In this case I £ Body(r), so by Lemma [7| and
Lemma 8| Tp & A£ or Fn ¢ A% Conversely, since p € body™ (r), Tp € B(r) C AL and
since n € body~ (r), Fn € p(r) C Aé. This leads to a contradiction.

Case 1.2: TS € Aé and 7 € A,jC for some o € f. In this case I = Body(r), so
by Lemma [7| and Lemma |8} Vp € body™(r),Fp ¢ A,fc and Vn € body~ (r), Tn & A,fc.
Conversely, either for some p € body‘*‘(r)7 & = Fp or for some n € body~(r) @ = Tp.
Therefore either 3p € body™ (r), Fp € AL or In € body~(r), Tp € AL. This leads to a
contradiction.

Case 2: g € {fB(r,p) | r € P,p € head(r)}. In this case either 7 = Fj3(r) or & = Tq
for some ¢ € head(r) \ {p}- A )

Case 2.1: F € AL and 8 C AL. In this case TB(r) € AL and Vq € head(r)\{p},Fq €
A,jc. Also either I = Body(r) or head(r)N1 ¢ {p}. This means that FA(r) € Ai or dq €
head(r)\{p}, Tq € A,fc. Following Lemma TH(r) & A% or 3¢ € head(r)\{p}, Fq ¢ A,jC7
so we have a contradiction. A

Cases 2.2: T3 € AL and & € AL for some o € (. In this case either & = F3(r) or
G = Tq for some q € head(r) \ {p}. Also I = Body(r), and head(r) N (Iu{p}) = {p}.
This means that T3(r) € AL, and Vg € head(r) \ {p},Fq € AL. Following Lemmaﬁ
Fa(r) ¢ A,fc and Vg € head(r) \ {p}, Tq & A,fc, so we have a contradiction.

As all possible cases where there exists a nogood § € I'p such that § C A£ result in a
contradiction.

16 € Tp, s.t. 6 C AL. (142)

Assume that there is some nogood § € ®p such that 6§ C A,ic. Clearly § = ¢p(r)
for some rule r € P. As a consequence Vp € head(r),Fp € A£ and Tj3(r) € Aé. This
means that Vp € head(r),I = p and I = Body(r). More simply I (= \/ head(r) and
I = Body(r). This contradicts the assumption that I = Pruie, therefore

16 € ®p, s.t. 6 C AL, (143)

Assume that there is some nogood ¢ € ¢ such that § C A,I;. Clearly § = ¢o(p) for
some p € KA(O) U {L}. As a consequence Fp € AL and TBo(p) € AL. This means
that p € KA(K) \ I, and that OBo,f\{p} = p. More simply p ¢ I and OB, ; = p. This

contradicts the assumption that I = Osatr(f ), therefore
16 € o sit. 6 C AL (144)

Assume that there is some nogood § € Wi such that 6 C A%. Clearly 6 = 9x(p)
for some p € KA(K). As a consequence Tp € A,fC7 Fip(r,p) € A% for each r € P
such thAat p € head(r), and Fﬁo(Ap) € A£ if p € KA(O). This means that p € I,
either I [~ Body(r) or head(r) NI < {p} for each r € P such that p € head(r), and
OBp p\(py # P if p € KA(O). Equivalently, I}=p, I~ Body(r) A Nqgeneadrn ipy 74 for
each r € P such that p € head(r). More simply,

I¥po \/ (Body(r) A /\ —q). (145)

reP, g€head(r)\{p}
pEhead(r)
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As OB i\ () P KCsup(I) includes this formula so I & Ky (I [). This is a contradiction,
therefore

16 € Wi sit. 6 C AL (146)

From (141)), (142)), (143)), (144), and (146) it clearli follows that there is no nogood

6 € Ax such that § C A,IC. Combined with Lemma |7}, and the fact that TL & A,IC this
means that A,I; is a solution for Ax U{TL}.

(«) Assume that I ¥~ Pruse. Clearly there is some r € P such that [ = Body(r) and
I = \/ head(r). As a consequence TS(r) € AI but Vp € head(r),Fp € AI This means
that ¢p(r) C A,ic, since ¢p(r) € ®p this violates the assumption that A,iC is a solution
for Ayx. Therefore

I = Prae. (147)

Assume that I b Osarr(1 ). Clearly there is some atom p € KA(O) U {1} such that
By K p but p & I. As a result TBo(p) € AL, however Fp € AI This means that

gf)@( ) C A,C, since ¢o(p) € P this violates the assumption that A£ is a solution for
Ay . Therefore

I= O (I). (148)

Assume that [ e KCsup( A) Clearly there is some atom p € I such that OBo,f\{p} Ep
for which for all 7 € P where p € head(r) I ¥ Body(r) or Ja € head(r) \ {p} such
that a € I. Fromp e I, Tp € AI From OBy, 7 1,y = p; either p € (KA(K) \ KA(O))
or Ffp € AI,C. Finally, since for all » € P where p € head(r), I £ Body(r) or Ja €
head(r) \ {p} such that a € I, F@p(r,p) € A,fc. It follows that i (p) C AI, since
Pic(p) € Ui this violates the assumption that A,iC is a solution for Ax. Therefore

I = Keup(D). (149)

From (147), (T48), and ([49), I = Keomp(I). O

We now are able to prove Theorem [4] by expanding upon Theorem [3] In particular,
we show that when [ = Kcomp( ) A ICloop( ) there is no nogood which is a subset of AL
but there is one whenever I = Keomp (1) but I Kioop(1).

Theorem 4
Let I be a K-interpretation for an HMKNF-KB K = (P, ), then we have that [ =
Keomp(I) A Kioop(I) if and only if AL is a solution to Ax U Ax U {TL}.

Proof

(=) Assume that I = Keomp () AKioop(I). By TheoremlA is a solution for AcU{TL}.
Meaning that no nogood § € Ax U {T'L} such that § C AI We also know that A,C is
a total assignment for Ax U Ax U{T L} by Lemma (7] Therefore we must simply show
that there is no nogood & € Ax such that § C AIK. Suppose that there is such a nogood
J. Clearly, 6 € Ac(L,S) for some L € Loops(K), S C KA(O) for which LN S = () and

OBo xa)\(sur) =V L.
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Consequently there is an atom p € L such that Tp € §, so Tp € A,I;, therefore
I=\/L (150)

Since I C KA(K), OBo xay\(sur) # V L, and only atoms in KA(O) are relevant
for entailing other atoms through the ontology, OBy, j\ (s % V L. Due to the fact that

Vse S,Fsed, Fse Aé thereby INS=0.Asa consequence

OBy j 1, ¥ \/L. (151)

For each rule r € P for which LNhead(r) # 0 and body™ (r)NL = 0, either F3(r) € 4, or
Ta € § such that a € head(r)\ L. This means that for all such rules F3 € AL or Ta € AL
for such a. Consequently for each rule either I = Body(r) or I =V ,cpeqaqrz @- More
simply

I \/ (Body(r) A /\ —\a). (152)

reP a€head(r)\L
head(r)NL#£Q

body ™t (r)NL=0

From (150, (T51), (152)), and the fact that L € Loops(K), it is clear that T ¥ Kioop(1).
Therefore there can be no nogood & € Ag such that § C A i, or else a contradiction

would occur. We have already shown all other necessary conditions, so A,fC is a solution
to Ax UAg U {TJ_}
(<) Assume that A,IC is a solution to Ax U Ax U {TJ_} clearly by Lemma [7]it is also a
solution for Ax U {TL}, therefore by Theorem |3 I = Keomp(D).

Suppose I Kioop(1 [). Then there would be some loop L € Loops(K) for which

By i VL, I =\ L,and
I a \/ (Body(r) A /\ —|a). (153)

repP a€head(r)\L
head(r)NL#Q
body™ (r)NL=0

Clearly for S = KA(O) \ (fU L), LNS = 0, and since KA(O)\ (SUL) = f\L7
OBo ka(o)\(sur) # \V L. Therefore

Ak (L, S) € Ak (154)
As EVL dpel, I E p, therefore
Ipel,Tpe AL, (155)
Also since S = KA(O)\ (IUL), Vs € 8,1~ s, and consequently
Vs € S, Fs e AL. (156)

From (153)), for all rules r € P such that head(r) N L # 0 and body™*(r) = 0, either
I Body(r) or there is some atom a € head(r) \ L for which I = a. Therefore either
FB(r) € AL or a € head(r) \ L such that Ta € AL for each such rule. Note that these
rules make up the set Ep(L), thereby

Vr € Ep(L),30 € p(r, L), such that o € AL (157)
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From (155)), (156, and (157) there is some nogood § € A (L, S) such that § C A,I;.
Due to (154)) this means that

36 € Ak, C AL (158)

This directly contradicts the assumption that A£ is a solution for Ax UAx U{TL}. As
the supposition that I (= Kioop(I) leads to a contradiction, it must actually be the case
that I = Kioop(l). O
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