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Appendix A Proofs of Theorems

A.1 Theorems and Proofs from Section 3

Lemma 1

Let P be an NLP, I = ⟨T, F ⟩ an interpretation and ΩP (I) = ⟨T ′, F ′⟩ the least 3-valued

model of P
I . It holds

(i) c ∈ T ′ iff there exists a statement s constructed from P such that Conc(s) = c and

Vul(s) ⊆ F .

(ii) c ∈ F ′ iff for every statement s constructed from P such that Conc(s) = c, we have

Vul(s) ∩ T ̸= ∅

Proof

• Proving that c ∈ T ′ iff there exists a statement s constructed from P such that

Conc(s) = c and Vul(s) ⊆ F :

⇒ Consider Ψ↑ i
P
I

= ⟨Ti, Fi⟩ for each i ∈ N. It suffices to prove by induction on the

value of i that if c ∈ Ti, then there exists a statement s constructed from P

such that Conc(s) = c and Vul(s) ⊆ F :

— Basis. For i = 0, the result is trivial as T0 = ∅.
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— Step. Assume that for every c′ ∈ Tn, there exists a statement s′ con-

structed from P such that Conc(s′) = c′ and Vul(s′) ⊆ F . We will prove

that if c ∈ Tn+1, there exists a statement s constructed from P such that

Conc(s) = c and Vul(s) ⊆ F :

If c ∈ Tn+1, there exists a rule c ← a1, . . . , am, not b1, . . . , not bn(m ≥
0, n ≥ 0) ∈ P such that {a1, . . . , am} ⊆ Tn and {b1, . . . , bn} ⊆ F . It

follows via inductive step that for every j ∈ {1, . . . ,m}, there exists a

statement sj constructed from P such that Conc(sj) = aj and Vul(sj) ⊆
F . But then, we can construct from P a statement s with Conc(s) = c

where Vul(s) = Vul(s1) ∪ · · · ∪ Vul(sm) ∪ {b1, . . . , bn}. This implies that

Vul(s) ⊆ F .

⇐ We will prove by structural induction on the construction of statements that

for each statement s constructed from P such that Vul(s) ⊆ F , it holds

Conc(s) ∈ T ′:

— Basis. Let s be a statement c ← not b1, . . . , not bn (n ≥ 0) such that

{b1, . . . , bn} = Vul(s) ⊆ F . It follows the fact c ∈ P
I . Then c ∈ T ′.

— Step. Assume s1, . . . , sm (m ≥ 1) are arbitrary statements con-

structed from P such that for each i ∈ {1, . . . ,m}, if Vul(si) ⊆ F ,

then Conc(si) ∈ T ′. We will prove that if s is a statement c ←
(s1), . . . , (sm), not b1, . . . , not bn (n ≥ 0) constructed from P such that

Vul(s) ⊆ F , then c ∈ T ′:

Let s be such a statement. By Definition 8, there exists a rule c ←
a1, . . . , am, not b1, . . . , not bn ∈ P such that Conc(si) = ai for each

i ∈ {1, . . . ,m} and Vul(s) = Vul(s1) ∪ · · · ∪ Vul(sm) ∪ {b1, . . . , bn}.
As Vul(s) ⊆ F , we obtain {b1, . . . , bn} ⊆ F and Vul(si) ⊆ F for each

i ∈ {1, . . . ,m}. By inductive hypothesis, it follows {a1, . . . , am} ⊆ T ′.

Then c ∈ T ′.

• Proving that c ∈ F ′ iff for every statement s constructed from P such that

Conc(s) = c, we have Vul(s) ∩ T ̸= ∅:

⇒ Firstly, we will prove by structural induction on the construction of statements

that for each statement s constructed from P such that Vul(s) ∩ T = ∅, it
holds Conc(s) ̸∈ F ′:

— Basis. Let s be a statement c ← not b1, . . . , not bn (n ≥ 0) such that

{b1, . . . , bn}∩T = ∅. It follows the fact c ∈ P
I or c← u ∈ P

I . Then c ̸∈ F ′.

— Step. Assume s1, . . . , sm (m ≥ 1) are arbitrary statements constructed

from P such that for each i ∈ {1, . . . ,m}, if Vul(si) ∩ T = ∅,
then Conc(si) ̸∈ F ′. We will prove that if s is a statement c ←
(s1), . . . , (sm), not b1, . . . , not bn (n ≥ 0) constructed from P such that

Vul(s) ∩ T = ∅, then c ̸∈ F ′:

Let s be such a statement. By Definition 8, there exists a rule c ←
a1, . . . , am, not b1, . . . , not bn ∈ P such that Conc(si) = ai for each

i ∈ {1, . . . ,m} and Vul(s) = Vul(s1) ∪ · · · ∪ Vul(sm) ∪ {b1, . . . , bn}. As

Vul(s)∩T = ∅, we obtain {b1, . . . , bn}∩T = ∅ and Vul(si)∩T = ∅ for each
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i ∈ {1, . . . ,m}. By inductive hypothesis, it follows {a1, . . . , am} ∩ F ′ = ∅.
Then, c ̸∈ F ′.

Hence, if c ∈ F ′, for every statement s constructed from P such that

Conc(s) = c, we have Vul(s) ∩ T ̸= ∅.
⇐ Assume that for every statement s constructed from P such that Conc(s) = c,

we have Vul(s) ∩ T ̸= ∅. The proof is by contradiction: suppose that c ̸∈ F ′.

Consider Ψ↑ i
P
I

= ⟨Ti, Fi⟩ for each i ∈ N. It suffices to prove by induction on

the value of i that if c ̸∈ Fi, then there exists a statement s constructed from

P such that Conc(s) = c and Vul(s) ∩ T = ∅:
— Basis. For i = 0, the result is trivial as F0 = HBP .

— Step. Assume that for every c′ ̸∈ Fn, there exists a statement s′ con-

structed from P such that Conc(s′) = c′ and Vul(s′) ∩ T = ∅. We will

prove that if c ̸∈ Fn+1, there exists a statement s constructed from P

such that Conc(s) = c and Vul(s) ∩ T = ∅:
If c ̸∈ Fn+1, there exists a rule c ← a1, . . . , am, not b1, . . . , not bn(m ≥
0, n ≥ 0) ∈ P such that {a1, . . . , am} ∩ Fn = ∅ and {b1, . . . , bn} ∩ T = ∅.
It follows via inductive step that for every j ∈ {1, . . . ,m}, there exists a

statement sj constructed from P such that Conc(sj) = aj and Vul(sj) ∩
T = ∅. But then, we can construct from P a statement s with Conc(s) = c

where Vul(s) = Vul(s1) ∪ · · · ∪ Vul(sm) ∪ {b1, . . . , bn}. This implies that

Vul(s) ∩ T = ∅.

Theorem 3

Let P be an NLP and AP = (AP ,AttP ) be the associated SETAF. For any labelling L
of AP , it holds I2LP (L2IP (L)) = L.

Proof

Let c ∈ AP and L2IP (L) = ⟨T, F ⟩; there are three possibilities:

• L(c) = in ⇒ c ∈ T ⇒ I2LP (L2IP (L))(c) = in.

• L(c) = out ⇒ c ∈ F ⇒ I2LP (L2IP (L))(c) = out.

• L(c) = undec ⇒ c ∈ T ∪ F ⇒ I2LP (L2IP (L))(c) = undec.

Theorem 4

Let P be an NLP, AP = (AP ,AttP ) be the associated SETAF and M = ⟨T, F ⟩ be a

partial stable model of P . It holds that L2IP (I2LP (M)) =M.

Proof

Let M = ⟨T, F ⟩ be a partial stable model of P , L2IP (I2LP (M)) = ⟨T ′, F ′⟩ and c ∈
HBP . It suffices to prove the following results:

• c ∈ T iff c ∈ T ′.
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— Assume c ∈ T . As ΩP (M) = M, by Lemma 1, there exists a statement s

with Conc(s) = c such that Vul(s) ⊆ F . In particular, it follows that c ∈ AP .

This implies I2LP (M)(c) = in and c ∈ T ′.

— Assume c ∈ T ′. Then c ∈ AP and I2LP (M)(c) = in. From Definition 11, we

obtain c ∈ T .

• c ∈ F iff c ∈ F ′.

— Assume c ̸∈ F ′. Then c ∈ AP and I2LP (M)(c) ̸= out. From Definition 11,

we obtain c ̸∈ F .

— Assume c ̸∈ F . As ΩP (M) = M, by Lemma 1, there exists a statement s

with Conc(s) = c such that Vul(s) ∩ T = ∅. In particular, it follows that

c ∈ AP . This implies I2LP (M)(c) ̸= out and c ̸∈ F ′.

Lemma 30

Let P be an NLP, AP = (AP ,AttP ) be the associated SETAF and v ∈ {in, out, undec}.
It holds that

• For each B ∈ Att(c), L(b) = v for some b ∈ B iff there exists V ∈ Vul(c) such that

L(b) = v for every b ∈ AP ∩ V .

• For each B ∈ Att(c), L(b) ̸= v for some b ∈ B iff there exists V ∈ Vul(c) such that

L(b) ̸= v for every b ∈ AP ∩ V .

Proof

We will prove the result in the first item; the proof of the other result follows a similar

path:

⇒ Assume that for each B ∈ Att(c), L(b) = v for some b ∈ B.
By absurd, suppose that for each V ∈ Vul(c), it holds that L(b) ̸= v for some b ∈ AP ∩V .

Then we can construct a set B′ ⊆ AP by selecting for each V ∈ Vul(c), an element b ∈ V
such that L(b) ̸= v. From Definition 9, we know that there exists B ⊆ B′ such that

(B, c) ∈ AttP . But then, there exists B ∈ Att(c) such that L(b) ̸= v for each b ∈ B. It is
absurd as it contradicts our hypothesis.

⇐ Assume that there exists V ∈ Vul(c) such that L(b) = v for every b ∈ AP ∩ V .

The result is immediate as according to Definition 9, every set B of arguments attacking

c contains an element b ∈ AP ∩ V .

Theorem 5

Let P be an NLP and AP = (AP ,AttP ) be the associated SETAF. It holds

• L is a complete labelling of AP iff L2IP (L) is a partial stable model of P .

• M is a partial stable model of P iff I2LP (M) is a complete labelling of AP .

Proof

1. If L is a complete labelling of AP , then L2IP (L) is a partial stable model of P :
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LetM = L2IP (L) = ⟨T, F ⟩. We will showM is a partial stable model of P , i.e.,

ΩP (M) = ⟨T ′, F ′⟩ = ⟨T, F ⟩:

• c ∈ T iff c ∈ AP and L(c) = in iff for each B ∈ Att(c), it holds L(b) = out

for some b ∈ B iff (Lemma 30) there exists V ∈ Vul(c) such that L(b) = out

for every b ∈ AP ∩ V iff there exists a statement s with Conc(s) = c and

Vul(s) ⊆ F iff (Lemma 1) c ∈ T ′.

• c ̸∈ F iff c ∈ AP and L(c) ̸= out iff for each B ∈ Att(c), it holds L(b) ̸= in

for some b ∈ B iff (Lemma 30) there exists V ∈ Vul(c) such that L(b) ̸= in

for every b ∈ AP ∩ V iff there exists a statement s with Conc(s) = c and

Vul(s) ∩ T = ∅ iff (Lemma 1) c ̸∈ F ′.

2. IfM is a partial stable model of P , then I2LP (M) is a complete labelling of AP :

Let M = ⟨T, F ⟩ be a partial stable model of P . Then ΩP (M) = ⟨T, F ⟩. Let c be

an argument in AP . We will prove L = I2LP (M) is a complete labelling of AP :

• L(c) = in iff c ∈ T iff (Lemma 1) there exists a statement s with Conc(s) = c

and Vul(s) ⊆ F iff there exists V ∈ Vul(c) such that L(b) = out for every

b ∈ AP ∩ V iff (Lemma 30) for each B ∈ Att(c), it holds L(b) = out for some

b ∈ B.
• L(c) ̸= out iff c ̸= F iff (Lemma 1) there exists a statement s with Conc(s) = c

and Vul(s) ∩ T = ∅ iff there exists V ∈ Vul(c) such that L(b) ̸= in for every

b ∈ AP ∩ V iff (Lemma 30) for each B ∈ Att(c), it holds L(b) ̸= in for some

b ∈ B.

3. If L2IP (L) is a partial stable model of P , then L is a complete labelling of AP :

It holds that L2IP (L) is a partial stable model of P ⇒ according to item 2 above,

I2LP (L2IP (L)) is a complete labelling of AP ⇒ (via Theorem 3) L is a complete

labelling of AP .

4. If I2LP (M) is a complete labelling of AP , thenM is a partial stable model of P :

It holds that I2LP (M) is a complete labelling of AP ⇒ according to item 1 above,

L2IP (I2LP (M)) is a partial stable model of P ⇒ (via Theorem 4)M is a partial

stable model of P .

Lemma 31

Let P be an NLP, AP = (AP ,AttP ) be its associated SETAF. Let L1 and L2 be β-

complete labellings of AP , and L2IP (L1) = ⟨T1, F1⟩ and L2IP (L2) = ⟨T2, F2⟩. It holds

1. in(L1) ⊆ in(L2) iff T1 ⊆ T2;

2. in(L1) = in(L2) iff T1 = T2;

3. in(L1) ⊂ in(L2) iff T1 ⊂ T2.

Proof
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1. (⇒): Suppose in(L1) ⊆ in(L2). If c ∈ T1, by Definition 11, c ∈ AP and L1(A) =

in. From our initial assumption, it follows L2(c) = in. So, by Definition 11,

c ∈ T2.

(⇐): Suppose T1 ⊆ T2. If L1(c) = in, by Definition 11, c ∈ T1. From our initial

assumption, it follows c ∈ T2. So, by Definition 11, L2(c) = in.

2. It follows directly from point 1.

3. It follows directly from points 1 and 2.

Lemma 32

Let P be an NLP, AP = (AP ,AttP ) be its associated SETAF. Let L1 and L2 be complete

labellings of AP , and L2IP (L1) = ⟨T1, F1⟩ and L2IP (L2) = ⟨T2, F2⟩. It holds

1. out(L1) ⊆ out(L2) iff F1 ⊆ F2;

2. out(L1) = out(L2) iff F1 = F2;

3. out(L1) ⊂ out(L2) iff F1 ⊂ F2.

Proof

1. (⇒): Suppose out(L1) ⊆ out(L2). If c ∈ F1, by Definition 11, there are two possi-

bilities:

• c ̸∈ AP . As L2IP (L2) = ⟨T2, F2⟩, we obtain that c ∈ F2.

• c ∈ AP and L1(c) = out. From our initial assumption, it follows L2(c) =

out. So, by Definition 11, c ∈ F2.

(⇐): Suppose F1 ⊆ F2. If L1(c) = out, by Definition 11, c ∈ F1. From our initial

assumption, it follows c ∈ F2. So, by Definition 11, L2(c) = out.

2. It follows directly from point 1.

3. It follows directly from points 1 and 2.

Lemma 33

Let P be an NLP, AP = (AP ,AttP ) be its associated SETAF. Let L1 and L2 be complete

labellings of AP , and L2IP (L1) = ⟨T1, F1⟩ and L2IP (L2) = ⟨T2, F2⟩. It holds

1. undec(L1) ⊆ undec(L2) iff T1 ∪ F1 ⊆ T2 ∪ F2;

2. undec(L1) = undec(L2) iff T1 ∪ F1 = T2 ∪ F2;

3. undec(L1) ⊂ undec(L2) iff T1 ∪ F1 ⊂ T2 ∪ F2.

Proof

1. (⇒): Suppose undec(L1) ⊆ undec(L2). If c ∈ T1 ∪ F1, by Definition 11, c ∈ AP

and L1(c) = undec. From our initial assumption, it follows L2(c) = undec.

So, by Definition 11, c ∈ T2 ∪ F2.
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(⇐): Suppose T1 ∪ F1 ⊆ T2 ∪ F2. If L1(c) = undec, by Definition 11, c ∈ T1 ∪ F1.

From our initial assumption, it follows c ∈ T2 ∪ F2. So, by Definition 11,

L2(c) = undec.

2. It follows directly from point 1.

3. It follows directly from points 1 and 2.

Theorem 6

Let P be an NLP and AP = (AP ,AttP ) be the associated SETAF. It holds

1. L is a grounded labelling of AP iff L2IP (L) is a well-founded model of P .

2. L is a preferred labelling of AP iff L2IP (L) is a regular model of P .

3. L is a stable labelling of AP iff L2IP (L) is a stable model of P .

4. L is a semi-stable labelling of AP iff L2IP (L) is an L-stable model of P .

Proof

Let L be an argument labelling of AP and L2IP (L) = ⟨T, F ⟩. The proof is straightfor-

ward:

1. L is a grounded labelling of AP iff L is a complete labelling of AP , and in(L) is

minimal (w.r.t. set inclusion) among all complete labellings of AP iff (Theorem 5

and Lemma 31) L2IP (L) is a partial stable model of P , and there is no partial

stable model M′ = ⟨T ′, F ′⟩ of P such that T ′ ⊂ T iff L2IP (L) is a well-founded

model of P ;

2. L is a preferred labelling of AP iff L is a complete labelling of AP , and in(L) is

maximal (w.r.t. set inclusion) among all complete labellings of AP iff (Theorem 5

and Lemma 31) L2IP (L) is a partial stable model of P , and there is no partial

stable modelM′ = ⟨T ′, F ′⟩ of P such that T ⊂ T ′ iff L2IP (L) is a regular model

of P ;

3. L is a stable labelling of AP iff L is a complete labelling of AP such that undec(L) =
∅ iff (Theorem 5) L2IP (L) is a partial stable model such that T ∪ F = ∅ iff L2IP (L)
is a stable model of P ;

4. L is a semi-stable labelling of AP iff L is a complete labelling of AP , and undec(L)
is minimal (w.r.t. set inclusion) among all complete labellings of AP iff (Theorem

5 and Lemma 33) L2IP (L) is a partial stable model of P , and there is no partial

stable model M′ = ⟨T ′, F ′⟩ of P such that T ′ ∩ F ′ ⊂ T ∪ F iff L2IP (L) is an

L-stable model of P .

Corollary 7

Let P be an NLP and AP = (AP ,AttP ) be the associated SETAF. It holds

1. M is a well-founded model of P iff I2LP (M) is a grounded labelling of AP .

2. M is a regular model of P iff I2LP (M) is a preferred labelling of AP .

3. M is a stable model of P iff I2LP (M) is a stable labelling of AP .

4. M is an L-stable model of P iff I2LP (M) is a semi-stable labelling of AP .
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Proof

These results come from Theorems 4 and 6.

A.2 Theorems and Proofs from Section 4

Theorem 8

Let A = (A,Att) be a SETAF and PA its associated NLP.

• For any labelling L of A, it holds I2LA(L2IA(L)) = L.
• For any interpretation I of PA, it holds L2IA(I2LA(I)) = I.

Proof

Both results are immediate:

• Proving that for any labelling L of A, it holds I2LA(L2IA(L)) = L:
Let L2IA(L) = ⟨T, F ⟩.

— L(a) = in ⇒ a ∈ T ⇒ I2LA(L2IA(L))(a) = in;

— L(a) = out ⇒ a ∈ F ⇒ I2LA(L2IA(L))(a) = out;

— L(a) = undec ⇒ a ∈ T ∪ F ⇒ I2LA(L2IA(L))(a) = undec.

• Proving that for any interpretation I of PA, it holds L2IA(I2LA(I)) = I.
Let I = ⟨T, F ⟩ be an interpretation of PA, and L2IA(I2LA(I)) = ⟨T ′, F ′⟩. We will

show T = T ′ and F = F ′:

— a ∈ T ⇒ I2LA(I)(a) = in ⇒ a ∈ T ′;

— a ∈ F ⇒ I2LA(I)(a) = out ⇒ a ∈ F ′;

— a ∈ T ∪ F ⇒ I2LA(I)(a) = undec ⇒ a ∈ T ′ ∪ F ′;

Theorem 9

Let A be a SETAF and PA be its associated NLP. It holds

• L is a complete labelling of A iff L2IA(L) is a partial stable model of PA.

• M is a partial stable model of PA iff I2LA(M) is a complete labelling of A.

Proof

1. Proving that if L is a complete labelling of A, then L2IA(L) is a partial stable

model of PA:

Let L2IA(L) = ⟨T, F ⟩ and ΩPA
(L2IA(L)) = ⟨T ′, F ′⟩. It suffices to show L2IA(L)

is a fixpoint of ΩPA
: T = T ′ and F = F ′. For any argument a ∈ A = HBPA

, there

are three possibilities:

• a ∈ T . Then L(a) = in. From Definition 2, we know that for each B ∈ Att(a),

it holds L(b) = out for some b ∈ B. It follows from Definition 12 that there

exists V ∈ Va such that L(b) = out for every b ∈ V . This means the fact

a ∈ PA

L2IA(L)
, i.e., a ∈ T ′.

• a ∈ F . Then L(a) = out. From Definition 2, we know that there exists

B ∈ Att(a) such that L(b) = in for each b ∈ B. It follows from Definition 12
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that for each V ∈ Va, there exists b ∈ V such that L(b) = in. This means

that there exists no rule for a in
PA

L2IA(L)
, i.e., a ∈ F ′.

• a ∈ T ∪ F . Then L(a) = undec. From Definition 2, we know that (i) there

exists B ∈ Att(a) such that L(b) ̸= out for each b ∈ B, and (ii) for each

B ∈ Att(a), it holds L(b) ̸= in for some b ∈ B. It follows from Definition 12

that (i) there does not exist V ∈ Va such that L(b) = out for every b ∈ V ,

and (ii) there exists V ∈ Va such that L(b) ̸= in for each b ∈ V . This means

(i) the fact a ̸∈ PA

L2IA(L)
, and (ii) there exists rule for a in

PA

L2IA(L)
. Thus

body(r) = u for any r ∈ PA

L2IA(L)
such that head(r) = a, i.e., a ∈ T ′ ∪ F ′.

2. Proving that if M is a partial stable model of PA, then I2LA(M) is a complete

labelling of A:

Let M = ⟨T, F ⟩ be a partial stable model of PA. Thus M is a fixpoint of ΩPA
,

i.e., ΩPA
(M) =M. We now prove I2LA(M) is a complete labelling of A. For any

a ∈ HBPA
= A, there are three possibilities:

• I2LA(M)(a) = in. Then a ∈ T . As ΩPA
(M) =M, the fact a ∈ PA

M
. This

means that there exists a rule a← not b1, . . . , not bn ∈ PA (n ≥ 0) such that

{b1, . . . , bn} ⊆ F . It follows from Definition 12 that for each B ∈ Att(a), it

holds I2LA(M)(b) = out for some b ∈ B;
• I2LA(M)(a) = out. Then a ∈ F . As ΩPA

(M) = M, there exists no rule

for a in
PA

M
. This means that for every rule a ← not b1, . . . , not bn ∈ PA

(n ≥ 0), there exists bi ∈ T (1 ≤ i ≤ n). It follows from Definition 12 that

there exists B ∈ Att(a) such that I2LA(M)(b) = in for each b ∈ B;

• I2LA(M)(a) = undec. Then a ∈ T ∪ F . As ΩPA
(M) =M, the fact a ̸∈ PA

M
,

but there exists a rule r in
PA

M
such that head(r) = a and body(r) = u. This

means that (i) for each rule a ← not b1, . . . , not bn ∈ PA (n ≥ 0), it holds

{b1, . . . , bn} ̸⊆ F , and (ii) there exists a rule a ← not b1, . . . , not bn ∈ PA

(n ≥ 0) such that {b1, . . . , bn} ∩ T = ∅. It follows from Definition 12 that (i)

there exists B ∈ Att(a) such that I2LA(M)(b) ̸= out for each b ∈ B, and (ii)

for each B ∈ Att(a), it holds I2LA(M)(b) ̸= in for some b ∈ B.

Hence, I2LA(M) is a complete labelling of A.

3. Proving that if L2IA(L) is a partial stable model of PA, then L is a complete

labelling of A:

L2IA(L) is a partial stable model of PA ⇒ according to item 2 above,

I2LA(L2IA(L)) is a complete labelling of A ⇒ (Theorem 8) L is a complete la-

belling of A.

4. Proving that if I2LA(M) is a complete labelling of A, thenM is a partial stable

model of PA:

I2LA(M) is complete labelling of A⇒ according to item 1 above, L2IA(I2LA(M))

is a partial stable model of PA ⇒ (Theorem 8)M is a partial stable model of PA.
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Theorem 10

Let A be a SETAF and PA its associated NLP. It holds

1. L is a grounded labelling of A iff L2IA(L) is a well-founded model of PA.

2. L is a preferred labelling of A iff L2IA(L) is a regular model of PA.

3. L is a stable labelling of A iff L2IA(L) is a stable model of PA.

4. L is a semi-stable labelling of A iff L2IA(L) is an L-stable model of PA.

Proof

Let L be an argument labelling of A. Recall that L2IA(L) = ⟨in(L), out(L)⟩. The proof

is straightforward:

1. L is a grounded labelling of A iff L is a complete labelling of A and in(L) is minimal

(w.r.t. set inclusion) among all complete labellings of A iff (Theorem 9) L2IA(L)
is a partial stable model of PA and there is no partial stable modelM′ = ⟨T ′, F ′⟩
of PA such that T ′ ⊂ in(L) iff L2IA(L) is a well-founded model of PA;

2. L is a preferred labelling of A iff L is a complete labelling of A and in(L) is maximal

(w.r.t. set inclusion) among all complete labellings of A iff (Theorem 9) L2IA(L)
is a partial stable model of PA and there is no partial stable modelM′ = ⟨T ′, F ′⟩
of P such that in(L) ⊂ T ′ iff L2IA(L) is a regular model of PA;

3. L is a stable labelling of A iff L is a complete labelling of A such that undec(L) = ∅
iff (Theorem 9) L2IA(L) is a partial stable model of PA such that in(L) ∪ out(L) =
∅ iff L2IA(L) is a stable model of PA;

4. L is a semi-stable labelling of A iff L is a complete labelling of A and undec(L)
is minimal (w.r.t. set inclusion) among all complete labellings of A iff (Theorem

9) L2IA(L) is a partial stable model of PA and there is no partial stable model

M′ = ⟨T ′, F ′⟩ of PA such that T ′ ∪ F ′ ⊂ in(L) ∪ out(L) iff L2IA(L) is an L-stable

model of PA.

Corollary 11

Let A be a SETAF and PA its associated NLP. It holds

1. M is a well-founded model of PA iff I2LA(M) is a grounded labelling of A.

2. M is a regular model of PA iff I2LA(M) is a preferred labelling of A.

3. M is a stable model of PA iff I2LA(M) is a stable labelling of A.

4. M is an L-stable model of PA iff I2LA(M) is a semi-stable labelling of A.

Proof

These results come from Theorems 8 and 10.

A.3 Theorems and Proofs from Section 5

Proposition 12

Let A = (A,Att) be a SETAF and PA its associated NLP. It holds PA is an RFALP.

Proof
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It follows that

1. Each rule in PA has the form a← not b1, . . . , not bn;

2. for each rule a← not b1, . . . , not bn ∈ PA, if b ∈ {b1, . . . , bn}, there exists (B, a) ∈
Att such that b ∈ B, i.e,. b ∈ AP . Then there exists a rule r ∈ PA such that

b = head(r). This suffices to guarantee HBPA
= {head(r) | r ∈ PA};

3. A rule a← not b1, . . . , not bn ∈ PA iff there exists a minimal set (w.r.t. set inclu-

sion) V = {b1, . . . , bn} such that for each B ∈ Att(a), there exists b ∈ B ∩ V . This

means there exists no rule a← not c1, . . . , not cn′ ∈ PA such that {c1, . . . , cn′} ⊂
{b1, . . . , bn}.

Hence, PA is an RFALP.

Lemma 34

Let P be an RFALP, HeadP = {head(r) | r ∈ P} and AP = (AP ,AttP ) its corresponding

SETAF. It holds HeadP = AP .

Proof

The result is straightforward: c ∈ HeadP iff there exists a rule c← not b1, . . . , not bn ∈ P

(n ≥ 0) iff c ∈ AP (Definition 8).

Theorem 13

Let A = (A,Att) be a SETAF, PA its associated NLP and APA
the associated SETAF

of PA. It holds that A = APA
.

Proof

Let A = (A,Att) be a SETAF with A = {a1, . . . , an} and for each ai ∈ A, we define

Ri = {r ∈ PA | head(r) = ai}, i.e., PA = R1 ∪R2 ∪ · · · ∪Rn. It follows from Proposition

12 and Lemma 34 that APA
= (APA

,AttPA
) with APA

= {a1, . . . , an} = A. It remains

to prove that Att = AttPA
:

(B, aj) ∈ Att iff (B, aj) ∈ Att and there exists no B′ ⊂ B such that (B′, aj) ∈ Att iff B
is a minimal set (w. r. t. set inclusion) in which for each rule r ∈ Rj , there exists b ∈ B
such that not b ∈ body−(r) iff B is a minimal set (w. r. t. set inclusion) in which for each

V ∈ Vul(aj), there exists b ∈ B ∩ V iff (B, aj) ∈ AttPA
.

Lemma 35

Let P be an RFALP, AP = (AP ,AttP ) the corresponding SETAF and c ∈ AP . If

{a1, . . . , an} is a minimal set such that for each B ∈ AttP (c), there exists ai ∈ B (1 ≤
i ≤ n), then c← not a1, . . . , not an ∈ P .

Proof

As for each B ∈ AttP (c), there exists ai ∈ B (1 ≤ i ≤ n), it follows from Definition 9

that there exists V ∈ Vul(c) such that V ⊆ {a1, . . . , an}. Note that for each B ∈ AttP (c),

there exists b ∈ V ∩ B. As {a1, . . . , an} is a minimal set with this property, it holds

V = {a1, . . . , an}. Then (Definition 8) c← not a1, . . . , not an ∈ P .

Theorem 14
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Let P be an RFALP, AP its associated SETAF and PAP
the associated NLP of AP . It

holds that P = PAP
.

Proof

Let P be an RFALP with HBP = {a1, . . . , an}, and AP = (AP ,AttP ) the corresponding

SETAF. For each ai ∈ HBP (1 ≤ i ≤ n), we define Ri = {r ∈ PA | head(r) = ai}. It
follows that AP = {a1, . . . , an}. Hence, HBPAP

= {a1, . . . , an}. We will prove P = PAP
:

• If ai ← not ai1 , . . . , not aim ∈ P . then ai ∈ AP and {ai1 , . . . , aim} is a minimal

set (w.r.t. set inclusion) such that for each B ∈ AttP (ai), there exists aik ∈ B
(k ∈ {1, . . . ,m}). This implies (Definition 12) ai ← not ai1 , . . . , not aim ∈ PAP

.

• If ai ← not ai1 , . . . , not aim ∈ PAP
, then (Definition 12) {ai1 , . . . , aim} is a minimal

set (w.r.t. set inclusion) such that for each B ∈ AttP (ai), there exists aik ∈ B
(k ∈ {1, . . . ,m}). Thus (Lemma 35) ai ← not ai1 , . . . , not aim ∈ P .

A.4 Theorems and Proofs from Section 6

Theorem 15

The relation 7→UTPM is strongly terminating for fair sequences of program transforma-

tions, i.e., such fair sequences always lead to irreducible programs.

Proof

Let P1 7→UTPM P2 7→UTPM · · · 7→UTPM Pk 7→UTPM · · · 7→UTPM Pk′ 7→UTPM · · · be a fair

sequence of 7→UTPM. This fairness condition implies that for every atom a, there exists

a natural number k such that for each NLP Pi with i > k in the sequence of 7→UTPM

above, it holds a ̸∈ body+(r) for each r ∈ Pi. As each NLP is a finite set of rules, from

some natural number k′ on, body+(r) = ∅ for any r ∈ Pk′ . Then for each k′′ ≥ k′, 7→U

and 7→T cannot be applied in Pk′′ . It remains the program transformations 7→P and 7→M .

For each of these Pk′′ , there are two possibilities:

• 7→M strictly decreases the number of rules of Pk′′ or

• 7→P strictly decreases the number of negative literals in body−(r) for some r ∈ Pk′′ .

It follows that the successive application of 7→M or 7→P in these Pk′′s will eventually

lead to an irreducible NLP.

Theorem 16

For any NLP P , there exists an irreducible NLP P ∗ such that P 7→∗
UTPM P ∗.

Proof

A simple method to obtain a fair sequence of program transformations with respect to

7→UTPM is to apply 7→U to a rule r only if 7→T is not applicable to r and to ensure that

whenever 7→U has been applied to get rid of an occurrence of an atom a, then all such

occurrences of a (in other rules of the same program) have also been removed before

applying 7→U to another occurrence of an atom b ̸= a.
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As for any NLP P , it is always possible to build such a fair sequence of program

transformations with respect to 7→UTPM, we obtain from Theorem 15 that there exists

an irreducible NLP P ∗ such that P 7→∗
UTPM P ∗.

Theorem 17

Let P be an NLP and P ∗ be an NLP obtained after applying repeatedly the program

transformation 7→UTPM until no further transformation is possible, i.e., P 7→∗
UTPM P ∗

and P ∗ is irreducible. Then P ∗ is an RFALP.

Proof

To prove it by contradiction, suppose P ∗ is not an RFALP. There are three possibilities:

• A rule c← a1, . . . , am, not b1, . . . , not bn ∈ P ∗ with m ≥ 1 and n ≥ 0. Then

— The program transformation 7→U (unfolding) can be applied.

— If c ∈ {a1, . . . , am}, the program transformation 7→T (elimination of tautolo-

gies) can be applied.

• A rule c ← not b1, . . . , not bn ∈ P ∗, but there exists b ∈ {b1, . . . , bn} such that

b ̸∈ {head(r) | r ∈ P ∗}. Then the program transformation 7→P (positive reduction)

can be applied.

• A rule c ← not b1, . . . , not bn ∈ P ∗ and there is a rule c ← not c1, . . . , not cp ∈
P ∗ such that {c1, . . . , cp} ⊂ {b1, . . . , bn}. Then the program transformation 7→M

(elimination of non-minimal rules) can be applied.

It is absurd as in each case, there is still a program transformation to be applied.

Theorem 18

Let P be an RFALP. Then P is irreducible with respect to 7→UTPM.

Proof

Let P be an RFALP. It holds

• The program transformations 7→U and 7→T cannot be applied as they require a rule

c← a1, . . . , am, not b1, . . . , not bn in P with m ≥ 1.

• The program transformation 7→P cannot be applied as it requires a rule c ←
a1, . . . , am, not b, not b1, . . . , not bn in P such that b ̸∈ {head(r) | r ∈ P}, but

{head(r) | r ∈ P} = HBP .

• The program transformation 7→M cannot be applied as it requires two distinct rules

r and r′ in P such that head(r) = head(r′) and body−(r′) ⊂ body−(r).

Theorem 21

Let P1 and P2 be NLPs such that P1 7→T P2. It holdsM is a partial stable model of P1

iffM is a partial stable model of P2.

Proof
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Let P2 = P1 − {r} and head(r) ∈ body+(r). We have to show for any interpretation

M = ⟨T, F ⟩, it holds M is a partial stable model of P1 iff M is a partial stable model

of P2; we distinguish two cases:

•
{
a | not a ∈ body−(r)

}
∩ T ̸= ∅: Then P1

M = P2

M . This trivially implies thatM is a

partial stable model of P1 iff it is a partial stable model of P2.

•
{
a | not a ∈ body−(r)

}
∩ T = ∅: Then it is clear P1

M 7→T
P2

M . As both P1

M and P2

M
are positive programs, according to Lemma 19, it holdsM is the least model of P1

M
iffM is the least model of P2

M . Hence,M is a partial stable model of P1 iff it is a

partial stable model of P2.

Theorem 22

Let P1 and P2 be NLPs such that P1 7→P P2. It holdsM is a partial stable model of P1

iffM is a partial stable model of P2.

Proof

Let

P2 =P1 − {c← a1, . . . , am, not b, not b1, . . . , not bn}
∪ {c← a1, . . . , am, not b1, . . . , not bn}

such that r is the rule c ← a1, . . . , am, not b, not b1, . . . , not bn ∈ P1 and b ̸∈
{head(r′) | r′ ∈ P1}. We have to show that for any interpretation M = ⟨T, F ⟩, it holds

M is a partial stable model of P1 iff M is a partial stable model of P2; we distinguish

two cases:

•
({

a | not a ∈ body−(r)
}
− {b}

)
∩ T ̸= ∅ or b ∈ F : Then P1

M = P2

M . This trivially

implies thatM is a partial stable model of P1 iff it is a partial stable model of P2.

•
({

a | not a ∈ body−(r)
}
− {b}

)
∩ T = ∅ and b ̸∈ F . Let ⟨T1, F1⟩ and ⟨T2, F2⟩ be

respectively the least models of P1

M and P2

M . As b ̸∈ {head(r′) | r′ ∈ P1}, it is clear
that b ∈ F1 and b ∈ F2. Given that b ̸∈ F , we obtainM = ⟨T, F ⟩ is different from
both ⟨T1, F1⟩ and ⟨T2, F2⟩. Hence, M is neither a partial stable model of P1 nor

of P2. This implies thatM is a partial stable model of P1 iff it is a partial stable

model of P2.

Theorem 23

Let P1 and P2 be NLPs such that P1 7→M P2. It holdsM is a partial stable model of P1

iffM is a partial stable model of P2.

Proof

Suppose that there are two distinct rules r and r′ in P1 such that head(r) = head(r′),

body+(r′) ⊆ body+(r), body−(r′) ⊆ body−(r) and P2 = P1 − {r}. We have to show that

for any interpretationM = ⟨T, F ⟩, it holds thatM is a partial stable model of P1 iffM
is a partial stable model of P2; we distinguish two cases:
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•
{
a | not a ∈ body−(r)

}
∩T ̸= ∅ or (

{
a | not a ∈ body−(r)

}
∩T = ∅ and body+(r) =

body+(r′)): Then P1

M = P2

M . This trivially implies thatM is a partial stable model

of P1 iff it is a partial stable model of P2.

•
{
a | not a ∈ body−(r)

}
∩ T = ∅ and body+(r′) ⊂ body+(r): Then it is clear that

P1

M 7→M
P2

M . As both P1

M and P2

M are positive programs, according to Lemma 19,

it holds that M is the least model of P1

M iff M is least model P2

M . Hence, M is a

partial stable model of P1 iff it is a partial stable model of P2.

Theorem 24

Let P be an NLP and P ∗ be an irreducible NLP such that P 7→∗
UTPM P ∗. It holdsM is

a partial stable model of P iffM is a partial stable model of P ∗.

Proof

If P 7→∗
UTPM P ∗, then there exists a finite sequence of program transformations P =

P1 7→UTPM · · · 7→UTPM Pn = P ∗. According to Theorems 20, 21, 22 and 23, M is a

partial stable model of Pi iffM is a partial stable model of Pi+1 with 1 ≤ i < n. Thus

by transitivity,M is a partial stable model of P iffM is a partial stable model of P ∗.

Corollary 25

Let P be an NLP and P ∗ be an irreducible NLP such that P 7→∗
UTPM P ∗. It holdsM is

a well-founded, regular, stable, L-stable model of P iffM is respectively a well-founded,

regular, stable, L-stable model of P ∗.

Proof

As P and P ∗ share the same set of partial stable models (Theorem 24), the result is

straightforward.

Corollary 26

For any NLP P , there exists an RFALP P ∗ such thatM is a partial stable, well-founded,

regular, stable, L-stable model of P iffM is respectively a partial stable, well-founded,

regular, stable, L-stable model of P ∗.

Proof

From Theorem 16, we know that for any NLP P , there exists an irreducible NLP P ∗

such that P 7→∗
UTPM P ∗. From Theorem 17, we obtain P ∗ is an RFALP. Besides, from

Theorem 24 and Corollary 25, we inferM is a partial stable, well-founded, regular, stable,

L-stable model of P iffM is respectively a partial stable, well-founded, regular, stable,

L-stable model of P ∗.

Theorem 27

NLPs and RFALPs have the same expressiveness for partial stable, well-founded, regular,

stable, and L-stable semantics.
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Proof

We have

• For any NLP P , there exists an RFALP P ∗ such thatM is a partial stable, well-

founded, regular, stable, L-stable model of P iffM is respectively a partial stable,

well-founded, regular, stable, L-stable model of P ∗ (Corollary 26).

• Obviously, any RFALP is an NLP.

Hence, NLPs and RFALPs have the same expressiveness for partial stable, well-

founded, regular, stable and L-stable semantics.

Lemma 36

Let P1 and P2 be NLPs such that P1 7→U P2. It holds that AP1
= AP2

.

Proof

Let P1 and P2 be NLPs such that

P2 =P1 − {c← a, a1, . . . , am, not b1, . . . , not bn}
∪ {c← a′1, . . . , a

′
p, a1, . . . , am, not b′1, . . . , not b′q, not b1, . . . , not bn |

a← a′1, . . . , a
′
p, not b′1, . . . , not b′q ∈ P1},

AP1
= (AP1

,AttP1
) and AP2

= (AP2
,AttP2

). Note that

• For each statement s ∈ SP1
, there exists s′ ∈ SP2

such that Conc(s) = Conc(s′),

and Vul(s) = Vul(s′).

• For each statement s′ ∈ SP2
, there exists s ∈ SP1

such that Conc(s′) = Conc(s),

and Vul(s′) = Vul(s).

Hence, AP1 = AP2 , and AttP1 = AttP2 .

Lemma 37

Let P1 and P2 be NLPs such that P1 7→T P2. It holds that AP1
= AP2

.

Proof

Let P2 = P1 − {r}, where there exists a rule r ∈ P1 such that head(r) ∈ body+(r). In

addition, let AP1
= (AP1

,AttP1
) and AP2

= (AP2
,AttP2

). Note that

• For each statement s ∈ SP1
, there exists s′ ∈ SP2

such that Conc(s) = Conc(s′),

and for each V ∈ Vul(s), there exists V ′ ∈ Vul(s) ∩ Vul(s′) such that V ′ ⊆ V .

• For each statement s′ ∈ SP2 , there exists s ∈ SP1 such that Conc(s′) = Conc(s),

and Vul(s′) = Vul(s).

Hence, AP1
= AP2

, and for each c ∈ AP1
, V is a minimal set (w.r.t. set inclusion) in

VulP1(c) iff V is a minimal set (w.r.t. set inclusion) in VulP2(c); it holds that AttP1 =

AttP2
.

Lemma 38

Let P1 and P2 be NLPs such that P1 7→P P2. It holds that AP1
= AP2

.

Proof
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Let c ← a1, . . . , am, not b, not b1, . . . , not bn ∈ P1 be a rule such that b ̸∈
{head(r) | r ∈ P1},

P2 =(P1 − {c← a1, . . . , am, not b, not b1, . . . , not bn})
∪ {c← a1, . . . , am, not b1, . . . , not bn} ,

AP1
= (AP1

,AttP1
) and AP2

= (AP2
,AttP2

). Note that

• For each statement s ∈ SP1
, there exists s′ ∈ SP2

such that Conc(s) = Conc(s′),

and Vul(s) = {V | ∃V ′ ∈ Vul(s′) such that V = V ′ or V = V ′ ∪ {b}}.
• For each statement s′ ∈ SP2 , there exists s ∈ SP1 such that Conc(s′) = Conc(s),

and Vul(s′) = {V ′ | ∃V ∈ Vul(s) such that V ′ = V or V ′ = V − {b}}.

Hence, AP1
= AP2

, and as b ̸∈ AP1
∪ AP2

, it holds that AttP1
= AttP2

.

Lemma 39

Let P1 and P2 be NLPs such that P1 7→M P2. It holds that AP1
= AP2

.

Proof

Let P2 = P1 − {r}, where there are two distinct rules r and r′ in P1 such that

head(r) = head(r′), body+(r′) ⊆ body+(r), body−(r′) ⊆ body−(r). In addition, let

AP1
= (AP1

,AttP1
) and AP2

= (AP2
,AttP2

). Note that

• For each statement s ∈ SP1
, there exists s′ ∈ SP2

such that Conc(s) = Conc(s′),

and for each V ∈ Vul(s), there exists V ′ ∈ Vul(s) ∩ Vul(s′) such that V ′ ⊆ V .

• For each statement s′ ∈ SP2
, there exists s ∈ SP1

such that Conc(s′) = Conc(s),

and Vul(s′) = Vul(s).

Hence, AP1 = AP2 , and for each c ∈ AP1 , V is a minimal set (w.r.t. set inclusion) in

VulP1
(c) iff V is a minimal set (w.r.t. set inclusion) in VulP2

(c); it holds that AttP1
=

AttP2 .

Theorem 28

For any NLPs P1 and P2, if P1 7→UTPM P2, then AP1
= AP2

Proof

It follows straightforwardly from Lemmas 36, 37, 38 and 39.

Theorem 29

The relation 7→UTPM is confluent, i.e., for any NLPs P , P ′ and P ′′, if P 7→∗
UTPM P ′ and

P 7→∗
UTPM P ′′ and both P ′ and P ′′ are irreducible, then P ′ = P ′′.

Proof

From Theorem 28, we know that AP = AP ′ = AP ′′ . Thus PAP ′ = PAP ′′ . As P ′ and P ′′

are RFALPs (Theorem 17), it holds (Theorem 14) that P ′ = PAP ′ = PAP ′′ = P ′′.


