Appendix A Proofs of Theorems

A.1 Theorems and Proofs from Section 3

Lemma 1

Let P be an NLP, $\mathcal{I} = \langle T, F \rangle$ an interpretation and $\Omega_P(\mathcal{I}) = \langle T', F' \rangle$ the least 3-valued model of $\frac{P}{\mathcal{I}}$. It holds

- (i) $c \in T'$ iff there exists a statement s constructed from P such that $Conc(s) = c$ and Vul(s) \subseteq F.
- (ii) $c \in F'$ iff for every statement s constructed from P such that $Conc(s) = c$, we have Vul(s) ∩ $T \neq \emptyset$

Proof

- Proving that $c \in T'$ iff there exists a statement s constructed from P such that $Conc(s) = c$ and $\text{Vul}(s) \subseteq F$:
	- \Rightarrow Consider $\Psi_{\underline{P}}^{\uparrow i} = \langle T_i, F_i \rangle$ for each $i \in \mathbb{N}$. It suffices to prove by induction on the value of i^{τ} that if $c \in T_i$, then there exists a statement s constructed from F such that $Conc(s) = c$ and $Vul(s) \subseteq F$:
		- Basis. For $i = 0$, the result is trivial as $T_0 = \emptyset$.
- \longrightarrow *Step.* Assume that for every $c' \in T_n$, there exists a statement s' constructed from P such that $Conc(s') = c'$ and $\text{Vul}(s') \subseteq F$. We will prove that if $c \in T_{n+1}$, there exists a statement s constructed from P such that $Conc(s) = c$ and $Vul(s) \subseteq F$: If $c \in T_{n+1}$, there exists a rule $c \leftarrow a_1, \ldots, a_m$, not $b_1, \ldots,$ not b_n ($m \geq$ $(0, n \geq 0) \in P$ such that $\{a_1, \ldots, a_m\} \subseteq T_n$ and $\{b_1, \ldots, b_n\} \subseteq F$. It follows via inductive step that for every $j \in \{1, \ldots, m\}$, there exists a statement s_j constructed from P such that $Conc(s_j) = a_j$ and $Val(s_j) \subseteq$ F. But then, we can construct from P a statement s with $Conc(s) = c$ where $\text{Val}(s) = \text{Val}(s_1) \cup \cdots \cup \text{Val}(s_m) \cup \{b_1, \ldots, b_n\}.$ This implies that $\texttt{Vul}(s) \subseteq F$.
- \Leftarrow We will prove by structural induction on the construction of statements that for each statement s constructed from P such that $\text{Vul}(s) \subseteq F$, it holds $Conc(s) \in T'$:
	- Basis. Let s be a statement $c \leftarrow \text{not } b_1, \ldots, \text{not } b_n$ $(n \geq 0)$ such that $\{b_1, \ldots, b_n\} = \text{Val}(s) \subseteq F$. It follows the fact $c \in \frac{P}{\mathcal{I}}$. Then $c \in T'$.
	- Step. Assume s_1, \ldots, s_m $(m \geq 1)$ are arbitrary statements constructed from P such that for each $i \in \{1, \ldots, m\}$, if $\text{Val}(s_i) \subseteq F$, then $Conc(s_i) \in T'$. We will prove that if s is a statement $c \leftarrow$ $(s_1), \ldots, (s_m)$, not b_1, \ldots , not b_n $(n \geq 0)$ constructed from P such that $\texttt{Vul}(s) \subseteq F$, then $c \in T'$:

Let s be such a statement. By Definition 8, there exists a rule $c \leftarrow$ a_1, \ldots, a_m , not $b_1, \ldots,$ not $b_n \in P$ such that $Conc(s_i) = a_i$ for each $i \in \{1, ..., m\}$ and $\text{Vul}(s) = \text{Vul}(s_1) \cup \cdots \cup \text{Vul}(s_m) \cup \{b_1, ..., b_n\}.$ As $\text{Vul}(s) \subseteq F$, we obtain $\{b_1, \ldots, b_n\} \subseteq F$ and $\text{Vul}(s_i) \subseteq F$ for each $i \in \{1, \ldots, m\}$. By inductive hypothesis, it follows $\{a_1, \ldots, a_m\} \subseteq T'$. Then $c \in T'$.

- Proving that $c \in F'$ iff for every statement s constructed from P such that Conc $(s) = c$, we have $\text{Val}(s) \cap T \neq \emptyset$:
	- \Rightarrow Firstly, we will prove by structural induction on the construction of statements that for each statement s constructed from P such that $\text{Val}(s) \cap T = \emptyset$, it holds $\text{Conc}(s) \notin F'$:
		- Basis. Let s be a statement $c \leftarrow \text{not } b_1, \ldots, \text{not } b_n$ $(n \geq 0)$ such that $\{b_1,\ldots,b_n\}\cap T=\emptyset.$ It follows the fact $c\in \frac{P}{\mathcal{I}}$ or $c\leftarrow \mathbf{u}\in \frac{P}{\mathcal{I}}$. Then $c\notin F'.$
		- Step. Assume s_1, \ldots, s_m $(m \geq 1)$ are arbitrary statements constructed from P such that for each $i \in \{1, ..., m\}$, if $\text{Vul}(s_i) \cap T = \emptyset$, then $Conc(s_i) \notin F'$. We will prove that if s is a statement $c \leftarrow$ $(s_1), \ldots, (s_m)$, not b_1, \ldots , not b_n $(n \geq 0)$ constructed from P such that Vul(s) \cap T = Ø, then $c \notin F'$:

Let s be such a statement. By Definition 8, there exists a rule $c \leftarrow$ a_1, \ldots, a_m , not $b_1, \ldots,$ not $b_n \in P$ such that $Conc(s_i) = a_i$ for each $i \in \{1, \ldots, m\}$ and $\text{Vul}(s) = \text{Vul}(s_1) \cup \cdots \cup \text{Vul}(s_m) \cup \{b_1, \ldots, b_n\}.$ As Vul(s)∩T = \emptyset , we obtain $\{b_1, \ldots, b_n\}$ ∩T = \emptyset and Vul(s_i)∩T = \emptyset for each $i \in \{1, \ldots, m\}$. By inductive hypothesis, it follows $\{a_1, \ldots, a_m\} \cap F' = \emptyset$. Then, $c \notin F'$.

Hence, if $c \in F'$, for every statement s constructed from P such that Conc $(s) = c$, we have $\text{Val}(s) \cap T \neq \emptyset$.

- \Leftarrow Assume that for every statement s constructed from P such that Conc(s) = c, we have $\text{Val}(s) \cap T \neq \emptyset$. The proof is by contradiction: suppose that $c \notin F'$. Consider $\Psi_{\underline{P}}^{\uparrow i} = \langle T_i, F_i \rangle$ for each $i \in \mathbb{N}$. It suffices to prove by induction on the value of i that if $c \notin F_i$, then there exists a statement s constructed from P such that $Conc(s) = c$ and $Vul(s) \cap T = \emptyset$:
	- Basis. For $i = 0$, the result is trivial as $F_0 = H B_P$.
	- → Step. Assume that for every $c' \notin F_n$, there exists a statement s' constructed from P such that $Conc(s') = c'$ and $\text{Vul}(s') \cap T = \emptyset$. We will prove that if $c \notin F_{n+1}$, there exists a statement s constructed from P such that $Conc(s) = c$ and $Vul(s) \cap T = \emptyset$:

If $c \notin F_{n+1}$, there exists a rule $c \leftarrow a_1, \ldots, a_m$, not $b_1, \ldots,$ not b_n ($m \geq$ $(0, n \geq 0) \in P$ such that $\{a_1, \ldots, a_m\} \cap F_n = \emptyset$ and $\{b_1, \ldots, b_n\} \cap T = \emptyset$. It follows via inductive step that for every $j \in \{1, \ldots, m\}$, there exists a statement s_j constructed from P such that $Conc(s_j) = a_j$ and $Val(s_j) \cap$ $T = \emptyset$. But then, we can construct from P a statement s with $Conc(s) = c$ where $\text{Val}(s) = \text{Val}(s_1) \cup \cdots \cup \text{Val}(s_m) \cup \{b_1, \ldots, b_n\}.$ This implies that Vul(s) \cap T = \emptyset .

Theorem 3

Let P be an NLP and $\mathfrak{A}_P = (\mathcal{A}_P, Att_P)$ be the associated SETAF. For any labelling \mathcal{L} of \mathfrak{A}_P , it holds $\mathcal{I}2\mathcal{L}_P(\mathcal{L}2\mathcal{I}_P(\mathcal{L}))=\mathcal{L}$.

Proof

Let $c \in A_P$ and $\mathcal{L}2\mathcal{I}_P(\mathcal{L}) = \langle T, F \rangle$; there are three possibilities:

- $\mathcal{L}(c) = \text{in} \Rightarrow c \in T \Rightarrow \mathcal{I}2\mathcal{L}_P(\mathcal{L}2\mathcal{I}_P(\mathcal{L}))(c) = \text{in}.$
- $\mathcal{L}(c) = \mathtt{out} \Rightarrow c \in F \Rightarrow \mathcal{I}2\mathcal{L}_P(\mathcal{L}2\mathcal{I}_P(\mathcal{L}))(c) = \mathtt{out}.$
- $\mathcal{L}(c) =$ undec $\Rightarrow c \in \overline{T \cup F} \Rightarrow \mathcal{I}2\mathcal{L}_P(\mathcal{L}2\mathcal{I}_P(\mathcal{L}))(c) =$ undec.

Theorem 4

Let P be an NLP, $\mathfrak{A}_P = (\mathcal{A}_P, Att_P)$ be the associated SETAF and $\mathcal{M} = \langle T, F \rangle$ be a partial stable model of P. It holds that $\mathcal{L}2\mathcal{I}_P(\mathcal{I}2\mathcal{L}_P(\mathcal{M})) = \mathcal{M}$.

Proof

Let $\mathcal{M} = \langle T, F \rangle$ be a partial stable model of P, $\mathcal{L}2\mathcal{I}_P(\mathcal{I}2\mathcal{L}_P(\mathcal{M})) = \langle T', F' \rangle$ and $c \in$ HB_P . It suffices to prove the following results:

• $c \in T$ iff $c \in T'$.

 \Box

- Assume $c \in T$. As $\Omega_P(\mathcal{M}) = \mathcal{M}$, by Lemma 1, there exists a statement s with $Conc(s) = c$ such that $Val(s) \subseteq F$. In particular, it follows that $c \in \mathcal{A}_P$. This implies $\mathcal{I}2\mathcal{L}_P(\mathcal{M})(c) = \text{in and } c \in T'.$
- Assume $c \in T'$. Then $c \in A_P$ and $I2\mathcal{L}_P(\mathcal{M})(c) = \text{in. From Definition 11, we}$ obtain $c \in T$.
- $c \in F$ iff $c \in F'$.
	- Assume $c \notin F'$. Then $c \in A_P$ and $\mathcal{I}2\mathcal{L}_P(\mathcal{M})(c) \neq \texttt{out}$. From Definition 11, we obtain $c \notin F$.
	- Assume $c \notin F$. As $\Omega_P(\mathcal{M}) = \mathcal{M}$, by Lemma 1, there exists a statement s with $Conc(s) = c$ such that $Val(s) \cap T = \emptyset$. In particular, it follows that $c \in \mathcal{A}_P$. This implies $\mathcal{I}2\mathcal{L}_P(\mathcal{M})(c) \neq \texttt{out}$ and $c \notin F'$.

Lemma 30

Let P be an NLP, $\mathfrak{A}_P = (\mathcal{A}_P, Att_P)$ be the associated SETAF and $v \in \{\text{in}, \text{out}, \text{undec}\}.$ It holds that

- For each $\mathcal{B} \in Att(c), \mathcal{L}(b) = v$ for some $b \in \mathcal{B}$ iff there exists $V \in \text{Val}(c)$ such that $\mathcal{L}(b) = v$ for every $b \in \mathcal{A}_P \cap V$.
- For each $\mathcal{B} \in Att(c), \mathcal{L}(b) \neq v$ for some $b \in \mathcal{B}$ iff there exists $V \in \text{Val}(c)$ such that $\mathcal{L}(b) \neq v$ for every $b \in \mathcal{A}_P \cap V$.

Proof

We will prove the result in the first item; the proof of the other result follows a similar path:

 \Rightarrow Assume that for each $\mathcal{B} \in Att(c), \mathcal{L}(b) = v$ for some $b \in \mathcal{B}$.

By absurd, suppose that for each $V \in \text{Val}(c)$, it holds that $\mathcal{L}(b) \neq v$ for some $b \in \mathcal{A}_P \cap V$. Then we can construct a set $\mathcal{B}' \subseteq \mathcal{A}_P$ by selecting for each $V \in \text{Val}(c)$, an element $b \in \mathcal{V}$ such that $\mathcal{L}(b) \neq v$. From Definition 9, we know that there exists $\mathcal{B} \subseteq \mathcal{B}'$ such that $(\mathcal{B}, c) \in \text{Att}_{P}$. But then, there exists $\mathcal{B} \in \text{Att}(c)$ such that $\mathcal{L}(b) \neq v$ for each $b \in \mathcal{B}$. It is absurd as it contradicts our hypothesis.

 \Leftarrow Assume that there exists $V \in \text{Val}(c)$ such that $\mathcal{L}(b) = v$ for every $b \in \mathcal{A}_P \cap V$. The result is immediate as according to Definition 9, every set β of arguments attacking c contains an element $b \in A_P \cap V$.

$$
\qquad \qquad \Box
$$

Theorem 5

Let P be an NLP and $\mathfrak{A}_P = (\mathcal{A}_P, Att_P)$ be the associated SETAF. It holds

- $\mathcal L$ is a complete labelling of $\mathfrak A_P$ iff $\mathcal{L}2\mathcal{I}_P(\mathcal L)$ is a partial stable model of P.
- M is a partial stable model of P iff $I2\mathcal{L}_P(\mathcal{M})$ is a complete labelling of \mathfrak{A}_P .

Proof

1. If $\mathcal L$ is a complete labelling of \mathfrak{A}_P , then $\mathcal{L2I}_P(\mathcal L)$ is a partial stable model of P:

Let $\mathcal{M} = \mathcal{L}2\mathcal{I}_P(\mathcal{L}) = \langle T, F \rangle$. We will show \mathcal{M} is a partial stable model of P, i.e., $\Omega_P(\mathcal{M})=\langle T',F'\rangle=\langle T,F\rangle$:

- $c \in T$ iff $c \in A_P$ and $\mathcal{L}(c) = \text{in iff for each } \mathcal{B} \in Att(c)$, it holds $\mathcal{L}(b) = \text{out}$ for some $b \in \mathcal{B}$ iff (Lemma 30) there exists $V \in \text{Vul}(c)$ such that $\mathcal{L}(b) = \text{out}$ for every $b \in A_P \cap V$ iff there exists a statement s with $Conc(s) = c$ and $\texttt{Vul}(s) \subseteq F \text{ iff } (\text{Lemma 1}) \ c \in T'.$
- $c \notin F$ iff $c \in A_P$ and $\mathcal{L}(c) \neq \text{out}$ iff for each $\mathcal{B} \in Att(c)$, it holds $\mathcal{L}(b) \neq \text{in}$ for some $b \in \mathcal{B}$ iff (Lemma 30) there exists $V \in \text{Val}(c)$ such that $\mathcal{L}(b) \neq \text{in}$ for every $b \in A_P \cap V$ iff there exists a statement s with $Conc(s) = c$ and $\text{Vul}(s) \cap T = \emptyset$ iff (Lemma 1) $c \notin F'.$
- 2. If M is a partial stable model of P, then $\mathcal{ILP}(\mathcal{M})$ is a complete labelling of \mathfrak{A}_P :

Let $\mathcal{M} = \langle T, F \rangle$ be a partial stable model of P. Then $\Omega_P(\mathcal{M}) = \langle T, F \rangle$. Let c be an argument in \mathcal{A}_P . We will prove $\mathcal{L} = \mathcal{I}2\mathcal{L}_P(\mathcal{M})$ is a complete labelling of \mathfrak{A}_P :

- $\mathcal{L}(c) = \text{in iff } c \in T \text{ iff }$ (Lemma 1) there exists a statement s with Conc $(s) = c$ and $\text{Vul}(s) \subseteq F$ iff there exists $V \in \text{Vul}(c)$ such that $\mathcal{L}(b) = \text{out}$ for every $b \in A_P \cap V$ iff (Lemma 30) for each $\mathcal{B} \in Att(c)$, it holds $\mathcal{L}(b) = \text{out}$ for some $b \in \mathcal{B}$.
- $\mathcal{L}(c) \neq \text{out iff } c \neq F \text{ iff } (\text{Lemma 1}) \text{ there exists a statement } s \text{ with } \text{Conc}(s) = c$ and $\text{Val}(s) \cap T = \emptyset$ iff there exists $V \in \text{Val}(c)$ such that $\mathcal{L}(b) \neq \text{in}$ for every $b \in A_P \cap V$ iff (Lemma 30) for each $\mathcal{B} \in Att(c)$, it holds $\mathcal{L}(b) \neq \text{in}$ for some $b \in \mathcal{B}$.
- 3. If $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is a partial stable model of P, then $\mathcal L$ is a complete labelling of \mathfrak{A}_P :

It holds that $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is a partial stable model of $P \Rightarrow$ according to item 2 above, $I2\mathcal{L}_P(\mathcal{L}2\mathcal{I}_P(\mathcal{L}))$ is a complete labelling of $\mathfrak{A}_P \Rightarrow$ (via Theorem 3) $\mathcal L$ is a complete labelling of \mathfrak{A}_P .

4. If $\mathcal{ILP}(\mathcal{M})$ is a complete labelling of \mathfrak{A}_P , then M is a partial stable model of P: It holds that $\mathcal{IL}_P(\mathcal{M})$ is a complete labelling of $\mathfrak{A}_P \Rightarrow$ according to item 1 above, $\mathcal{L}2\mathcal{I}_P(\mathcal{I}2\mathcal{L}_P(\mathcal{M}))$ is a partial stable model of $P \Rightarrow$ (via Theorem 4) M is a partial stable model of P.

Lemma 31

Let P be an NLP, $\mathfrak{A}_P = (\mathcal{A}_P, Att_P)$ be its associated SETAF. Let \mathcal{L}_1 and \mathcal{L}_2 be β complete labellings of \mathfrak{A}_P , and $\mathcal{L}2\mathcal{I}_P(\mathcal{L}_1) = \langle T_1, F_1 \rangle$ and $\mathcal{L}2\mathcal{I}_P(\mathcal{L}_2) = \langle T_2, F_2 \rangle$. It holds

1. in (\mathcal{L}_1) \subset in (\mathcal{L}_2) iff $T_1 \subset T_2$; 2. $in(\mathcal{L}_1) = in(\mathcal{L}_2)$ iff $T_1 = T_2$; 3. in (\mathcal{L}_1) \subset in (\mathcal{L}_2) iff $T_1 \subset T_2$.

Proof

- 1. (⇒): Suppose $\text{in}(\mathcal{L}_1) \subseteq \text{in}(\mathcal{L}_2)$. If $c \in T_1$, by Definition 11, $c \in \mathcal{A}_P$ and $\mathcal{L}_1(A) =$ in. From our initial assumption, it follows $\mathcal{L}_2(c) = \text{in. So, by Definition 11,}$ $c \in T_2$.
	- (\Leftarrow) : Suppose $T_1 \subseteq T_2$. If $\mathcal{L}_1(c) = \text{in}$, by Definition 11, $c \in T_1$. From our initial assumption, it follows $c \in T_2$. So, by Definition 11, $\mathcal{L}_2(c) = \text{in.}$
- 2. It follows directly from point 1.
- 3. It follows directly from points 1 and 2.

Lemma 32

Let P be an NLP, $\mathfrak{A}_P = (A_P, Att_P)$ be its associated SETAF. Let \mathcal{L}_1 and \mathcal{L}_2 be complete labellings of \mathfrak{A}_P , and $\mathcal{L}2\mathcal{I}_P(\mathcal{L}_1) = \langle T_1, F_1 \rangle$ and $\mathcal{L}2\mathcal{I}_P(\mathcal{L}_2) = \langle T_2, F_2 \rangle$. It holds

- 1. out $(\mathcal{L}_1) \subseteq \text{out}(\mathcal{L}_2)$ iff $F_1 \subseteq F_2$;
- 2. out (\mathcal{L}_1) = out (\mathcal{L}_2) iff $F_1 = F_2$;
- 3. out $(\mathcal{L}_1) \subset \text{out}(\mathcal{L}_2)$ iff $F_1 \subset F_2$.

Proof

- 1. (\Rightarrow) : Suppose out $(\mathcal{L}_1) \subseteq \text{out}(\mathcal{L}_2)$. If $c \in F_1$, by Definition 11, there are two possibilities:
	- $c \notin \mathcal{A}_P$. As $\mathcal{L}2\mathcal{I}_P(\mathcal{L}_2) = \langle T_2, F_2 \rangle$, we obtain that $c \in F_2$.
	- $c \in A_P$ and $\mathcal{L}_1(c) = \text{out}$. From our initial assumption, it follows $\mathcal{L}_2(c) =$ out. So, by Definition 11, $c \in F_2$.
	- (←): Suppose $F_1 \subseteq F_2$. If $\mathcal{L}_1(c) = \text{out}$, by Definition 11, $c \in F_1$. From our initial assumption, it follows $c \in F_2$. So, by Definition 11, $\mathcal{L}_2(c) = \text{out}$.
- 2. It follows directly from point 1.
- 3. It follows directly from points 1 and 2.

Lemma 33

Let P be an NLP, $\mathfrak{A}_P = (\mathcal{A}_P, Att_P)$ be its associated SETAF. Let \mathcal{L}_1 and \mathcal{L}_2 be complete labellings of \mathfrak{A}_P , and $\mathcal{L}2\mathcal{I}_P(\mathcal{L}_1) = \langle T_1, F_1 \rangle$ and $\mathcal{L}2\mathcal{I}_P(\mathcal{L}_2) = \langle T_2, F_2 \rangle$. It holds

1. undec $(\mathcal{L}_1) \subseteq$ undec (\mathcal{L}_2) iff $\overline{T_1 \cup F_1} \subseteq \overline{T_2 \cup F_2}$; 2. undec(\mathcal{L}_1) = undec(\mathcal{L}_2) iff $\overline{T_1 \cup F_1} = \overline{T_2 \cup F_2}$;

3. undec(\mathcal{L}_1) ⊂ undec(\mathcal{L}_2) iff $\overline{T_1 \cup F_1}$ ⊂ $\overline{T_2 \cup F_2}$.

Proof

1. (\Rightarrow): Suppose undec(\mathcal{L}_1) \subseteq undec(\mathcal{L}_2). If $c \in \overline{T_1 \cup F_1}$, by Definition 11, $c \in \mathcal{A}_P$ and $\mathcal{L}_1(c)$ = undec. From our initial assumption, it follows $\mathcal{L}_2(c)$ = undec. So, by Definition 11, $c \in \overline{T_2 \cup F_2}$.

 \Box

- (\Leftarrow) : Suppose $\overline{T_1 \cup F_1}$ ⊆ $\overline{T_2 \cup F_2}$. If $\mathcal{L}_1(c)$ = undec, by Definition 11, $c \in \overline{T_1 \cup F_1}$. From our initial assumption, it follows $c \in \overline{T_2 \cup F_2}$. So, by Definition 11, $\mathcal{L}_2(c) =$ undec.
- 2. It follows directly from point 1.
- 3. It follows directly from points 1 and 2.

Theorem 6 Let P be an NLP and $\mathfrak{A}_P = (\mathcal{A}_P, Att_P)$ be the associated SETAF. It holds

- 1. L is a grounded labelling of \mathfrak{A}_P iff $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is a well-founded model of P.
- 2. $\mathcal L$ is a preferred labelling of \mathfrak{A}_P iff $\mathcal{L}2\mathcal{I}_P(\mathcal L)$ is a regular model of P.
- 3. $\mathcal L$ is a stable labelling of \mathfrak{A}_P iff $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is a stable model of P.
- 4. $\mathcal L$ is a semi-stable labelling of \mathfrak{A}_P iff $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is an *L*-stable model of P.

Proof

Let $\mathcal L$ be an argument labelling of $\mathfrak A_P$ and $\mathcal{L2I}_P(\mathcal L)=\langle T, F\rangle$. The proof is straightforward:

- 1. L is a grounded labelling of \mathfrak{A}_P iff L is a complete labelling of \mathfrak{A}_P , and $\text{in}(\mathcal{L})$ is minimal (w.r.t. set inclusion) among all complete labellings of \mathfrak{A}_P iff (Theorem 5 and Lemma 31) $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is a partial stable model of P, and there is no partial stable model $\mathcal{M}' = \langle T', F' \rangle$ of P such that $T' \subset T$ iff $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is a well-founded model of P;
- 2. L is a preferred labelling of \mathfrak{A}_P iff L is a complete labelling of \mathfrak{A}_P , and $\text{in}(\mathcal{L})$ is maximal (w.r.t. set inclusion) among all complete labellings of \mathfrak{A}_P iff (Theorem 5 and Lemma 31) $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is a partial stable model of P, and there is no partial stable model $\mathcal{M}' = \langle T', F' \rangle$ of P such that $T \subset T'$ iff $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is a regular model of P ;
- 3. L is a stable labelling of \mathfrak{A}_P iff L is a complete labelling of \mathfrak{A}_P such that undec(\mathcal{L}) = \emptyset iff (Theorem 5) $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is a partial stable model such that $\overline{T \cup F} = \emptyset$ iff $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is a stable model of P;
- 4. L is a semi-stable labelling of \mathfrak{A}_P iff L is a complete labelling of \mathfrak{A}_P , and undec(L) is minimal (w.r.t. set inclusion) among all complete labellings of \mathfrak{A}_P iff (Theorem 5 and Lemma 33) $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is a partial stable model of P, and there is no partial stable model $\mathcal{M}' = \langle T', F' \rangle$ of P such that $\overline{T' \cap F'} \subset \overline{T \cup F}$ iff $\mathcal{L}2\mathcal{I}_P(\mathcal{L})$ is an L-stable model of P.

\Box

Corollary 7

Let P be an NLP and $\mathfrak{A}_P = (A_P, Att_P)$ be the associated *SETAF*. It holds

- 1. M is a well-founded model of P iff $I2L_P(\mathcal{M})$ is a grounded labelling of \mathfrak{A}_P .
- 2. M is a regular model of P iff $I2L_P(M)$ is a preferred labelling of \mathfrak{A}_P .
- 3. M is a stable model of P iff $I2L_P(M)$ is a stable labelling of \mathfrak{A}_P .
- 4. M is an L-stable model of P iff $I2L_P(M)$ is a semi-stable labelling of \mathfrak{A}_P .

Proof

These results come from Theorems 4 and 6.

A.2 Theorems and Proofs from Section 4

Theorem 8

Let $\mathfrak{A} = (\mathcal{A}, Att)$ be a *SETAF* and $P_{\mathfrak{A}}$ its associated *NLP*.

- For any labelling $\mathcal L$ of $\mathfrak A$, it holds $\mathcal{I}2\mathcal{L}_{\mathfrak A}(\mathcal{L}2\mathcal{I}_{\mathfrak A}(\mathcal{L}))=\mathcal L$.
- For any interpretation $\mathcal I$ of $P_{\mathfrak A}$, it holds $\mathcal{L}2\mathcal{I}_{\mathfrak A}(\mathcal{I}2\mathcal{L}_{\mathfrak A}(\mathcal{I}))=\mathcal{I}$.

Proof

Both results are immediate:

• Proving that for any labelling $\mathcal L$ of $\mathfrak A$, it holds $\mathcal{I}2\mathcal{L}_{\mathfrak A}(\mathcal{L}2\mathcal{I}_{\mathfrak A}(\mathcal{L}))=\mathcal{L}$: Let $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L}) = \langle T, F \rangle$.

$$
\begin{aligned}\n& -\mathcal{L}(a) = \text{in} \Rightarrow a \in T \Rightarrow \mathcal{I2L}_{\mathfrak{A}}(\mathcal{L2L}_{\mathfrak{A}}(\mathcal{L}))(a) = \text{in}; \\
& -\mathcal{L}(a) = \text{out} \Rightarrow a \in F \Rightarrow \mathcal{I2L}_{\mathfrak{A}}(\mathcal{L2L}_{\mathfrak{A}}(\mathcal{L}))(a) = \text{out}; \\
& -\mathcal{L}(a) = \text{undec} \Rightarrow a \in \overline{T \cup F} \Rightarrow \mathcal{I2L}_{\mathfrak{A}}(\mathcal{L2L}_{\mathfrak{A}}(\mathcal{L}))(a) = \text{undec}.\n\end{aligned}
$$

• Proving that for any interpretation $\mathcal I$ of $P_{\mathfrak A}$, it holds $\mathcal{L}2\mathcal{I}_{\mathfrak A}(\mathcal{I}2\mathcal{L}_{\mathfrak A}(\mathcal{I}))=\mathcal{I}$. Let $\mathcal{I} = \langle T, F \rangle$ be an interpretation of $P_{\mathfrak{A}}$, and $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{I}2\mathcal{L}_{\mathfrak{A}}(\mathcal{I})) = \langle T', F' \rangle$. We will show $T = T'$ and $F = F'$:

$$
\begin{aligned}\n& -a \in T \Rightarrow \mathcal{I2L}_{\mathfrak{A}}(\mathcal{I})(a) = \mathbf{in} \Rightarrow a \in T'; \\
& -a \in F \Rightarrow \mathcal{I2L}_{\mathfrak{A}}(\mathcal{I})(a) = \mathbf{out} \Rightarrow a \in F'; \\
& -a \in \overline{T \cup F} \Rightarrow \mathcal{I2L}_{\mathfrak{A}}(\mathcal{I})(a) = \mathbf{undec} \Rightarrow a \in \overline{T' \cup F'};\n\end{aligned}
$$

Theorem 9 Let $\mathfrak A$ be a *SETAF* and $P_{\mathfrak A}$ be its associated *NLP*. It holds

- $\mathcal L$ is a complete labelling of $\mathfrak A$ iff $\mathcal{L}2\mathcal{I}_{\mathfrak A}(\mathcal L)$ is a partial stable model of $P_{\mathfrak A}$.
- M is a partial stable model of $P_{\mathfrak{A}}$ iff $I2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})$ is a complete labelling of \mathfrak{A} .

Proof

1. Proving that if L is a complete labelling of \mathfrak{A} , then $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})$ is a partial stable model of $P_{\mathfrak{A}}$:

Let $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L}) = \langle T, F \rangle$ and $\Omega_{P_{\mathfrak{A}}}(\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})) = \langle T', F' \rangle$. It suffices to show $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})$ is a fixpoint of $\Omega_{P_{\mathfrak{A}}}: T = T'$ and $F = F'$. For any argument $a \in \mathcal{A} = HB_{P_{\mathfrak{A}}}$, there are three possibilities:

- $a \in T$. Then $\mathcal{L}(a) = \text{in}$. From Definition 2, we know that for each $\mathcal{B} \in Att(a)$, it holds $\mathcal{L}(b) = \text{out}$ for some $b \in \mathcal{B}$. It follows from Definition 12 that there exists $V \in \mathcal{V}_a$ such that $\mathcal{L}(b) = \text{out}$ for every $b \in V$. This means the fact $a \in \frac{P_{\mathfrak{A}}}{\mathfrak{a} \circ \tau}$ $\frac{I_{\mathfrak{A}}}{\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})},$ i.e., $a \in T'.$
- $a \in F$. Then $\mathcal{L}(a) = \text{out}$. From Definition 2, we know that there exists $\mathcal{B} \in Att(a)$ such that $\mathcal{L}(b) = \text{in}$ for each $b \in \mathcal{B}$. It follows from Definition 12

that for each $V \in \mathcal{V}_a$, there exists $b \in V$ such that $\mathcal{L}(b) = \text{in}$. This means that there exists no rule for a in $\frac{P_{\mathfrak{A}}}{\sqrt{2\pi}}$ $\frac{1}{\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})}$, i.e., $a \in F'$.

- $a \in \overline{T \cup F}$. Then $\mathcal{L}(a) =$ undec. From Definition 2, we know that (i) there exists $\mathcal{B} \in Att(a)$ such that $\mathcal{L}(b) \neq \text{out}$ for each $b \in \mathcal{B}$, and (ii) for each $\mathcal{B} \in Att(a)$, it holds $\mathcal{L}(b) \neq \text{in}$ for some $b \in \mathcal{B}$. It follows from Definition 12 that (i) there does not exist $V \in V_a$ such that $\mathcal{L}(b) = \text{out}$ for every $b \in V$, and (ii) there exists $V \in \mathcal{V}_a$ such that $\mathcal{L}(b) \neq \mathbf{in}$ for each $b \in V$. This means (i) the fact $a \notin \frac{P_{\mathfrak{A}}}{C\mathfrak{A}^{\tau}}$ $\frac{P_{\mathfrak{A}}}{\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})}$, and (ii) there exists rule for a in $\frac{P_{\mathfrak{A}}}{\mathcal{L}2\mathcal{I}_{\mathfrak{A}}}$ $\frac{d}{\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})}$. Thus $body(r) = \mathbf{u}$ for any $r \in \frac{P_{\mathfrak{A}}}{C_1 \cap T}$ $\frac{d^2\mathcal{I}_{\mathfrak{A}}(L)}{\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(L)}$ such that $head(r) = a$, i.e., $a \in T' \cup F'$.
- 2. Proving that if M is a partial stable model of $P_{\mathfrak{A}}$, then $\mathcal{I}2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})$ is a complete labelling of A:

Let $\mathcal{M} = \langle T, F \rangle$ be a partial stable model of $P_{\mathfrak{A}}$. Thus \mathcal{M} is a fixpoint of $\Omega_{P_{\mathfrak{A}}}$, i.e., $\Omega_{P_{\infty}}(\mathcal{M}) = \mathcal{M}$. We now prove $\mathcal{IL}_{\mathfrak{A}}(\mathcal{M})$ is a complete labelling of \mathfrak{A} . For any $a \in HB_{P_{\mathfrak{A}}} = \mathcal{A}$, there are three possibilities:

- $\mathcal{I}2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})(a) = \text{in. Then } a \in T$. As $\Omega_{P_{\mathfrak{A}}}(\mathcal{M}) = \mathcal{M}$, the fact $a \in \frac{P_{\mathfrak{A}}}{\mathcal{M}}$ $\frac{1}{\mathcal{M}}$. This means that there exists a rule $a \leftarrow \text{not } b_1, \ldots, \text{not } b_n \in P_{\mathfrak{A}} \ (n \geq 0)$ such that ${b_1, \ldots, b_n} \subseteq F$. It follows from Definition 12 that for each $\mathcal{B} \in Att(a)$, it holds $I2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})(b) = \text{out}$ for some $b \in \mathcal{B}$;
- $\mathcal{I}2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})(a) = \text{out. Then } a \in F$. As $\Omega_{P_{\mathfrak{A}}}(\mathcal{M}) = \mathcal{M}$, there exists no rule for a in $\frac{P_{\mathfrak{A}}}{\mathfrak{A}}$ $\overline{\mathcal{M}}$. This means that for every rule $a \leftarrow \text{not } b_1, \ldots, \text{not } b_n \in P_{\mathfrak{A}}$ $(n \geq 0)$, there exists $b_i \in T$ $(1 \leq i \leq n)$. It follows from Definition 12 that there exists $\mathcal{B} \in Att(a)$ such that $\mathcal{I}2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})(b) = \text{in}$ for each $b \in \mathcal{B}$;
- $\mathcal{I}2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})(a) =$ undec. Then $a \in \overline{T \cup F}$. As $\Omega_{P_{\mathfrak{A}}}(\mathcal{M}) = \mathcal{M}$, the fact $a \notin \frac{P_{\mathfrak{A}}}{\mathcal{M}}$ $\frac{1}{\mathcal{M}},$ but there exists a rule r in $\frac{P_{\mathfrak{A}}}{\sqrt{A}}$ $\frac{d^2x}{dt}$ such that *head*(*r*) = *a* and *body*(*r*) = **u**. This means that (i) for each rule $a \leftarrow \texttt{not } b_1, \ldots, \texttt{not } b_n \in P_{\mathfrak{A}} \ (n \geq 0),$ it holds ${b_1, \ldots, b_n} \not\subseteq F$, and (ii) there exists a rule $a \leftarrow \texttt{not } b_1, \ldots, \texttt{not } b_n \in P_{\mathfrak{A}}$ $(n \geq 0)$ such that $\{b_1, \ldots, b_n\} \cap T = \emptyset$. It follows from Definition 12 that (i) there exists $\mathcal{B} \in Att(a)$ such that $\mathcal{I}2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})(b) \neq \text{out}$ for each $b \in \mathcal{B}$, and (ii) for each $\mathcal{B} \in Att(a)$, it holds $\mathcal{I2L}_{\mathfrak{A}}(\mathcal{M})(b) \neq \mathfrak{in}$ for some $b \in \mathcal{B}$.

Hence, $\mathcal{I}2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})$ is a complete labelling of \mathfrak{A} .

3. Proving that if $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})$ is a partial stable model of $P_{\mathfrak{A}}$, then $\mathcal L$ is a complete labelling of A:

 $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})$ is a partial stable model of $P_{\mathfrak{A}} \Rightarrow$ according to item 2 above, $I2\mathcal{L}_{\mathfrak{A}}(\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L}))$ is a complete labelling of $\mathfrak{A} \Rightarrow$ (Theorem 8) \mathcal{L} is a complete labelling of A.

4. Proving that if $I2L_{\mathfrak{A}}(\mathcal{M})$ is a complete labelling of \mathfrak{A} , then M is a partial stable model of $P_{\mathfrak{A}}$:

 $I2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})$ is complete labelling of $\mathfrak{A} \Rightarrow$ according to item 1 above, $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{I}2\mathcal{L}_{\mathfrak{A}}(\mathcal{M}))$ is a partial stable model of $P_{\mathfrak{A}} \Rightarrow$ (Theorem 8) M is a partial stable model of $P_{\mathfrak{A}}$.

□

Theorem 10

Let $\mathfrak A$ be a *SETAF* and $P_{\mathfrak A}$ its associated *NLP*. It holds

- 1. L is a grounded labelling of $\mathfrak A$ iff $\mathcal{L}2\mathcal{I}_{\mathfrak A}(\mathcal{L})$ is a well-founded model of $P_{\mathfrak A}$.
- 2. $\mathcal L$ is a preferred labelling of $\mathfrak A$ iff $\mathcal{L}2\mathcal{I}_{\mathfrak A}(\mathcal{L})$ is a regular model of $P_{\mathfrak A}$.
- 3. L is a stable labelling of $\mathfrak A$ iff $\mathcal{L}2\mathcal{I}_{\mathfrak A}(\mathcal{L})$ is a stable model of $P_{\mathfrak A}$.
- 4. $\mathcal L$ is a semi-stable labelling of $\mathfrak A$ iff $\mathcal{L}2\mathcal{I}_{\mathfrak A}(\mathcal L)$ is an L-stable model of $P_{\mathfrak A}$.

Proof

Let $\mathcal L$ be an argument labelling of $\mathfrak L$. Recall that $\mathcal{L}2\mathcal{I}_{\mathfrak A}(\mathcal L)=\langle\mathbf{in}(\mathcal L),\mathbf{out}(\mathcal L)\rangle$. The proof is straightforward:

- 1. L is a grounded labelling of $\mathfrak A$ iff L is a complete labelling of $\mathfrak A$ and $\text{in}(\mathcal L)$ is minimal (w.r.t. set inclusion) among all complete labellings of $\mathfrak A$ iff (Theorem 9) $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})$ is a partial stable model of $P_{\mathfrak{A}}$ and there is no partial stable model $\mathcal{M}' = \langle T', F' \rangle$ of $P_{\mathfrak{A}}$ such that $T' \subset \text{in}(\mathcal{L})$ iff $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})$ is a well-founded model of $P_{\mathfrak{A}}$;
- 2. L is a preferred labelling of $\mathfrak A$ iff L is a complete labelling of $\mathfrak A$ and $\text{in}(\mathcal L)$ is maximal (w.r.t. set inclusion) among all complete labellings of $\mathfrak A$ iff (Theorem 9) $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})$ is a partial stable model of $P_{\mathfrak{A}}$ and there is no partial stable model $\mathcal{M}' = \langle T', F' \rangle$ of P such that $\text{in}(\mathcal{L}) \subset T'$ iff $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})$ is a regular model of $P_{\mathfrak{A}}$;
- 3. L is a stable labelling of $\mathfrak A$ iff L is a complete labelling of $\mathfrak A$ such that undec($\mathcal L$) = \emptyset iff (Theorem 9) $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})$ is a partial stable model of $P_{\mathfrak{A}}$ such that $in(\mathcal{L}) \cup out(\mathcal{L}) =$ \emptyset iff $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})$ is a stable model of $P_{\mathfrak{A}}$;
- 4. L is a semi-stable labelling of $\mathfrak A$ iff L is a complete labelling of $\mathfrak A$ and undec($\mathfrak L$) is minimal (w.r.t. set inclusion) among all complete labellings of $\mathfrak A$ iff (Theorem 9) $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})$ is a partial stable model of $P_{\mathfrak{A}}$ and there is no partial stable model $\mathcal{M}'=\langle T',F'\rangle$ of $P_{\mathfrak{A}}$ such that $\overline{T'\cup F'}\subset \overline{\texttt{in}}(\mathcal{L})\cup \texttt{out}(\mathcal{L})$ iff $\mathcal{L}2\mathcal{I}_{\mathfrak{A}}(\mathcal{L})$ is an $L\text{-stable}$ model of $P_{\mathfrak{A}}$.

Corollary 11

Let $\mathfrak A$ be a *SETAF* and $P_{\mathfrak A}$ its associated *NLP*. It holds

- 1. M is a well-founded model of $P_{\mathfrak{A}}$ iff $\mathcal{IL}_{\mathfrak{A}}(\mathcal{M})$ is a grounded labelling of \mathfrak{A} .
- 2. M is a regular model of $P_{\mathfrak{A}}$ iff $\mathcal{I}2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})$ is a preferred labelling of \mathfrak{A} .
- 3. M is a stable model of $P_{\mathfrak{A}}$ iff $\mathcal{I}2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})$ is a stable labelling of \mathfrak{A} .
- 4. M is an L-stable model of $P_{\mathfrak{A}}$ iff $\mathcal{I}2\mathcal{L}_{\mathfrak{A}}(\mathcal{M})$ is a semi-stable labelling of \mathfrak{A} .

Proof

These results come from Theorems 8 and 10.

A.3 Theorems and Proofs from Section 5

Proposition 12 Let $\mathfrak{A} = (\mathcal{A}, Att)$ be a *SETAF* and $P_{\mathfrak{A}}$ its associated *NLP*. It holds $P_{\mathfrak{A}}$ is an *RFALP*.

Proof

 \Box

It follows that

- 1. Each rule in $P_{\mathfrak{A}}$ has the form $a \leftarrow \texttt{not } b_1, \ldots, \texttt{not } b_n;$
- 2. for each rule $a \leftarrow \text{not } b_1, \ldots, \text{not } b_n \in P_{\mathfrak{A}}$, if $b \in \{b_1, \ldots, b_n\}$, there exists $(\mathcal{B}, a) \in$ Att such that $b \in \mathcal{B}$, i.e., $b \in \mathcal{A}_P$. Then there exists a rule $r \in P_{\mathfrak{A}}$ such that $b = head(r)$. This suffices to guarantee $HB_{P_{\mathfrak{A}}} = \{head(r) | r \in P_{\mathfrak{A}}\};$
- 3. A rule $a \leftarrow \text{not } b_1, \ldots, \text{not } b_n \in P_{\mathfrak{A}}$ iff there exists a minimal set (w.r.t. set inclusion) $V = \{b_1, \ldots, b_n\}$ such that for each $\mathcal{B} \in Att(a)$, there exists $b \in \mathcal{B} \cap V$. This means there exists no rule $a \leftarrow \text{not } c_1, \ldots, \text{not } c_{n'} \in P_{\mathfrak{A}}$ such that $\{c_1, \ldots, c_{n'}\} \subset$ ${b_1,\ldots,b_n}.$

 \Box

Hence, $P_{\mathfrak{A}}$ is an *RFALP*.

Lemma 34

Let P be an RFALP, Head $_P = \{head(r) | r \in P\}$ and $\mathfrak{A}_P = (\mathcal{A}_P, Att_P)$ its corresponding SETAF. It holds $Head_P = Ap$.

Proof

The result is straightforward: $c \in Head_P$ iff there exists a rule $c \leftarrow \texttt{not } b_1, \ldots, \texttt{not } b_n \in P$ $(n \geq 0)$ iff $c \in A_P$ (Definition 8). \Box

Theorem 13

Let $\mathfrak{A} = (\mathcal{A}, Att)$ be a *SETAF*, $P_{\mathfrak{A}}$ its associated *NLP* and $\mathfrak{A}_{P_{\mathfrak{A}}}$ the associated *SETAF* of $P_{\mathfrak{A}}$. It holds that $\mathfrak{A} = \mathfrak{A}_{P_{\mathfrak{A}}}$.

Proof

Let $\mathfrak{A} = (\mathcal{A}, Att)$ be a SETAF with $\mathcal{A} = \{a_1, \ldots, a_n\}$ and for each $a_i \in \mathcal{A}$, we define $R_i = \{r \in P_{\mathfrak{A}} \mid head(r) = a_i\}, \text{ i.e., } P_{\mathfrak{A}} = R_1 \cup R_2 \cup \cdots \cup R_n.$ It follows from Proposition 12 and Lemma 34 that $\mathfrak{A}_{P_{\mathfrak{A}}} = (A_{P_{\mathfrak{A}}}$, $Att_{P_{\mathfrak{A}}}$ with $A_{P_{\mathfrak{A}}} = \{a_1, \ldots, a_n\} = A$. It remains to prove that $Att = Att_{P_{\infty}}$:

 $(\mathcal{B}, a_j) \in \mathcal{A}tt$ iff $(\mathcal{B}, a_j) \in \mathcal{A}tt$ and there exists no $\mathcal{B}' \subset \mathcal{B}$ such that $(\mathcal{B}', a_j) \in \mathcal{A}tt$ iff \mathcal{B}' is a minimal set (w. r. t. set inclusion) in which for each rule $r \in R_i$, there exists $b \in \mathcal{B}$ such that not $b \in body^{-}(r)$ iff B is a minimal set (w. r. t. set inclusion) in which for each $V \in \text{Val}(a_i)$, there exists $b \in \mathcal{B} \cap V$ iff $(\mathcal{B}, a_i) \in Att_{P_{\mathcal{D}}}$. \Box

Lemma 35

Let P be an RFALP, $\mathfrak{A}_P = (\mathcal{A}_P, Att_P)$ the corresponding SETAF and $c \in \mathcal{A}_P$. If $\{a_1, \ldots, a_n\}$ is a minimal set such that for each $\mathcal{B} \in Att_P(c)$, there exists $a_i \in \mathcal{B}$ (1 \leq $i \leq n$, then $c \leftarrow \texttt{not } a_1, \ldots, \texttt{not } a_n \in P$.

Proof

As for each $\mathcal{B} \in Att_P(c)$, there exists $a_i \in \mathcal{B}$ $(1 \leq i \leq n)$, it follows from Definition 9 that there exists $V \in \text{Val}(c)$ such that $V \subseteq \{a_1, \ldots, a_n\}$. Note that for each $\mathcal{B} \in Att_P(c)$, there exists $b \in V \cap \mathcal{B}$. As $\{a_1, \ldots, a_n\}$ is a minimal set with this property, it holds $V = \{a_1, \ldots, a_n\}$. Then (Definition 8) $c \leftarrow \texttt{not } a_1, \ldots, \texttt{not } a_n \in P$. \Box

Theorem 14

Let P be an RFALP, \mathfrak{A}_P its associated $SETAF$ and $P_{\mathfrak{A}_P}$ the associated NLP of \mathfrak{A}_P . It holds that $P = P_{\mathfrak{A}_P}$.

Proof

Let P be an RFALP with $HB_P = \{a_1, \ldots, a_n\}$, and $\mathfrak{A}_P = (\mathcal{A}_P, Att_P)$ the corresponding SETAF. For each $a_i \in HB_P$ $(1 \leq i \leq n)$, we define $R_i = \{r \in P_{\mathfrak{A}} \mid head(r) = a_i\}$. It follows that $A_P = \{a_1, \ldots, a_n\}$. Hence, $HB_{P_{\mathfrak{A}_P}} = \{a_1, \ldots, a_n\}$. We will prove $P = P_{\mathfrak{A}_P}$:

- If $a_i \leftarrow \texttt{not } a_{i_1}, \ldots, \texttt{not } a_{i_m} \in P$, then $a_i \in A_P$ and $\{a_{i_1}, \ldots, a_{i_m}\}\)$ is a minimal set (w.r.t. set inclusion) such that for each $\mathcal{B} \in Att_P(a_i)$, there exists $a_{i_k} \in \mathcal{B}$ $(k \in \{1, \ldots, m\})$. This implies (Definition 12) $a_i \leftarrow \texttt{not } a_{i_1}, \ldots, \texttt{not } a_{i_m} \in P_{\mathfrak{A}_P}.$
- If $a_i \leftarrow \texttt{not } a_{i_1}, \ldots, \texttt{not } a_{i_m} \in P_{\mathfrak{A}_P}, \text{ then (Definition 12) } \{a_{i_1}, \ldots, a_{i_m}\} \text{ is a minimal }$ set (w.r.t. set inclusion) such that for each $\mathcal{B} \in Att_P(a_i)$, there exists $a_{i_k} \in \mathcal{B}$ $(k \in \{1, \ldots, m\})$. Thus (Lemma 35) $a_i \leftarrow \texttt{not } a_{i_1}, \ldots, \texttt{not } a_{i_m} \in P$.

A.4 Theorems and Proofs from Section 6

Theorem 15

The relation \rightarrow UTPM is strongly terminating for fair sequences of program transformations, i.e., such fair sequences always lead to irreducible programs.

Proof

Let $P_1 \mapsto_{UTPM} P_2 \mapsto_{UTPM} \cdots \mapsto_{UTPM} P_k \mapsto_{UTPM} \cdots \mapsto_{UTPM} P_{k'} \mapsto_{UTPM} \cdots$ be a fair sequence of \rightarrow_{UTPM} . This fairness condition implies that for every atom a, there exists a natural number k such that for each NLP P_i with $i > k$ in the sequence of \rightarrow_{UTPM} above, it holds $a \notin body^+(r)$ for each $r \in P_i$. As each *NLP* is a finite set of rules, from some natural number k' on, $body^+(r) = \emptyset$ for any $r \in P_{k'}$. Then for each $k'' \geq k'$, \mapsto_U and \mapsto_T cannot be applied in $P_{k''}$. It remains the program transformations \mapsto_P and \mapsto_M . For each of these $P_{k''}$, there are two possibilities:

- \rightarrow_M strictly decreases the number of rules of $P_{k''}$ or
- \rightarrow \rightarrow p strictly decreases the number of negative literals in body⁻(r) for some $r \in P_{k''}$.

It follows that the successive application of \mapsto_M or \mapsto_P in these $P_{k''}$ s will eventually lead to an irreducible NLP. \Box

Theorem 16

For any *NLP P*, there exists an irreducible *NLP P*^{*} such that $P \mapsto^*_{UTPM} P^*$.

Proof

A simple method to obtain a fair sequence of program transformations with respect to \rightarrow_{UTPM} is to apply \rightarrow_U to a rule r only if \rightarrow_T is not applicable to r and to ensure that whenever \rightarrow_U has been applied to get rid of an occurrence of an atom a, then all such occurrences of a (in other rules of the same program) have also been removed before applying \mapsto_U to another occurrence of an atom $b \neq a$.

As for any NLP P, it is always possible to build such a fair sequence of program transformations with respect to \rightarrow UTPM, we obtain from Theorem 15 that there exists an irreducible $NLP P^*$ such that $P \mapsto^*_{UTPM} P^*$. \Box

Theorem 17

Let P be an NLP and P^* be an NLP obtained after applying repeatedly the program transformation \mapsto_{UTPM} until no further transformation is possible, i.e., $P \mapsto_{UTPM}^* P^*$ and P^* is irreducible. Then P^* is an RFALP.

Proof

To prove it by contradiction, suppose P^* is not an RFALP. There are three possibilities:

- A rule $c \leftarrow a_1, \ldots, a_m$, not $b_1, \ldots,$ not $b_n \in P^*$ with $m \ge 1$ and $n \ge 0$. Then
	- The program transformation \mapsto_U (unfolding) can be applied.
	- If $c \in \{a_1, \ldots, a_m\}$, the program transformation \mapsto_T (elimination of tautologies) can be applied.
- A rule $c \leftarrow \text{not } b_1, \ldots, \text{not } b_n \in P^*$, but there exists $b \in \{b_1, \ldots, b_n\}$ such that $b \notin \{head(r) \mid r \in P^*\}$. Then the program transformation \mapsto_P (positive reduction) can be applied.
- A rule $c \leftarrow \texttt{not } b_1, \ldots, \texttt{not } b_n \in P^*$ and there is a rule $c \leftarrow \texttt{not } c_1, \ldots, \texttt{not } c_p \in$ P^* such that $\{c_1, \ldots, c_p\} \subset \{b_1, \ldots, b_n\}$. Then the program transformation \mapsto_M (elimination of non-minimal rules) can be applied.

It is absurd as in each case, there is still a program transformation to be applied. \Box

Theorem 18

Let P be an RFALP. Then P is irreducible with respect to \rightarrow_{UTPM} .

Proof

Let P be an $RFALP$. It holds

- The program transformations \mapsto_U and \mapsto_T cannot be applied as they require a rule $c \leftarrow a_1, \ldots, a_m$, not b_1, \ldots , not b_n in P with $m \geq 1$.
- The program transformation \mapsto_P cannot be applied as it requires a rule $c \leftarrow$ a_1, \ldots, a_m , not $b,$ not $b_1, \ldots,$ not b_n in P such that $b \notin \{head(r) | r \in P\}$, but ${head(r) | r \in P} = HB_P.$
- The program transformation \mapsto_M cannot be applied as it requires two distinct rules r and r' in P such that $head(r) = head(r')$ and $body^-(r') \subset body^-(r)$.

 \Box

Theorem 21

Let P_1 and P_2 be NLPs such that $P_1 \mapsto_T P_2$. It holds M is a partial stable model of P_1 iff M is a partial stable model of P_2 .

Proof

Let $P_2 = P_1 - \{r\}$ and $head(r) \in body^+(r)$. We have to show for any interpretation $\mathcal{M} = \langle T, F \rangle$, it holds $\mathcal M$ is a partial stable model of P_1 iff $\mathcal M$ is a partial stable model of P_2 ; we distinguish two cases:

- $\{a \mid \text{not } a \in body^{-}(r)\} \cap T \neq \emptyset$: Then $\frac{P_1}{\mathcal{M}} = \frac{P_2}{\mathcal{M}}$. This trivially implies that M is a partial stable model of P_1 iff it is a partial stable model of P_2 .
- $\{a \mid \text{not } a \in body^{-}(r)\} \cap T = \emptyset$: Then it is clear $\frac{P_1}{\mathcal{M}} \mapsto_T \frac{P_2}{\mathcal{M}}$. As both $\frac{P_1}{\mathcal{M}}$ and $\frac{P_2}{\mathcal{M}}$ are positive programs, according to Lemma 19, it holds $\mathcal M$ is the least model of $\frac{P_1}{\mathcal M}$ iff M is the least model of $\frac{P_2}{\mathcal{M}}$. Hence, M is a partial stable model of P_1 iff it is a partial stable model of P_2 .

\Box

Theorem 22

Let P_1 and P_2 be NLPs such that $P_1 \mapsto P_2$. It holds M is a partial stable model of P_1 iff M is a partial stable model of P_2 .

Proof

Let

$$
P_2 = P_1 - \{c \leftarrow a_1, \dots, a_m, \text{not } b, \text{not } b_1, \dots, \text{not } b_n\}
$$

$$
\cup \{c \leftarrow a_1, \dots, a_m, \text{not } b_1, \dots, \text{not } b_n\}
$$

such that r is the rule $c \leftarrow a_1, \ldots, a_m$, not b_1, \ldots, a_n not $b_n \in P_1$ and $b \notin$ ${head}(r') | r' \in P_1$. We have to show that for any interpretation $\mathcal{M} = \langle T, F \rangle$, it holds M is a partial stable model of P_1 iff M is a partial stable model of P_2 ; we distinguish two cases:

- $({a \mid not a \in body^{-}(r) } {b}) \cap T \neq \emptyset$ or $b \in F$: Then $\frac{P_1}{M} = \frac{P_2}{M}$. This trivially implies that M is a partial stable model of P_1 iff it is a partial stable model of P_2 .
- $({a \mid not \ a \in body^-(r) } {b}) \cap T = \emptyset$ and $b \notin F$. Let $\langle T_1, F_1 \rangle$ and $\langle T_2, F_2 \rangle$ be respectively the least models of $\frac{P_1}{M}$ and $\frac{P_2}{M}$. As $b \notin \{head(r') \mid r' \in P_1\}$, it is clear that $b \in F_1$ and $b \in F_2$. Given that $b \notin F$, we obtain $\mathcal{M} = \langle T, F \rangle$ is different from both $\langle T_1, F_1 \rangle$ and $\langle T_2, F_2 \rangle$. Hence, M is neither a partial stable model of P_1 nor of P_2 . This implies that M is a partial stable model of P_1 iff it is a partial stable model of P_2 .

$$
\qquad \qquad \Box
$$

Theorem 23

Let P_1 and P_2 be NLPs such that $P_1 \mapsto M \cdot P_2$. It holds M is a partial stable model of P_1 iff M is a partial stable model of P_2 .

Proof

Suppose that there are two distinct rules r and r' in P_1 such that $head(r) = head(r')$, $body^+(r') \subseteq body^+(r)$, $body^-(r') \subseteq body^-(r)$ and $P_2 = P_1 - \{r\}$. We have to show that for any interpretation $\mathcal{M} = \langle T, F \rangle$, it holds that M is a partial stable model of P_1 iff M is a partial stable model of P_2 ; we distinguish two cases:

- {a | not $a \in body^{-}(r)$ }∩ $T \neq \emptyset$ or $(\{a \mid \texttt{not} \ a \in body^{-}(r)\} ∩ T = \emptyset$ and $body^{+}(r) =$ body⁺(r')): Then $\frac{P_1}{M} = \frac{P_2}{M}$. This trivially implies that M is a partial stable model of P_1 iff it is a partial stable model of P_2 .
- {a | not $a \in body^{-}(r)$ } $\cap T = \emptyset$ and $body^{+}(r') \subset body^{+}(r)$: Then it is clear that $\frac{P_1}{M} \mapsto_M \frac{P_2}{M}$. As both $\frac{P_1}{M}$ and $\frac{P_2}{M}$ are positive programs, according to Lemma 19, it holds that M is the least model of $\frac{P_1}{M}$ iff M is least model $\frac{P_2}{M}$. Hence, M is a partial stable model of P_1 iff it is a partial stable model of P_2 .

Theorem 24

Let P be an NLP and P^* be an irreducible NLP such that $P \mapsto^*_{UTPM} P^*$. It holds M is a partial stable model of P iff M is a partial stable model of P^* .

Proof

If $P \mapsto^*_{UTPM} P^*$, then there exists a finite sequence of program transformations $P =$ $P_1 \mapsto_{UTPM} \cdots \mapsto_{UTPM} P_n = P^*$. According to Theorems 20, 21, 22 and 23, M is a partial stable model of P_i iff M is a partial stable model of P_{i+1} with $1 \leq i < n$. Thus by transitivity, M is a partial stable model of P iff M is a partial stable model of P^* .

Corollary 25

Let P be an NLP and P^* be an irreducible NLP such that $P \mapsto^*_{UTPM} P^*$. It holds M is a well-founded, regular, stable, L-stable model of P iff M is respectively a well-founded, regular, stable, L -stable model of P^* .

Proof

As P and P^* share the same set of partial stable models (Theorem 24), the result is straightforward. \Box

Corollary 26

For any NLP P, there exists an RFALP P^* such that M is a partial stable, well-founded, regular, stable, L-stable model of P iff $\mathcal M$ is respectively a partial stable, well-founded, regular, stable, L -stable model of P^* .

Proof

From Theorem 16, we know that for any NLP P, there exists an irreducible NLP P^* such that $P \mapsto^*_{UTPM} P^*$. From Theorem 17, we obtain P^* is an *RFALP*. Besides, from Theorem 24 and Corollary 25, we infer M is a partial stable, well-founded, regular, stable, L-stable model of P iff M is respectively a partial stable, well-founded, regular, stable, L-stable model of P^* . \Box

Theorem 27

NLPs and RFALPs have the same expressiveness for partial stable, well-founded, regular, stable, and L-stable semantics.

Proof We have

- For any NLP P, there exists an RFALP P^* such that M is a partial stable, wellfounded, regular, stable, L-stable model of P iff $\mathcal M$ is respectively a partial stable, well-founded, regular, stable, L-stable model of P^* (Corollary 26).
- Obviously, any *RFALP* is an *NLP*.

Hence, NLPs and RFALPs have the same expressiveness for partial stable, wellfounded, regular, stable and L-stable semantics. \Box

Lemma 36

Let P_1 and P_2 be NLPs such that $P_1 \mapsto_U P_2$. It holds that $\mathfrak{A}_{P_1} = \mathfrak{A}_{P_2}$.

Proof

Let P_1 and P_2 be *NLPs* such that

$$
P_2 = P_1 - \{c \leftarrow a, a_1, \dots, a_m, \text{not } b_1, \dots, \text{not } b_n\}
$$

$$
\cup \{c \leftarrow a'_1, \dots, a'_p, a_1, \dots, a_m, \text{not } b'_1, \dots, \text{not } b'_q, \text{not } b_1, \dots, \text{not } b_n \mid a \leftarrow a'_1, \dots, a'_p, \text{not } b'_1, \dots, \text{not } b'_q \in P_1\},
$$

 $\mathfrak{A}_{P_1} = (\mathcal{A}_{P_1}, Att_{P_1})$ and $\mathfrak{A}_{P_2} = (\mathcal{A}_{P_2}, Att_{P_2})$. Note that

- For each statement $s \in \mathfrak{S}_{P_1}$, there exists $s' \in \mathfrak{S}_{P_2}$ such that $Conc(s) = Conc(s')$, and $\text{Vul}(s) = \text{Vul}(s')$.
- For each statement $s' \in \mathfrak{S}_{P_2}$, there exists $s \in \mathfrak{S}_{P_1}$ such that $Conc(s') = Conc(s)$, and $\text{Vul}(s') = \text{Vul}(s)$.

Hence, $\mathcal{A}_{P_1} = \mathcal{A}_{P_2}$, and $Att_{P_1} = Att_{P_2}$.

Lemma 37

Let P_1 and P_2 be NLPs such that $P_1 \mapsto_T P_2$. It holds that $\mathfrak{A}_{P_1} = \mathfrak{A}_{P_2}$.

Proof

Let $P_2 = P_1 - \{r\}$, where there exists a rule $r \in P_1$ such that $head(r) \in body^+(r)$. In addition, let $\mathfrak{A}_{P_1} = (\mathcal{A}_{P_1}, Att_{P_1})$ and $\mathfrak{A}_{P_2} = (\mathcal{A}_{P_2}, Att_{P_2})$. Note that

- For each statement $s \in \mathfrak{S}_{P_1}$, there exists $s' \in \mathfrak{S}_{P_2}$ such that $Conc(s) = Conc(s')$, and for each $V \in \text{Vul}(s)$, there exists $V' \in \text{Vul}(s) \cap \text{Vul}(s')$ such that $V' \subseteq V$.
- For each statement $s' \in \mathfrak{S}_{P_2}$, there exists $s \in \mathfrak{S}_{P_1}$ such that $Conc(s') = Conc(s)$, and $\text{Vul}(s') = \text{Vul}(s)$.

Hence, $\mathcal{A}_{P_1} = \mathcal{A}_{P_2}$, and for each $c \in \mathcal{A}_{P_1}$, V is a minimal set (w.r.t. set inclusion) in $\text{Null}_{P_1}(c)$ iff V is a minimal set (w.r.t. set inclusion) in $\text{Null}_{P_2}(c)$; it holds that $Att_{P_1} =$ $Att_{P_2}.$ \Box

Lemma 38 Let P_1 and P_2 be NLPs such that $P_1 \mapsto_P P_2$. It holds that $\mathfrak{A}_{P_1} = \mathfrak{A}_{P_2}$.

Proof

$$
\Box
$$

Let $c \leftarrow a_1, \ldots, a_m$, not b_1, \ldots, a_n not $b_n \in P_1$ be a rule such that $b \notin$ ${head(r) | r \in P_1},$

$$
P_2 = (P_1 - \{c \leftarrow a_1, \dots, a_m, \text{not } b, \text{not } b_1, \dots, \text{not } b_n\})
$$

$$
\cup \{c \leftarrow a_1, \dots, a_m, \text{not } b_1, \dots, \text{not } b_n\},
$$

 $\mathfrak{A}_{P_1} = (\mathcal{A}_{P_1}, Att_{P_1})$ and $\mathfrak{A}_{P_2} = (\mathcal{A}_{P_2}, Att_{P_2})$. Note that

- For each statement $s \in \mathfrak{S}_{P_1}$, there exists $s' \in \mathfrak{S}_{P_2}$ such that $Conc(s) = Conc(s')$, and $\text{Vul}(s) = \{V \mid \exists V' \in \text{Vul}(s') \text{ such that } V = V' \text{ or } V = V' \cup \{b\} \}.$
- For each statement $s' \in \mathfrak{S}_{P_2}$, there exists $s \in \mathfrak{S}_{P_1}$ such that $Conc(s') = Conc(s)$, and $\text{Vul}(s') = \{V' \mid \exists V \in \text{Vul}(s) \text{ such that } V' = V \text{ or } V' = V - \{b\} \}.$

Hence, $\mathcal{A}_{P_1} = \mathcal{A}_{P_2}$, and as $b \notin \mathcal{A}_{P_1} \cup \mathcal{A}_{P_2}$, it holds that $Att_{P_1} = Att_{P_2}$.

\Box

 \Box

Lemma 39

Let P_1 and P_2 be NLPs such that $P_1 \mapsto_M P_2$. It holds that $\mathfrak{A}_{P_1} = \mathfrak{A}_{P_2}$.

Proof

Let $P_2 = P_1 - \{r\}$, where there are two distinct rules r and r' in P_1 such that $head(r) = head(r'), body^+(r') \subseteq body^+(r), body^-(r') \subseteq body^-(r')$. In addition, let $\mathfrak{A}_{P_1} = (\mathcal{A}_{P_1}, Att_{P_1})$ and $\mathfrak{A}_{P_2} = (\mathcal{A}_{P_2}, Att_{P_2})$. Note that

- For each statement $s \in \mathfrak{S}_{P_1}$, there exists $s' \in \mathfrak{S}_{P_2}$ such that $Conc(s) = Conc(s')$, and for each $V \in \text{Vul}(s)$, there exists $V' \in \text{Vul}(s) \cap \text{Vul}(s')$ such that $V' \subseteq V$.
- For each statement $s' \in \mathfrak{S}_{P_2}$, there exists $s \in \mathfrak{S}_{P_1}$ such that $Conc(s') = Conc(s)$, and $\text{Vul}(s') = \text{Vul}(s)$.

Hence, $\mathcal{A}_{P_1} = \mathcal{A}_{P_2}$, and for each $c \in \mathcal{A}_{P_1}$, V is a minimal set (w.r.t. set inclusion) in $\text{Null}_{P_1}(c)$ iff V is a minimal set (w.r.t. set inclusion) in $\text{Null}_{P_2}(c)$; it holds that $Att_{P_1} =$ $Att_{P_2}.$ \Box

Theorem 28 For any *NLPs* P_1 and P_2 , if $P_1 \mapsto_{UTPM} P_2$, then $\mathfrak{A}_{P_1} = \mathfrak{A}_{P_2}$

Proof

It follows straightforwardly from Lemmas 36, 37, 38 and 39.

Theorem 29

The relation \mapsto_{UTPM} is confluent, i.e., for any *NLPs P*, P' and P'', if $P \mapsto_{UTPM}^* P'$ and $P \mapsto_{UTPM}^* P''$ and both P' and P'' are irreducible, then $P' = P''$.

Proof

From Theorem 28, we know that $\mathfrak{A}_P = \mathfrak{A}_{P'} = \mathfrak{A}_{P''}$. Thus $P_{\mathfrak{A}_{P'}} = P_{\mathfrak{A}_{P''}}$. As P' and P'' are RFALPs (Theorem 17), it holds (Theorem 14) that $P' = P_{\mathfrak{A}_{P'}} = P_{\mathfrak{A}_{P''}} = P''$. \Box