
TPLP : Page 1–14. © The Author(s), 2024. Published by Cambridge University Press 2024

doi:10.1017/xxxxx

1

Supplementary Material for
The Stable Model Semantics for Higher-Order Logic

Programming

BOGAERTS BART†‡, CHARALAMBIDIS ANGELOS⊛, CHATZIAGAPIS GIANNOS⋇,
KOSTOPOULOS BABIS⊛, POLLACI SAMUELE†‡ and RONDOGIANNIS PANOS⋇

†Vrije Universiteit Brussel, Belgium
‡Katholieke Universiteit Leuven, Belgium
⊛Harokopio University of Athens, Greece

⋇National and Kapodistrian University of Athens, Greece

A Proofs of Section 4 and Section 5

In the following, we provide the proofs of a few propositions contained in Sections 4

and 5. Notice that most of the results of these two sections are rather straightforward.

Propositions 4.1 and 5.1 are algebraic consequences of Definitions 4.1 and 5.1, respectively.

Proposition 4.1

For every predicate type π, (JπK,≤π) is a complete lattice.

Proof

We proceed by induction on the predicate type π.

Let π = o. Clearly, the set JoK = {true, false} with the order ≤o is a complete lattice,

with bottom element false and top element true.

Now let π = ρ→ π′, and assume Jπ′K is a complete lattice. We have to show that the

set of functions JρK → Jπ′K with the order ≤ρ→π is a complete lattice. Since Jπ′K is a

complete lattice, for each subset S ⊆ JπK we can define f∧S , f
∨

S ∈ JπK by f∧S(x) :=∧
{g(x) | g ∈ S} and f∨S(x) :=

∨
{g(x) | g ∈ S}, respectively. By the definition of ≤ρ→π′ ,

it is immediate to see that
∧
S = f∧S and

∨
S = f∨S . Hence, JπK is a complete lattice,

as desired.

The following proposition draws the correspondence between the two-valued Herbrand

models of a program and the pre-fixpoints of its immediate consequence operator.

Proposition 4.3

Let P be a program and I ∈ HP. Then, I is a model of P iff I is a pre-fixpoint of TP.

Proof

Suppose first that I is a model of P. Suppose, for the sake of contradiction, that I is not

a pre-fixpoint of TP. That means that there exists a predicate constant p : ρ1 → · · · →
ρn → o and a d ∈ Jρ1K× · · · × JρnK such that TP(I)(p) d ̸≤ I(p) d. Then, TP(I)(p) d must

be true, so by the definition of TP there is a Herbrand state s and a rule p R← B such

that JBKs[R/d](I) = true. Since I is a model, Jp RKs[R/d](I) = true. Then, I(p) d = true,

which is a contradiction.



2 Bogaerts et al.

In the other direction, suppose that I is a pre-fixpoint of TP. Suppose s is a

Herbrand state and p R1 . . .Rn ← B is a rule such that JBKs(I) = true. Then,

TP(I)(p) s(R1) . . . s(Rn) = true. Since I is a pre-fixpoint of TP, I(p) s(R1) . . . s(Rn) = true,

which implies that Jp R1 . . .RnKs(I) = true.

Proposition 5.1

For every predicate type π, (JπK∗,≤π) is a complete lattice and (JπK∗,⪯π) is a complete

meet-semilattice (i.e., every non-empty subset of JπK∗ has a ⪯π-greatest lower bound).

Proof

We proceed by induction on the predicate type π.

If π = o, then obviously (JπK∗,≤π) is a complete lattice and (JπK∗,⪯π) is a complete

meet-semilattice.

Let now π = ρ→ π′, and assume that (Jπ′K∗,≤π) is a complete lattice and (Jπ′K∗,⪯π)

is a complete meet-semilattice. We show that (JπK∗,≤π) is a complete lattice. The proof

that (Jπ′K∗,⪯π) is a complete meet-semilattice is analogous and omitted. Let S be a

subset of JρKUP
→ Jπ′K∗UP

. By induction hypothesis, we can define f∧S , f
∨

S ∈ JπK by

f∧S(x) :=
∧
{g(x) | g ∈ S} and f∨S(x) :=

∨
{g(x) | g ∈ S}, respectively. By the

definition of ≤ρ→π′ , it is immediate to see that
∧

S = f∧S and
∨
S = f∨S . Hence, JπK

is a complete lattice, as desired.

Lemma 5.1

For every argument type ρ and d∗ ∈ JρK∗, there exists d ∈ JρK such that d∗ ⪯ρ d.

Proof

For the case ρ = ι, we have JιK = JιK∗, so that d∗ ∈ JιK and d∗ ⪯ι d
∗. On the other hand,

if ρ = π, ρ would be of the form ρ1 → . . .→ ρn → o. We define d ∈ JρK such that for all

x1 ∈ Jρ1K, . . . , xn ∈ JρnK:

d(x) =

{
d∗(x), if d∗(x) ∈ {false, true}
false, otherwise

It is easy to see that d ⪯ρ d∗.

In order to establish Lemma 5.2, we need to first show an auxiliary one:

Lemma A.1

Let ρ be an argument type. Then, (⪯ρ) restricted to JρK is the trivial ordering, i.e., for

all d, d′ ∈ JρK, d ⪯ρ d′ if and only if d = d′.

Proof

By induction on the argument type ρ. If ρ = ι the result follows from the definition of ⪯ι

over JιK∗. If ρ = o, it can be established by case analysis. Suppose now that ρ = ρ′ → π

and the statement holds for π. Let d, d′ ∈ Jρ′ → πK such that d ⪯ρ′→π d′. By the definition

of ⪯ρ′→π, we have d(x) ⪯π d′(x) for all x ∈ Jρ′K. By the induction hypothesis, we have

d(x) = d′(x) for all x ∈ Jρ′K. Therefore, d = d′.

Lemma 5.2

Let P be a program, I ∈ HP and s ∈ SP. Then, for every expression E, JEKs(I) = JEK∗s(I).



The Stable Model Semantics for Higher-Order Logic Programming 3

Proof

By induction on the structure of E. The only non-trivial case is when E is of the form

(E1 E2). By Lemma A.1, {[[E1]]
∗
s(I)(d) | d ∈ [[ρ]], [[E2]]

∗
s(I) ⪯ρ d} = {[[E1]]

∗
s(I)([[E2]]

∗
s(I))}.

Therefore,

[J(E1 E2)K∗s(I) = [[E1]]
∗
s(I)([[E2]]

∗
s(I))

= [[E1]]s(I)([[E2]]s(I)) (Induction Hypothesis)

= J(E1 E2)Ks(I)

This completes the proof of the lemma.

B Proofs of Section 6

In this appendix, we collect the proofs of the results of Section 6. We start with Proposi-

tion 6.1, which concerns the existence, for every predicate type π, of an isomorphism, i.e.,

an order-preserving bijection, between the set JπK∗ of three-valued meanings and the set

JπKc of pairs of two-valued ones. We first provide the definition of such functions, and

then we prove they are indeed isomorphisms in Proposition 6.1.

Definition B.1

For every predicate type π, we define the functions τπ : JπK∗ → JπKc and τ−1
π : JπKc → JπK∗,

as follows:

• τo(false) = (false, false), τo(true) = (true, true), τo(undef ) = (false, true)

• τρ→π(f) = (λd.[τπ(f(d))]1, λd.[τπ(f(d))]2)

and

• τ−1
o (false, false) = false, τ−1

o (true, true) = true, τ−1
o (false, true) = undef

• τ−1
ρ→π(f1, f2) = λd.τ−1

π (f1(d), f2(d))

The functions τπ defined above, can easily be extended to a function between HP and

Hc
P: given I ∈ HP, we define τ(I) = (I, J), where for every predicate constant p : π it

holds I(p) = [τπ(I(p))]1 and J(p) = [τπ(I(p))]2. Conversely, given a pair (I, J) ∈ HP
c, we

define the three-valued Herbrand interpretation τ−1(I, J), for every predicate constant

p : π, as follows: τ−1(I, J)(p) = τ−1
π (I(p), J(p)).

Proposition 6.1

For every predicate type π there exists a bijection τπ : JπK∗ → JπKc with inverse τ−1
π :

JπKc → JπK∗, that both preserve the orderings ≤ and ⪯ of elements between JπK∗ and

JπKc. Moreover, there exists a bijection τ : HP → Hc
P with inverse τ−1 : Hc

P → HP, that

both preserve the orderings ≤ and ⪯ between HP and Hc
P.

Proof

Consider the functions in Definition B.1. Let π be a predicate type. It follows easily from

the definition that τπ, τ
−1
π are well defined functions and a formal proof using induction

on the type structure is omitted.

We show that they are also order-preserving, τπ is a bijection and τ−1
π is the inverse.

Specifically, for every f, g ∈ JπK∗ and for every (f1, f2), (g1, g2) ∈ JπKc, we show that the

following statements hold:

1. If f ⪯π g then τπ(f) ⪯π τπ(g).



4 Bogaerts et al.

2. If f ≤π g then τπ(f) ≤π τπ(g).

3. If (f1, f2) ⪯π (g1, g2) then τ−1
π (f1, f2) ⪯π τ−1

π (g1, g2).

4. If (f1, f2) ≤π (g1, g2) then τ−1
π (f1, f2) ≤π τ−1

π (g1, g2).

5. τ−1
π (τπ(f)) = f

6. τπ(τ
−1
π (f1, f2)) = (f1, f2)

We will use structural induction on the types. For the base types o and ι the proof is

trivial for all the statements. Consider the general case of π : ρ1 → π2.

Statement 1: Assume that f ⪯ g. Then, for any d ∈ Jρ1K it is f(d) ⪯π2
g(d) and by

induction hypothesis τπ2
(f(d)) ⪯π2

τπ2
(g(d)). Therefore, [τπ2

(f(d))]1 ≤π2
[τπ2

(g(d))]1
and by abstracting λd.[τπ2

(f(d))]1 ≤π2
λd.[τπ2

(g(d))]1. Similarly, it is [τπ2
(g(d))]2 ≤π2

[τπ2
(f(d))]2 and so λd.[τπ2

(g(d))]2 ≤π2
λd.[τπ2

(f(d))]2. We conclude that

τπ(f) = (λd.[τπ2
(f(d))]1, λd.[τπ2

(f(d))]2) ⪯π (λd.[τπ2
(g(d))]1, λd.[τπ2

(g(d))]2) = τπ(g)

The proof of the second statement is analogous.

Statement 3: Assume that (f1, f2) ⪯π (g1, g2). Then, for any d ∈ Jρ1K it is f1(d) ≤π2 g1(d)

and g2(d) ≤π2 f2(d). therefore, (f1(d), f2(d)) ⪯π (g1(d), g2(d)) and by induction it is

τ−1
π (f1(d), f2(d)) ⪯π τ−1

π (g1(d), g2(d)) which by abstracting gives λd.τ−1
π (f1(d), f2(d)) ⪯π

λd.τ−1
π (g1(d), g2(d)) therefore τ−1

π (f1, f2) ⪯π τ−1
π (g1, g2).

The proof of the fourth statement is analogous.

Statement 5: We have:

τ−1
ρ1→π2

(τρ1→π2
(f))

= τ−1
ρ1→π2

(λd.[τπ2
(f(d))]1, λd.[τπ2

(f(d))]2) (Definition of τρ1→π2
)

= λd.τ−1
π2

([τπ2(f(d))]1, [τπ2(f(d))]2) (Definition of τ−1
ρ1→π2

)

= λd.τ−1
π2

(τπ2
(f(d))) (Definition of [·]1 and [·]2)

= λd.f(d) (Induction Hypothesis)

= f

Statement 6: Similarly to the previous statement:

τρ1→π2
(τ−1

ρ1→π2
(f1, f2))

= τρ1→π2(λd.τ
−1
π2

(f1(d), f2(d))) (Definition of τ−1
ρ1→π2

)

= (λd.[τπ2
(τ−1

π2
(f1(d), f2(d)))]1, λd.[τπ2

(τ−1
π2

(f1(d), f2(d)))]2) (Definition of τρ1→π2
)

= (λd.[(f1(d), f2(d))]1, λd.[(f1(d), f2(d))]2) (Induction Hypothesis)

= (λd.f1(d), λd.f2(d)) (Definition of [·]1 and [·]2)
= (f1, f2)

The proof extends for the functions τ, τ−1 defined for interpretations. For example,

for any interpretation I ∈ HP and for any predicate constant p it follows easily from

the previous result and the definitions of τ, τ−1 that (τ−1(τ(I)))(p) = I(p) and for any

(I, J) ∈ Hc
P it is τ(τ−1(I, J))(p) = (I(p), J(p)).

We proceed now to the second result of Section 6, Lemma 6.1, which shows that the

mapping AP of Definition 6.2 is a consistent approximator of TP, i.e. AP is ⪯-monotonic

and for every I ∈ HP, AP(I, I) = (TP(I), TP(I)). The term consistent comes from the

terminology used by Denecker et al. (2004), and it refers to the fact that the mapping is

defined over sets of consistent elements, i.e., of the form defined in Definition 6.1. A few

intermediate lemmas are needed to ease the proof of Lemma 6.1.



The Stable Model Semantics for Higher-Order Logic Programming 5

Lemma B.1

Let π be a predicate type and f ∈ JπK. Then τ−1
π (f, f) = f .

Proof

By induction on π. If π = o it follows from the definition of τ−1
o . When π = ρ → π′

assuming that lemma holds for π′, then τ−1
ρ→π′(f, f) = λd.τ−1

π′ (f(d), f(d)) = λd.f(d) = f .

Corollary B.1

Let I ∈ HP. Then τ−1(I, I) = I.

Lemma B.2

Let π be a predicate type and f ∈ JπK. Then f is ⪯π-maximal over JπK∗.

Proof

By induction on π. If π = o it follows from the definition of ⪯o. When π = ρ → π′

assuming that lemma holds for π′, then for every d ∈ JρK, f(d) ∈ Jπ′K, so that f(d) is

⪯π′ -maximal over Jπ′K∗. We conclude that f is ⪯ρ→π′-maximal over Jρ→ π′K∗.

Lemma B.3

Let P be a program and π be a predicate type. Let I be a non-empty index-set and for any

i ∈ I, di, d
′
i ∈ JπK∗. If for all i ∈ I, di ⪯π d′i, then

∨
≤π
{di | i ∈ I} ⪯π

∨
≤π
{d′i | i ∈ I}.

Proof

We proceed by induction on the predicate type π. If π = o the lemma follows by case

analysis of
∨

≤π
{di | i ∈ I}. Suppose now that π = ρ→ π′ and the lemma holds for π′.

By the proof of Proposition 5.1, we have that
∨

≤π
{di | i ∈ I} = λx.

∨
≤π′{di(x) | i ∈ I}

and
∨

≤π
{d′i | i ∈ I} = λx.

∨
≤π′{d

′
i(x) | i ∈ I}. For any x ∈ JρK, by induction hypothesis,

we have that
∨

≤π′{di(x) | i ∈ I} ⪯π′
∨

≤π′{d
′
i(x) | i ∈ I}. We conclude that

∨
≤π
{di |

i ∈ I} ⪯π

∨
≤π
{d′i | i ∈ I}.

Lemma B.4

Let P be a program, let I,J ∈ HP, and let s be a Herbrand state of P. For every

expression E : π, if I ⪯ J then JEK∗s(I) ⪯π JEK∗s(J ).

Proof

Using induction on E. The only interesting case is when E = (E1 E2) where E1 : ρ→ π and

E2 : ρ. Suppose that when I ⪯ J then JE1K∗s(I) ⪯ρ→π JE1K∗s(J ) and JE2K∗s(I) ⪯ρ JE2K∗s(J ).

Suppose x ∈ {[[E1]]
∗
s(J )(d) | d ∈ [[ρ]], [[E2]]

∗
s(J ) ⪯ρ d}. Then, there exists some d such

that [[E2]]
∗
s(J ) ⪯ρ d and x = [[E1]]

∗
s(J )(d). Since JE2K∗s(I) ⪯ρ JE2K∗s(J ) ⪯ρ d, we have

[[E1]]
∗
s(I)(d) ∈ {[[E1]]

∗
s(I)(d) | d ∈ [[ρ]], [[E2]]

∗
s(I) ⪯ρ d}. Also, by inductive hypothesis,

[[E1]]
∗
s(I)(d) ⪯π x, so that

∧
⪯π
{[[E1]]

∗
s(I)(d) | d ∈ [[ρ]], [[E2]]

∗
s(I) ⪯ρ d} ⪯π x. Since that

holds for any x, we have JEK∗s(I) =
∧

⪯π
{[[E1]]

∗
s(I)(d) | d ∈ [[ρ]], [[E2]]

∗
s(I) ⪯ρ d} ⪯π∧

⪯π
{[[E1]]

∗
s(J )(d) | d ∈ [[ρ]], [[E2]]

∗
s(J ) ⪯ρ d} = JEK∗s(J ).

We are finally ready to prove Lemma 6.1.



6 Bogaerts et al.

Lemma 6.1

Let P be a program. In the terminology of Denecker et al. (2004), AP : Hc
P → Hc

P is a

consistent approximator of TP.

Proof

We have to show that AP is ⪯-monotone and extends TP. For the monotonicity, it follows

from the definition of TP together with Lemma B.4 and Lemma B.3 that TP is ⪯-monotone.

Also, by Proposition 6.1, τ and τ−1 preserve ⪯, so that AP is ⪯-monotone.

Now, we have to show that AP extends TP, i.e., for every I ∈ HP, AP(I, I) =

(TP(I), TP(I)). By Corollary B.1, τ−1(I, I) = I. Since I ∈ HP, by Lemma 5.2, we have

that for every expression E, JEKs(τ−1(I, I)) = JEK∗s(I). Now we have

AP(I, I) = τ(TP(τ−1(I, I)))

= τ
(∨

≤o
{JBK∗

s[R/d]
(τ−1(I, I)) | s ∈ SP and (p R← B) in P}

)
= τ

(∨
≤o
{[[B]]s[R/d](I) | s ∈ SP and (p R← B) in P}

)
= τ(TP(I))

Since TP(I) ∈ HP, by Corollary B.1, we have τ(TP(I)) = (TP(I), TP(I)).

We conclude this appendix by showing that Definition 6.3 and Definition 5.4 for

three-valued models agree.

Lemma 6.2

Let P be a program and (I, J) ∈ Hc
P. Then, (I, J) is a pre-fixpoint of AP if and only if

τ−1(I, J) is a three-valued model of P.

Proof

First notice that by Definition 5.5 and Proposition 6.1, (I, J) is a pre-fixpoint of AP if

and only if AP(I, J) = τ(TP(τ−1(I, J))) ≤ (I, J) if and only if TP(τ−1(I, J)) ≤ τ−1(I, J),

i.e. (I, J) is a pre-fixpoint of AP if and only if τ−1(I, J) is a fixpoint of TP. We conclude

by Proposition 5.2.

C Proofs of Section 7

The following theorem states that our stable model semantics coincides with the classical

stable model semantics for the class of propositional programs.

Theorem 7.1

Let P be a propositional logic program. Then,M is a (three-valued) stable model of P iff

M is a classical (three-valued) stable model of P.

Proof

In (Denecker et al. 2004, Section 6, pages 107–108), the well-founded semantics of

propositional logic programs is derived. The language used there allows arbitrary nesting

of conjunction, disjunction and negation in bodies of the rules which fully encompasses

our syntax when we restrict our programs to be propositional. In addition, the immediate

consequence operator TP is the same and so is the approximation space which we have

denoted as Hc
P in this work.

It is easy to see that the approximator AP we give in our approach and the one given

in Denecker et al. (2004) fully coincide for propositional programs therefore produce



The Stable Model Semantics for Higher-Order Logic Programming 7

equivalent semantics. Notice how our three-valued operator TP fully coincides with the

three-valued immediate consequence operator in Denecker et al. (2004) since the fourth

rule in Definition 5.3 is never used.

In order to establish Theorem 7.2, we use the following proposition which is a restatement

of Proposition 3.14 found in Denecker et al. (2004) that refers to pre-fixpoints of the

approximator AP instead of fixpoints. The proof is almost identical but is presented here,

nonetheless, for reasons of completeness.

Proposition C.1

A stable fixpoint (x, y) of AP is a ≤-minimal pre-fixpoint of AP. Furthermore, if (x, x) is

a stable fixpoint of AP then x is a minimal pre-fixpoint of TP.

Proof

Let (x, y) be a stable fixpoint of AP and let (x′, y′) such that (x′, y′) ≤ (x, y) and (x′, y′)

is a pre-fixpoint of AP, so AP(x
′, y′) ≤ (x′, y′). We have that x′ ≤ y′ ≤ y which gives

us that AP(x
′, y)1 ≤ AP(x

′, y′)1 ≤ (x′, y′)1 = x′. Therefore, x′ is a pre-fixpoint of the

operator AP(·, y)1 and since x is its least fixpoint we get that x ≤ x′. By the assumption

that x′ ≤ x we conclude that x = x′.

Since we have shown that x = x′ we have that x = x′ ≤ y′ and AP(x, y
′)2 ≤

AP(x
′, y′)2 ≤ (x′, y′)2 = y′ which makes y′ a pre-fixpoint of AP(x, ·)2. Since y is its

least fixpoint we have that y ≤ y′ and by assumption y′ ≤ y. We conclude that y = y′

and finally (x, y) = (x′, y′).

Assume that x′ ≤ x and x′ is a pre-fixpoint of TP therefore TP(x
′) ≤ x′. Since AP is an

approximator of TP we have that AP(x
′, x′) = (TP(x

′), TP(x
′)) ≤ (x′, x′). But then (x′, x′)

is a pre-fixpoint of AP and (x′, x′) ≤ (x, x). By the result of the previous paragraph we

conclude that (x′, x′) = (x, x) and x′ = x.

Theorem 7.2

All (three-valued) stable models of a HOL program P are ≤-minimal models of P.

Proof

LetM be a three-valued stable model of P andM′ a three-valued model of P, such that

M′ ≤M which also implies τ(M′) ≤ τ(M). By Lemma 6.2, τ(M′) is a pre-fixpoint of AP.

But τ(M) is a stable fixpoint of AP so by Proposition C.1 it is a minimal pre-fixpoint of

AP. We conclude that τ(M′) = τ(M) and soM′ =M. Since every two-valued model is a

three-valued model it follows that that every stable model is also a ≤-minimal two-valued

model.

Theorem 7.3

Let P be a HOL program. If the well-founded model of P is two-valued, then this is also

its unique stable model.

Proof

LetM be the well founded model of P. Then τ(M) is the ⪯-least three-valued stable model.

It immediately follows that sinceM is two-valued, by Corollary B.1 it is τ(M) = (M,M).

Then for any (x, y) three-valued stable fixpoint of AP it is (M,M) ⪯ (x, y). Since it also

must hold x ≤ y we conclude that x = y =M and τ−1(x, y) = τ−1(M,M) =M.



8 Bogaerts et al.

In order to establish Theorem 7.4, we first prove some auxiliary results.

Lemma C.1

Let P be a stratified HOL program and E be an expression. Let I, J ∈ HP be two

interpretations such that I(p) = J(p) for every predicate constant p occurring in E. Then,
for every state s ∈ SP, [[E]]s(I) = [[E]]s(J).

Proof

Trivial using induction on the structure of E.

Corollary C.1

Let S be a stratification function of the HOL program P and I, J ∈ HP be two interpre-

tations. If for some n ∈ ω, I(p) = J(p) for every predicate constant p with S(p) < n, then

TP(I)(p) = TP(J)(p) for every predicate constant p with S(p) < n.

Lemma C.2

Let S be a stratification function of the HOL program P and (I, J) ∈ Hc
P. If for some

n ∈ ω, I(p) = J(p) for every predicate constant p with S(p) < n, then AP(I, J)(p) =
(TP(I)(p), TP(J)(p)) for every predicate constant p with S(p) ≤ n.

Proof

We will show the following auxiliary statement that suffices to show the lemma. For any

expression E : π such that the following three statements hold:

1. S(q) ≤ n for every predicate constant q occurring in E,
2. if E is of the form (E1 E2), then S(q) < n for every predicate constant q occurring

in E2,

3. if E is of the form (∼ E1), then S(q) < n for every predicate constant q occurring in

E1,

and for any Herbrand state s ∈ SP it follows that [[E]]∗s(τ
−1(I, J)) = τ−1

π ([[E]]s(I), [[E]]s(J)).
This can be established using induction on the structure of E. The interesting cases

are when E is of the form (E1 E2) or of the form (∼ E3). Suppose that E : π is of

the form (E1 E2) where E1 : ρ → π and E2 : ρ and suppose the statement holds

for E1 and E2. By Lemma C.1, [[E2]]s(I) = [[E2]]s(J). So, by the induction hypoth-

esis and Lemma B.1, [[E2]]
∗
s(τ

−1(I, J)) = [[E2]]s(I) and therefore [[E2]]
∗
s(τ

−1(I, J)) ∈
JρK. By Lemma B.2,

∧
⪯π
{[[E1]]

∗
s(τ

−1(I, J))(d) | d ∈ [[ρ]], [[E2]]
∗
s(τ

−1(I, J)) ⪯ρ d} =

[[E1]]
∗
s(τ

−1(I, J))([[E2]]
∗
s(τ

−1(I, J))) = [[E1]]
∗
s(τ

−1(I, J))([[E2]]s(I)). Therefore,

[[E]]∗s(τ
−1(I, J))

= [[E1]]
∗
s(τ

−1(I, J))([[E2]]s(I))

= τ−1
ρ→π([[E1]]s(I), [[E1]]s(J))([[E2]]s(I)) (Induction Hypothesis)

= (λd.τ−1
π ([[E1]]s(I)(d), [[E1]]s(J)(d)))([[E2]]s(I)) (Definition of τ−1

ρ→π)

= τ−1
π ([[E1]]s(I)([[E2]]s(I)), [[E1]]s(J)([[E2]]s(I)))

= τ−1
π ([[E1]]s(I)([[E2]]s(I)), [[E1]]s(J)([[E2]]s(J))) (Since [[E2]]s(I) = [[E2]]s(J))

= τ−1
π ([[E]]s(I), [[E]]s(J))

Now, suppose that E : o is of the form (∼ E3) where E3 : o. By Lemma C.1,

[[E3]]s(I) = [[E3]]s(J). So, by Lemma B.1, [[E3]]
∗
s(τ

−1(I, J)) = [[E3]]s(I). Since E3 is of



The Stable Model Semantics for Higher-Order Logic Programming 9

type o, [[E3]]
∗
s(τ

−1(I, J)) can be either true or false. In any of the two cases, it is easy to

show that [[E]]∗s(τ
−1(I, J)) = τ−1

o ([[E]]s(I), [[E]]s(J)).

Theorem 7.4

Let P be a stratified HOL program. Then, the well-founded model of P is two-valued.

Proof

Let S be a stratification function of P and (Iw, Jw) ∈ Hc
P be the well-founded model of

P. Suppose, for the sake of contradiction, that Iw ̸= Jw. Let n be the least number such

that there exists some predicate constant p : π1 with S(p) = n and Iw(p) ̸= Jw(p). We

define an interpretation J such that for any predicate constant q:

J(q) =

{
Iw(q), if S(q) ≤ n

Jw(q), if S(q) > n

It is obvious, by definition, that Iw ≤ J ≤ Jw and therefore (Iw, J) ∈ Hc
P. For any

predicate constant q with S(q) ≤ n, we have

[AP(Iw, J)]2(q) = TP(J)(q) (Lemma C.2)

= TP(Iw)(q) (Corollary C.1)

= [AP(Iw, Jw)]1(q) (Lemma C.2)

= Iw(q) ((Iw, Jw) is a fixpoint of AP)

= J(q) (Definition of J)

Since [AP(Iw, ·)]2 is monotone and J ≤ Jw, it follows [AP(Iw, J)]2 ≤ [AP(Iw, Jw)]2 = Jw.

Thus, for any predicate constant q : π2 with S(q) > n, we have [AP(Iw, J)]2(q) ≤π2

Jw(q) = J(q). Since [AP(Iw, J)]2(q) ≤π2
J(q) for any predicate constant q : π2, we

have [AP(Iw, J)]2 ≤ J , or J is a pre-fixpoint of [AP(Iw, ·)]2. Since (Iw, Jw) is a stable

fixpoint of AP, Jw is the least pre-fixpoint of [AP(Iw, ·)]2. Therefore, we have Jw ≤ J .

So, Jw(p) ≤π1
J(p) = Iw(p). But, we have Iw ≤ Jw, so that Iw(p) = Jw(p), which is a

contradiction. We conclude that Iw = Jw. Using Corollary B.1, τ−1(Iw, Jw) = Iw, so that

τ−1(Iw, Jw) ∈ HP.

References

Denecker, M., Marek, V. W., and Truszczynski, M. 2004. Ultimate approximation and its
application in nonmonotonic knowledge representation systems. Inf. Comput., 192, 1, 84–121.


