
28 J. Alcântara, R. Cordeiro and S. Sá

Appendix A Proofs of Theorems

A.1 Theorems and Proofs from Section 3

Lemma 1

Let P be an NLP, I = ⟨T, F ⟩ an interpretation and ΩP (I) = ⟨T ′, F ′⟩ the least 3-valued

model of P
I . It holds

(i) c ∈ T ′ iff there exists a statement s constructed from P such that Conc(s) = c and

Vul(s) ⊆ F .

(ii) c ∈ F ′ iff for every statement s constructed from P such that Conc(s) = c, we have

Vul(s) ∩ T ̸= ∅

Proof

• Proving that c ∈ T ′ iff there exists a statement s constructed from P such that

Conc(s) = c and Vul(s) ⊆ F :

⇒ Consider Ψ↑ i
P
I

= ⟨Ti, Fi⟩ for each i ∈ N. It suffices to prove by induction on the

value of i that if c ∈ Ti, then there exists a statement s constructed from P

such that Conc(s) = c and Vul(s) ⊆ F :

— Basis. For i = 0, the result is trivial as T0 = ∅.



On the Equivalence between Logic Programming and SETAF 29

— Step. Assume that for every c′ ∈ Tn, there exists a statement s′ con-

structed from P such that Conc(s′) = c′ and Vul(s′) ⊆ F . We will prove

that if c ∈ Tn+1, there exists a statement s constructed from P such that

Conc(s) = c and Vul(s) ⊆ F :

If c ∈ Tn+1, there exists a rule c ← a1, . . . , am, not b1, . . . , not bn(m ≥
0, n ≥ 0) ∈ P such that {a1, . . . , am} ⊆ Tn and {b1, . . . , bn} ⊆ F . It

follows via inductive step that for every j ∈ {1, . . . ,m}, there exists a

statement sj constructed from P such that Conc(sj) = aj and Vul(sj) ⊆
F . But then, we can construct from P a statement s with Conc(s) = c

where Vul(s) = Vul(s1) ∪ · · · ∪ Vul(sm) ∪ {b1, . . . , bn}. This implies that

Vul(s) ⊆ F .

⇐ We will prove by structural induction on the construction of statements that

for each statement s constructed from P such that Vul(s) ⊆ F , it holds

Conc(s) ∈ T ′:

— Basis. Let s be a statement c ← not b1, . . . , not bn (n ≥ 0) such that

{b1, . . . , bn} = Vul(s) ⊆ F . It follows the fact c ∈ P
I . Then c ∈ T ′.

— Step. Assume s1, . . . , sm (m ≥ 1) are arbitrary statements con-

structed from P such that for each i ∈ {1, . . . ,m}, if Vul(si) ⊆ F ,

then Conc(si) ∈ T ′. We will prove that if s is a statement c ←
(s1), . . . , (sm), not b1, . . . , not bn (n ≥ 0) constructed from P such that

Vul(s) ⊆ F , then c ∈ T ′:

Let s be such a statement. By Definition 8, there exists a rule c ←
a1, . . . , am, not b1, . . . , not bn ∈ P such that Conc(si) = ai for each

i ∈ {1, . . . ,m} and Vul(s) = Vul(s1) ∪ · · · ∪ Vul(sm) ∪ {b1, . . . , bn}.
As Vul(s) ⊆ F , we obtain {b1, . . . , bn} ⊆ F and Vul(si) ⊆ F for each

i ∈ {1, . . . ,m}. By inductive hypothesis, it follows {a1, . . . , am} ⊆ T ′.

Then c ∈ T ′.

• Proving that c ∈ F ′ iff for every statement s constructed from P such that

Conc(s) = c, we have Vul(s) ∩ T ̸= ∅:

⇒ Firstly, we will prove by structural induction on the construction of statements

that for each statement s constructed from P such that Vul(s) ∩ T = ∅, it
holds Conc(s) ̸∈ F ′:

— Basis. Let s be a statement c ← not b1, . . . , not bn (n ≥ 0) such that

{b1, . . . , bn}∩T = ∅. It follows the fact c ∈ P
I or c← u ∈ P

I . Then c ̸∈ F ′.

— Step. Assume s1, . . . , sm (m ≥ 1) are arbitrary statements constructed

from P such that for each i ∈ {1, . . . ,m}, if Vul(si) ∩ T = ∅,
then Conc(si) ̸∈ F ′. We will prove that if s is a statement c ←
(s1), . . . , (sm), not b1, . . . , not bn (n ≥ 0) constructed from P such that

Vul(s) ∩ T = ∅, then c ̸∈ F ′:

Let s be such a statement. By Definition 8, there exists a rule c ←
a1, . . . , am, not b1, . . . , not bn ∈ P such that Conc(si) = ai for each

i ∈ {1, . . . ,m} and Vul(s) = Vul(s1) ∪ · · · ∪ Vul(sm) ∪ {b1, . . . , bn}. As

Vul(s)∩T = ∅, we obtain {b1, . . . , bn}∩T = ∅ and Vul(si)∩T = ∅ for each



30 J. Alcântara, R. Cordeiro and S. Sá

i ∈ {1, . . . ,m}. By inductive hypothesis, it follows {a1, . . . , am} ∩ F ′ = ∅.
Then, c ̸∈ F ′.

Hence, if c ∈ F ′, for every statement s constructed from P such that

Conc(s) = c, we have Vul(s) ∩ T ̸= ∅.
⇐ Assume that for every statement s constructed from P such that Conc(s) = c,

we have Vul(s) ∩ T ̸= ∅. The proof is by contradiction: suppose that c ̸∈ F ′.

Consider Ψ↑ i
P
I

= ⟨Ti, Fi⟩ for each i ∈ N. It suffices to prove by induction on

the value of i that if c ̸∈ Fi, then there exists a statement s constructed from

P such that Conc(s) = c and Vul(s) ∩ T = ∅:
— Basis. For i = 0, the result is trivial as F0 = HBP .

— Step. Assume that for every c′ ̸∈ Fn, there exists a statement s′ con-

structed from P such that Conc(s′) = c′ and Vul(s′) ∩ T = ∅. We will

prove that if c ̸∈ Fn+1, there exists a statement s constructed from P

such that Conc(s) = c and Vul(s) ∩ T = ∅:
If c ̸∈ Fn+1, there exists a rule c ← a1, . . . , am, not b1, . . . , not bn(m ≥
0, n ≥ 0) ∈ P such that {a1, . . . , am} ∩ Fn = ∅ and {b1, . . . , bn} ∩ T = ∅.
It follows via inductive step that for every j ∈ {1, . . . ,m}, there exists a

statement sj constructed from P such that Conc(sj) = aj and Vul(sj) ∩
T = ∅. But then, we can construct from P a statement s with Conc(s) = c

where Vul(s) = Vul(s1) ∪ · · · ∪ Vul(sm) ∪ {b1, . . . , bn}. This implies that

Vul(s) ∩ T = ∅.

Theorem 3

Let P be an NLP and AP = (AP ,AttP ) be the associated SETAF. For any labelling L
of AP , it holds I2LP (L2IP (L)) = L.

Proof

Let c ∈ AP and L2IP (L) = ⟨T, F ⟩; there are three possibilities:

• L(c) = in ⇒ c ∈ T ⇒ I2LP (L2IP (L))(c) = in.

• L(c) = out ⇒ c ∈ F ⇒ I2LP (L2IP (L))(c) = out.

• L(c) = undec ⇒ c ∈ T ∪ F ⇒ I2LP (L2IP (L))(c) = undec.

Theorem 4

Let P be an NLP, AP = (AP ,AttP ) be the associated SETAF and M = ⟨T, F ⟩ be a

partial stable model of P . It holds that L2IP (I2LP (M)) =M.

Proof

Let M = ⟨T, F ⟩ be a partial stable model of P , L2IP (I2LP (M)) = ⟨T ′, F ′⟩ and c ∈
HBP . It suffices to prove the following results:

• c ∈ T iff c ∈ T ′.



On the Equivalence between Logic Programming and SETAF 31

— Assume c ∈ T . As ΩP (M) = M, by Lemma 1, there exists a statement s

with Conc(s) = c such that Vul(s) ⊆ F . In particular, it follows that c ∈ AP .

This implies I2LP (M)(c) = in and c ∈ T ′.

— Assume c ∈ T ′. Then c ∈ AP and I2LP (M)(c) = in. From Definition 11, we

obtain c ∈ T .

• c ∈ F iff c ∈ F ′.

— Assume c ̸∈ F ′. Then c ∈ AP and I2LP (M)(c) ̸= out. From Definition 11,

we obtain c ̸∈ F .

— Assume c ̸∈ F . As ΩP (M) = M, by Lemma 1, there exists a statement s

with Conc(s) = c such that Vul(s) ∩ T = ∅. In particular, it follows that

c ∈ AP . This implies I2LP (M)(c) ̸= out and c ̸∈ F ′.

Lemma 30

Let P be an NLP, AP = (AP ,AttP ) be the associated SETAF and v ∈ {in, out, undec}.
It holds that

• For each B ∈ Att(c), L(b) = v for some b ∈ B iff there exists V ∈ Vul(c) such that

L(b) = v for every b ∈ AP ∩ V .

• For each B ∈ Att(c), L(b) ̸= v for some b ∈ B iff there exists V ∈ Vul(c) such that

L(b) ̸= v for every b ∈ AP ∩ V .

Proof

We will prove the result in the first item; the proof of the other result follows a similar

path:

⇒ Assume that for each B ∈ Att(c), L(b) = v for some b ∈ B.
By absurd, suppose that for each V ∈ Vul(c), it holds that L(b) ̸= v for some b ∈ AP ∩V .

Then we can construct a set B′ ⊆ AP by selecting for each V ∈ Vul(c), an element b ∈ V
such that L(b) ̸= v. From Definition 9, we know that there exists B ⊆ B′ such that

(B, c) ∈ AttP . But then, there exists B ∈ Att(c) such that L(b) ̸= v for each b ∈ B. It is
absurd as it contradicts our hypothesis.

⇐ Assume that there exists V ∈ Vul(c) such that L(b) = v for every b ∈ AP ∩ V .

The result is immediate as according to Definition 9, every set B of arguments attacking

c contains an element b ∈ AP ∩ V .

Theorem 5

Let P be an NLP and AP = (AP ,AttP ) be the associated SETAF. It holds

• L is a complete labelling of AP iff L2IP (L) is a partial stable model of P .

• M is a partial stable model of P iff I2LP (M) is a complete labelling of AP .

Proof

1. If L is a complete labelling of AP , then L2IP (L) is a partial stable model of P :



32 J. Alcântara, R. Cordeiro and S. Sá

LetM = L2IP (L) = ⟨T, F ⟩. We will showM is a partial stable model of P , i.e.,

ΩP (M) = ⟨T ′, F ′⟩ = ⟨T, F ⟩:

• c ∈ T iff c ∈ AP and L(c) = in iff for each B ∈ Att(c), it holds L(b) = out

for some b ∈ B iff (Lemma 30) there exists V ∈ Vul(c) such that L(b) = out

for every b ∈ AP ∩ V iff there exists a statement s with Conc(s) = c and

Vul(s) ⊆ F iff (Lemma 1) c ∈ T ′.

• c ̸∈ F iff c ∈ AP and L(c) ̸= out iff for each B ∈ Att(c), it holds L(b) ̸= in

for some b ∈ B iff (Lemma 30) there exists V ∈ Vul(c) such that L(b) ̸= in

for every b ∈ AP ∩ V iff there exists a statement s with Conc(s) = c and

Vul(s) ∩ T = ∅ iff (Lemma 1) c ̸∈ F ′.

2. IfM is a partial stable model of P , then I2LP (M) is a complete labelling of AP :

Let M = ⟨T, F ⟩ be a partial stable model of P . Then ΩP (M) = ⟨T, F ⟩. Let c be

an argument in AP . We will prove L = I2LP (M) is a complete labelling of AP :

• L(c) = in iff c ∈ T iff (Lemma 1) there exists a statement s with Conc(s) = c

and Vul(s) ⊆ F iff there exists V ∈ Vul(c) such that L(b) = out for every

b ∈ AP ∩ V iff (Lemma 30) for each B ∈ Att(c), it holds L(b) = out for some

b ∈ B.
• L(c) ̸= out iff c ̸= F iff (Lemma 1) there exists a statement s with Conc(s) = c

and Vul(s) ∩ T = ∅ iff there exists V ∈ Vul(c) such that L(b) ̸= in for every

b ∈ AP ∩ V iff (Lemma 30) for each B ∈ Att(c), it holds L(b) ̸= in for some

b ∈ B.

3. If L2IP (L) is a partial stable model of P , then L is a complete labelling of AP :

It holds that L2IP (L) is a partial stable model of P ⇒ according to item 2 above,

I2LP (L2IP (L)) is a complete labelling of AP ⇒ (via Theorem 3) L is a complete

labelling of AP .

4. If I2LP (M) is a complete labelling of AP , thenM is a partial stable model of P :

It holds that I2LP (M) is a complete labelling of AP ⇒ according to item 1 above,

L2IP (I2LP (M)) is a partial stable model of P ⇒ (via Theorem 4)M is a partial

stable model of P .

Lemma 31

Let P be an NLP, AP = (AP ,AttP ) be its associated SETAF. Let L1 and L2 be β-

complete labellings of AP , and L2IP (L1) = ⟨T1, F1⟩ and L2IP (L2) = ⟨T2, F2⟩. It holds

1. in(L1) ⊆ in(L2) iff T1 ⊆ T2;

2. in(L1) = in(L2) iff T1 = T2;

3. in(L1) ⊂ in(L2) iff T1 ⊂ T2.

Proof



On the Equivalence between Logic Programming and SETAF 33

1. (⇒): Suppose in(L1) ⊆ in(L2). If c ∈ T1, by Definition 11, c ∈ AP and L1(A) =

in. From our initial assumption, it follows L2(c) = in. So, by Definition 11,

c ∈ T2.

(⇐): Suppose T1 ⊆ T2. If L1(c) = in, by Definition 11, c ∈ T1. From our initial

assumption, it follows c ∈ T2. So, by Definition 11, L2(c) = in.

2. It follows directly from point 1.

3. It follows directly from points 1 and 2.

Lemma 32

Let P be an NLP, AP = (AP ,AttP ) be its associated SETAF. Let L1 and L2 be complete

labellings of AP , and L2IP (L1) = ⟨T1, F1⟩ and L2IP (L2) = ⟨T2, F2⟩. It holds

1. out(L1) ⊆ out(L2) iff F1 ⊆ F2;

2. out(L1) = out(L2) iff F1 = F2;

3. out(L1) ⊂ out(L2) iff F1 ⊂ F2.

Proof

1. (⇒): Suppose out(L1) ⊆ out(L2). If c ∈ F1, by Definition 11, there are two possi-

bilities:

• c ̸∈ AP . As L2IP (L2) = ⟨T2, F2⟩, we obtain that c ∈ F2.

• c ∈ AP and L1(c) = out. From our initial assumption, it follows L2(c) =

out. So, by Definition 11, c ∈ F2.

(⇐): Suppose F1 ⊆ F2. If L1(c) = out, by Definition 11, c ∈ F1. From our initial

assumption, it follows c ∈ F2. So, by Definition 11, L2(c) = out.

2. It follows directly from point 1.

3. It follows directly from points 1 and 2.

Lemma 33

Let P be an NLP, AP = (AP ,AttP ) be its associated SETAF. Let L1 and L2 be complete

labellings of AP , and L2IP (L1) = ⟨T1, F1⟩ and L2IP (L2) = ⟨T2, F2⟩. It holds

1. undec(L1) ⊆ undec(L2) iff T1 ∪ F1 ⊆ T2 ∪ F2;

2. undec(L1) = undec(L2) iff T1 ∪ F1 = T2 ∪ F2;

3. undec(L1) ⊂ undec(L2) iff T1 ∪ F1 ⊂ T2 ∪ F2.

Proof

1. (⇒): Suppose undec(L1) ⊆ undec(L2). If c ∈ T1 ∪ F1, by Definition 11, c ∈ AP

and L1(c) = undec. From our initial assumption, it follows L2(c) = undec.

So, by Definition 11, c ∈ T2 ∪ F2.



34 J. Alcântara, R. Cordeiro and S. Sá

(⇐): Suppose T1 ∪ F1 ⊆ T2 ∪ F2. If L1(c) = undec, by Definition 11, c ∈ T1 ∪ F1.

From our initial assumption, it follows c ∈ T2 ∪ F2. So, by Definition 11,

L2(c) = undec.

2. It follows directly from point 1.

3. It follows directly from points 1 and 2.

Theorem 6

Let P be an NLP and AP = (AP ,AttP ) be the associated SETAF. It holds

1. L is a grounded labelling of AP iff L2IP (L) is a well-founded model of P .

2. L is a preferred labelling of AP iff L2IP (L) is a regular model of P .

3. L is a stable labelling of AP iff L2IP (L) is a stable model of P .

4. L is a semi-stable labelling of AP iff L2IP (L) is an L-stable model of P .

Proof

Let L be an argument labelling of AP and L2IP (L) = ⟨T, F ⟩. The proof is straightfor-

ward:

1. L is a grounded labelling of AP iff L is a complete labelling of AP , and in(L) is

minimal (w.r.t. set inclusion) among all complete labellings of AP iff (Theorem 5

and Lemma 31) L2IP (L) is a partial stable model of P , and there is no partial

stable model M′ = ⟨T ′, F ′⟩ of P such that T ′ ⊂ T iff L2IP (L) is a well-founded

model of P ;

2. L is a preferred labelling of AP iff L is a complete labelling of AP , and in(L) is

maximal (w.r.t. set inclusion) among all complete labellings of AP iff (Theorem 5

and Lemma 31) L2IP (L) is a partial stable model of P , and there is no partial

stable modelM′ = ⟨T ′, F ′⟩ of P such that T ⊂ T ′ iff L2IP (L) is a regular model

of P ;

3. L is a stable labelling of AP iff L is a complete labelling of AP such that undec(L) =
∅ iff (Theorem 5) L2IP (L) is a partial stable model such that T ∪ F = ∅ iff L2IP (L)
is a stable model of P ;

4. L is a semi-stable labelling of AP iff L is a complete labelling of AP , and undec(L)
is minimal (w.r.t. set inclusion) among all complete labellings of AP iff (Theorem

5 and Lemma 33) L2IP (L) is a partial stable model of P , and there is no partial

stable model M′ = ⟨T ′, F ′⟩ of P such that T ′ ∩ F ′ ⊂ T ∪ F iff L2IP (L) is an

L-stable model of P .

Corollary 7

Let P be an NLP and AP = (AP ,AttP ) be the associated SETAF. It holds

1. M is a well-founded model of P iff I2LP (M) is a grounded labelling of AP .

2. M is a regular model of P iff I2LP (M) is a preferred labelling of AP .

3. M is a stable model of P iff I2LP (M) is a stable labelling of AP .

4. M is an L-stable model of P iff I2LP (M) is a semi-stable labelling of AP .



On the Equivalence between Logic Programming and SETAF 35

Proof

These results come from Theorems 4 and 6.

A.2 Theorems and Proofs from Section 4

Theorem 8

Let A = (A,Att) be a SETAF and PA its associated NLP.

• For any labelling L of A, it holds I2LA(L2IA(L)) = L.
• For any interpretation I of PA, it holds L2IA(I2LA(I)) = I.

Proof

Both results are immediate:

• Proving that for any labelling L of A, it holds I2LA(L2IA(L)) = L:
Let L2IA(L) = ⟨T, F ⟩.

— L(a) = in ⇒ a ∈ T ⇒ I2LA(L2IA(L))(a) = in;

— L(a) = out ⇒ a ∈ F ⇒ I2LA(L2IA(L))(a) = out;

— L(a) = undec ⇒ a ∈ T ∪ F ⇒ I2LA(L2IA(L))(a) = undec.

• Proving that for any interpretation I of PA, it holds L2IA(I2LA(I)) = I.
Let I = ⟨T, F ⟩ be an interpretation of PA, and L2IA(I2LA(I)) = ⟨T ′, F ′⟩. We will

show T = T ′ and F = F ′:

— a ∈ T ⇒ I2LA(I)(a) = in ⇒ a ∈ T ′;

— a ∈ F ⇒ I2LA(I)(a) = out ⇒ a ∈ F ′;

— a ∈ T ∪ F ⇒ I2LA(I)(a) = undec ⇒ a ∈ T ′ ∪ F ′;

Theorem 9

Let A be a SETAF and PA be its associated NLP. It holds

• L is a complete labelling of A iff L2IA(L) is a partial stable model of PA.

• M is a partial stable model of PA iff I2LA(M) is a complete labelling of A.

Proof

1. Proving that if L is a complete labelling of A, then L2IA(L) is a partial stable

model of PA:

Let L2IA(L) = ⟨T, F ⟩ and ΩPA
(L2IA(L)) = ⟨T ′, F ′⟩. It suffices to show L2IA(L)

is a fixpoint of ΩPA
: T = T ′ and F = F ′. For any argument a ∈ A = HBPA

, there

are three possibilities:

• a ∈ T . Then L(a) = in. From Definition 2, we know that for each B ∈ Att(a),

it holds L(b) = out for some b ∈ B. It follows from Definition 12 that there

exists V ∈ Va such that L(b) = out for every b ∈ V . This means the fact

a ∈ PA

L2IA(L)
, i.e., a ∈ T ′.

• a ∈ F . Then L(a) = out. From Definition 2, we know that there exists

B ∈ Att(a) such that L(b) = in for each b ∈ B. It follows from Definition 12



36 J. Alcântara, R. Cordeiro and S. Sá

that for each V ∈ Va, there exists b ∈ V such that L(b) = in. This means

that there exists no rule for a in
PA

L2IA(L)
, i.e., a ∈ F ′.

• a ∈ T ∪ F . Then L(a) = undec. From Definition 2, we know that (i) there

exists B ∈ Att(a) such that L(b) ̸= out for each b ∈ B, and (ii) for each

B ∈ Att(a), it holds L(b) ̸= in for some b ∈ B. It follows from Definition 12

that (i) there does not exist V ∈ Va such that L(b) = out for every b ∈ V ,

and (ii) there exists V ∈ Va such that L(b) ̸= in for each b ∈ V . This means

(i) the fact a ̸∈ PA

L2IA(L)
, and (ii) there exists rule for a in

PA

L2IA(L)
. Thus

body(r) = u for any r ∈ PA

L2IA(L)
such that head(r) = a, i.e., a ∈ T ′ ∪ F ′.

2. Proving that if M is a partial stable model of PA, then I2LA(M) is a complete

labelling of A:

Let M = ⟨T, F ⟩ be a partial stable model of PA. Thus M is a fixpoint of ΩPA
,

i.e., ΩPA
(M) =M. We now prove I2LA(M) is a complete labelling of A. For any

a ∈ HBPA
= A, there are three possibilities:

• I2LA(M)(a) = in. Then a ∈ T . As ΩPA
(M) =M, the fact a ∈ PA

M
. This

means that there exists a rule a← not b1, . . . , not bn ∈ PA (n ≥ 0) such that

{b1, . . . , bn} ⊆ F . It follows from Definition 12 that for each B ∈ Att(a), it

holds I2LA(M)(b) = out for some b ∈ B;
• I2LA(M)(a) = out. Then a ∈ F . As ΩPA

(M) = M, there exists no rule

for a in
PA

M
. This means that for every rule a ← not b1, . . . , not bn ∈ PA

(n ≥ 0), there exists bi ∈ T (1 ≤ i ≤ n). It follows from Definition 12 that

there exists B ∈ Att(a) such that I2LA(M)(b) = in for each b ∈ B;

• I2LA(M)(a) = undec. Then a ∈ T ∪ F . As ΩPA
(M) =M, the fact a ̸∈ PA

M
,

but there exists a rule r in
PA

M
such that head(r) = a and body(r) = u. This

means that (i) for each rule a ← not b1, . . . , not bn ∈ PA (n ≥ 0), it holds

{b1, . . . , bn} ̸⊆ F , and (ii) there exists a rule a ← not b1, . . . , not bn ∈ PA

(n ≥ 0) such that {b1, . . . , bn} ∩ T = ∅. It follows from Definition 12 that (i)

there exists B ∈ Att(a) such that I2LA(M)(b) ̸= out for each b ∈ B, and (ii)

for each B ∈ Att(a), it holds I2LA(M)(b) ̸= in for some b ∈ B.

Hence, I2LA(M) is a complete labelling of A.

3. Proving that if L2IA(L) is a partial stable model of PA, then L is a complete

labelling of A:

L2IA(L) is a partial stable model of PA ⇒ according to item 2 above,

I2LA(L2IA(L)) is a complete labelling of A ⇒ (Theorem 8) L is a complete la-

belling of A.

4. Proving that if I2LA(M) is a complete labelling of A, thenM is a partial stable

model of PA:

I2LA(M) is complete labelling of A⇒ according to item 1 above, L2IA(I2LA(M))

is a partial stable model of PA ⇒ (Theorem 8)M is a partial stable model of PA.



On the Equivalence between Logic Programming and SETAF 37

Theorem 10

Let A be a SETAF and PA its associated NLP. It holds

1. L is a grounded labelling of A iff L2IA(L) is a well-founded model of PA.

2. L is a preferred labelling of A iff L2IA(L) is a regular model of PA.

3. L is a stable labelling of A iff L2IA(L) is a stable model of PA.

4. L is a semi-stable labelling of A iff L2IA(L) is an L-stable model of PA.

Proof

Let L be an argument labelling of A. Recall that L2IA(L) = ⟨in(L), out(L)⟩. The proof

is straightforward:

1. L is a grounded labelling of A iff L is a complete labelling of A and in(L) is minimal

(w.r.t. set inclusion) among all complete labellings of A iff (Theorem 9) L2IA(L)
is a partial stable model of PA and there is no partial stable modelM′ = ⟨T ′, F ′⟩
of PA such that T ′ ⊂ in(L) iff L2IA(L) is a well-founded model of PA;

2. L is a preferred labelling of A iff L is a complete labelling of A and in(L) is maximal

(w.r.t. set inclusion) among all complete labellings of A iff (Theorem 9) L2IA(L)
is a partial stable model of PA and there is no partial stable modelM′ = ⟨T ′, F ′⟩
of P such that in(L) ⊂ T ′ iff L2IA(L) is a regular model of PA;

3. L is a stable labelling of A iff L is a complete labelling of A such that undec(L) = ∅
iff (Theorem 9) L2IA(L) is a partial stable model of PA such that in(L) ∪ out(L) =
∅ iff L2IA(L) is a stable model of PA;

4. L is a semi-stable labelling of A iff L is a complete labelling of A and undec(L)
is minimal (w.r.t. set inclusion) among all complete labellings of A iff (Theorem

9) L2IA(L) is a partial stable model of PA and there is no partial stable model

M′ = ⟨T ′, F ′⟩ of PA such that T ′ ∪ F ′ ⊂ in(L) ∪ out(L) iff L2IA(L) is an L-stable

model of PA.

Corollary 11

Let A be a SETAF and PA its associated NLP. It holds

1. M is a well-founded model of PA iff I2LA(M) is a grounded labelling of A.

2. M is a regular model of PA iff I2LA(M) is a preferred labelling of A.

3. M is a stable model of PA iff I2LA(M) is a stable labelling of A.

4. M is an L-stable model of PA iff I2LA(M) is a semi-stable labelling of A.

Proof

These results come from Theorems 8 and 10.

A.3 Theorems and Proofs from Section 5

Proposition 12

Let A = (A,Att) be a SETAF and PA its associated NLP. It holds PA is an RFALP.

Proof



38 J. Alcântara, R. Cordeiro and S. Sá

It follows that

1. Each rule in PA has the form a← not b1, . . . , not bn;

2. for each rule a← not b1, . . . , not bn ∈ PA, if b ∈ {b1, . . . , bn}, there exists (B, a) ∈
Att such that b ∈ B, i.e,. b ∈ AP . Then there exists a rule r ∈ PA such that

b = head(r). This suffices to guarantee HBPA
= {head(r) | r ∈ PA};

3. A rule a← not b1, . . . , not bn ∈ PA iff there exists a minimal set (w.r.t. set inclu-

sion) V = {b1, . . . , bn} such that for each B ∈ Att(a), there exists b ∈ B ∩ V . This

means there exists no rule a← not c1, . . . , not cn′ ∈ PA such that {c1, . . . , cn′} ⊂
{b1, . . . , bn}.

Hence, PA is an RFALP.

Lemma 34

Let P be an RFALP, HeadP = {head(r) | r ∈ P} and AP = (AP ,AttP ) its corresponding

SETAF. It holds HeadP = AP .

Proof

The result is straightforward: c ∈ HeadP iff there exists a rule c← not b1, . . . , not bn ∈ P

(n ≥ 0) iff c ∈ AP (Definition 8).

Theorem 13

Let A = (A,Att) be a SETAF, PA its associated NLP and APA
the associated SETAF

of PA. It holds that A = APA
.

Proof

Let A = (A,Att) be a SETAF with A = {a1, . . . , an} and for each ai ∈ A, we define

Ri = {r ∈ PA | head(r) = ai}, i.e., PA = R1 ∪R2 ∪ · · · ∪Rn. It follows from Proposition

12 and Lemma 34 that APA
= (APA

,AttPA
) with APA

= {a1, . . . , an} = A. It remains

to prove that Att = AttPA
:

(B, aj) ∈ Att iff (B, aj) ∈ Att and there exists no B′ ⊂ B such that (B′, aj) ∈ Att iff B
is a minimal set (w. r. t. set inclusion) in which for each rule r ∈ Rj , there exists b ∈ B
such that not b ∈ body−(r) iff B is a minimal set (w. r. t. set inclusion) in which for each

V ∈ Vul(aj), there exists b ∈ B ∩ V iff (B, aj) ∈ AttPA
.

Lemma 35

Let P be an RFALP, AP = (AP ,AttP ) the corresponding SETAF and c ∈ AP . If

{a1, . . . , an} is a minimal set such that for each B ∈ AttP (c), there exists ai ∈ B (1 ≤
i ≤ n), then c← not a1, . . . , not an ∈ P .

Proof

As for each B ∈ AttP (c), there exists ai ∈ B (1 ≤ i ≤ n), it follows from Definition 9

that there exists V ∈ Vul(c) such that V ⊆ {a1, . . . , an}. Note that for each B ∈ AttP (c),

there exists b ∈ V ∩ B. As {a1, . . . , an} is a minimal set with this property, it holds

V = {a1, . . . , an}. Then (Definition 8) c← not a1, . . . , not an ∈ P .

Theorem 14



On the Equivalence between Logic Programming and SETAF 39

Let P be an RFALP, AP its associated SETAF and PAP
the associated NLP of AP . It

holds that P = PAP
.

Proof

Let P be an RFALP with HBP = {a1, . . . , an}, and AP = (AP ,AttP ) the corresponding

SETAF. For each ai ∈ HBP (1 ≤ i ≤ n), we define Ri = {r ∈ PA | head(r) = ai}. It
follows that AP = {a1, . . . , an}. Hence, HBPAP

= {a1, . . . , an}. We will prove P = PAP
:

• If ai ← not ai1 , . . . , not aim ∈ P . then ai ∈ AP and {ai1 , . . . , aim} is a minimal

set (w.r.t. set inclusion) such that for each B ∈ AttP (ai), there exists aik ∈ B
(k ∈ {1, . . . ,m}). This implies (Definition 12) ai ← not ai1 , . . . , not aim ∈ PAP

.

• If ai ← not ai1 , . . . , not aim ∈ PAP
, then (Definition 12) {ai1 , . . . , aim} is a minimal

set (w.r.t. set inclusion) such that for each B ∈ AttP (ai), there exists aik ∈ B
(k ∈ {1, . . . ,m}). Thus (Lemma 35) ai ← not ai1 , . . . , not aim ∈ P .

A.4 Theorems and Proofs from Section 6

Theorem 15

The relation 7→UTPM is strongly terminating for fair sequences of program transforma-

tions, i.e., such fair sequences always lead to irreducible programs.

Proof

Let P1 7→UTPM P2 7→UTPM · · · 7→UTPM Pk 7→UTPM · · · 7→UTPM Pk′ 7→UTPM · · · be a fair

sequence of 7→UTPM. This fairness condition implies that for every atom a, there exists

a natural number k such that for each NLP Pi with i > k in the sequence of 7→UTPM

above, it holds a ̸∈ body+(r) for each r ∈ Pi. As each NLP is a finite set of rules, from

some natural number k′ on, body+(r) = ∅ for any r ∈ Pk′ . Then for each k′′ ≥ k′, 7→U

and 7→T cannot be applied in Pk′′ . It remains the program transformations 7→P and 7→M .

For each of these Pk′′ , there are two possibilities:

• 7→M strictly decreases the number of rules of Pk′′ or

• 7→P strictly decreases the number of negative literals in body−(r) for some r ∈ Pk′′ .

It follows that the successive application of 7→M or 7→P in these Pk′′s will eventually

lead to an irreducible NLP.

Theorem 16

For any NLP P , there exists an irreducible NLP P ∗ such that P 7→∗
UTPM P ∗.

Proof

A simple method to obtain a fair sequence of program transformations with respect to

7→UTPM is to apply 7→U to a rule r only if 7→T is not applicable to r and to ensure that

whenever 7→U has been applied to get rid of an occurrence of an atom a, then all such

occurrences of a (in other rules of the same program) have also been removed before

applying 7→U to another occurrence of an atom b ̸= a.



40 J. Alcântara, R. Cordeiro and S. Sá

As for any NLP P , it is always possible to build such a fair sequence of program

transformations with respect to 7→UTPM, we obtain from Theorem 15 that there exists

an irreducible NLP P ∗ such that P 7→∗
UTPM P ∗.

Theorem 17

Let P be an NLP and P ∗ be an NLP obtained after applying repeatedly the program

transformation 7→UTPM until no further transformation is possible, i.e., P 7→∗
UTPM P ∗

and P ∗ is irreducible. Then P ∗ is an RFALP.

Proof

To prove it by contradiction, suppose P ∗ is not an RFALP. There are three possibilities:

• A rule c← a1, . . . , am, not b1, . . . , not bn ∈ P ∗ with m ≥ 1 and n ≥ 0. Then

— The program transformation 7→U (unfolding) can be applied.

— If c ∈ {a1, . . . , am}, the program transformation 7→T (elimination of tautolo-

gies) can be applied.

• A rule c ← not b1, . . . , not bn ∈ P ∗, but there exists b ∈ {b1, . . . , bn} such that

b ̸∈ {head(r) | r ∈ P ∗}. Then the program transformation 7→P (positive reduction)

can be applied.

• A rule c ← not b1, . . . , not bn ∈ P ∗ and there is a rule c ← not c1, . . . , not cp ∈
P ∗ such that {c1, . . . , cp} ⊂ {b1, . . . , bn}. Then the program transformation 7→M

(elimination of non-minimal rules) can be applied.

It is absurd as in each case, there is still a program transformation to be applied.

Theorem 18

Let P be an RFALP. Then P is irreducible with respect to 7→UTPM.

Proof

Let P be an RFALP. It holds

• The program transformations 7→U and 7→T cannot be applied as they require a rule

c← a1, . . . , am, not b1, . . . , not bn in P with m ≥ 1.

• The program transformation 7→P cannot be applied as it requires a rule c ←
a1, . . . , am, not b, not b1, . . . , not bn in P such that b ̸∈ {head(r) | r ∈ P}, but

{head(r) | r ∈ P} = HBP .

• The program transformation 7→M cannot be applied as it requires two distinct rules

r and r′ in P such that head(r) = head(r′) and body−(r′) ⊂ body−(r).

Theorem 21

Let P1 and P2 be NLPs such that P1 7→T P2. It holdsM is a partial stable model of P1

iffM is a partial stable model of P2.

Proof



On the Equivalence between Logic Programming and SETAF 41

Let P2 = P1 − {r} and head(r) ∈ body+(r). We have to show for any interpretation

M = ⟨T, F ⟩, it holds M is a partial stable model of P1 iff M is a partial stable model

of P2; we distinguish two cases:

•
{
a | not a ∈ body−(r)

}
∩ T ̸= ∅: Then P1

M = P2

M . This trivially implies thatM is a

partial stable model of P1 iff it is a partial stable model of P2.

•
{
a | not a ∈ body−(r)

}
∩ T = ∅: Then it is clear P1

M 7→T
P2

M . As both P1

M and P2

M
are positive programs, according to Lemma 19, it holdsM is the least model of P1

M
iffM is the least model of P2

M . Hence,M is a partial stable model of P1 iff it is a

partial stable model of P2.

Theorem 22

Let P1 and P2 be NLPs such that P1 7→P P2. It holdsM is a partial stable model of P1

iffM is a partial stable model of P2.

Proof

Let

P2 =P1 − {c← a1, . . . , am, not b, not b1, . . . , not bn}
∪ {c← a1, . . . , am, not b1, . . . , not bn}

such that r is the rule c ← a1, . . . , am, not b, not b1, . . . , not bn ∈ P1 and b ̸∈
{head(r′) | r′ ∈ P1}. We have to show that for any interpretation M = ⟨T, F ⟩, it holds

M is a partial stable model of P1 iff M is a partial stable model of P2; we distinguish

two cases:

•
({

a | not a ∈ body−(r)
}
− {b}

)
∩ T ̸= ∅ or b ∈ F : Then P1

M = P2

M . This trivially

implies thatM is a partial stable model of P1 iff it is a partial stable model of P2.

•
({

a | not a ∈ body−(r)
}
− {b}

)
∩ T = ∅ and b ̸∈ F . Let ⟨T1, F1⟩ and ⟨T2, F2⟩ be

respectively the least models of P1

M and P2

M . As b ̸∈ {head(r′) | r′ ∈ P1}, it is clear
that b ∈ F1 and b ∈ F2. Given that b ̸∈ F , we obtainM = ⟨T, F ⟩ is different from
both ⟨T1, F1⟩ and ⟨T2, F2⟩. Hence, M is neither a partial stable model of P1 nor

of P2. This implies thatM is a partial stable model of P1 iff it is a partial stable

model of P2.

Theorem 23

Let P1 and P2 be NLPs such that P1 7→M P2. It holdsM is a partial stable model of P1

iffM is a partial stable model of P2.

Proof

Suppose that there are two distinct rules r and r′ in P1 such that head(r) = head(r′),

body+(r′) ⊆ body+(r), body−(r′) ⊆ body−(r) and P2 = P1 − {r}. We have to show that

for any interpretationM = ⟨T, F ⟩, it holds thatM is a partial stable model of P1 iffM
is a partial stable model of P2; we distinguish two cases:



42 J. Alcântara, R. Cordeiro and S. Sá

•
{
a | not a ∈ body−(r)

}
∩T ̸= ∅ or (

{
a | not a ∈ body−(r)

}
∩T = ∅ and body+(r) =

body+(r′)): Then P1

M = P2

M . This trivially implies thatM is a partial stable model

of P1 iff it is a partial stable model of P2.

•
{
a | not a ∈ body−(r)

}
∩ T = ∅ and body+(r′) ⊂ body+(r): Then it is clear that

P1

M 7→M
P2

M . As both P1

M and P2

M are positive programs, according to Lemma 19,

it holds that M is the least model of P1

M iff M is least model P2

M . Hence, M is a

partial stable model of P1 iff it is a partial stable model of P2.

Theorem 24

Let P be an NLP and P ∗ be an irreducible NLP such that P 7→∗
UTPM P ∗. It holdsM is

a partial stable model of P iffM is a partial stable model of P ∗.

Proof

If P 7→∗
UTPM P ∗, then there exists a finite sequence of program transformations P =

P1 7→UTPM · · · 7→UTPM Pn = P ∗. According to Theorems 20, 21, 22 and 23, M is a

partial stable model of Pi iffM is a partial stable model of Pi+1 with 1 ≤ i < n. Thus

by transitivity,M is a partial stable model of P iffM is a partial stable model of P ∗.

Corollary 25

Let P be an NLP and P ∗ be an irreducible NLP such that P 7→∗
UTPM P ∗. It holdsM is

a well-founded, regular, stable, L-stable model of P iffM is respectively a well-founded,

regular, stable, L-stable model of P ∗.

Proof

As P and P ∗ share the same set of partial stable models (Theorem 24), the result is

straightforward.

Corollary 26

For any NLP P , there exists an RFALP P ∗ such thatM is a partial stable, well-founded,

regular, stable, L-stable model of P iffM is respectively a partial stable, well-founded,

regular, stable, L-stable model of P ∗.

Proof

From Theorem 16, we know that for any NLP P , there exists an irreducible NLP P ∗

such that P 7→∗
UTPM P ∗. From Theorem 17, we obtain P ∗ is an RFALP. Besides, from

Theorem 24 and Corollary 25, we inferM is a partial stable, well-founded, regular, stable,

L-stable model of P iffM is respectively a partial stable, well-founded, regular, stable,

L-stable model of P ∗.

Theorem 27

NLPs and RFALPs have the same expressiveness for partial stable, well-founded, regular,

stable, and L-stable semantics.



On the Equivalence between Logic Programming and SETAF 43

Proof

We have

• For any NLP P , there exists an RFALP P ∗ such thatM is a partial stable, well-

founded, regular, stable, L-stable model of P iffM is respectively a partial stable,

well-founded, regular, stable, L-stable model of P ∗ (Corollary 26).

• Obviously, any RFALP is an NLP.

Hence, NLPs and RFALPs have the same expressiveness for partial stable, well-

founded, regular, stable and L-stable semantics.

Lemma 36

Let P1 and P2 be NLPs such that P1 7→U P2. It holds that AP1
= AP2

.

Proof

Let P1 and P2 be NLPs such that

P2 =P1 − {c← a, a1, . . . , am, not b1, . . . , not bn}
∪ {c← a′1, . . . , a

′
p, a1, . . . , am, not b′1, . . . , not b′q, not b1, . . . , not bn |

a← a′1, . . . , a
′
p, not b′1, . . . , not b′q ∈ P1},

AP1
= (AP1

,AttP1
) and AP2

= (AP2
,AttP2

). Note that

• For each statement s ∈ SP1
, there exists s′ ∈ SP2

such that Conc(s) = Conc(s′),

and Vul(s) = Vul(s′).

• For each statement s′ ∈ SP2
, there exists s ∈ SP1

such that Conc(s′) = Conc(s),

and Vul(s′) = Vul(s).

Hence, AP1 = AP2 , and AttP1 = AttP2 .

Lemma 37

Let P1 and P2 be NLPs such that P1 7→T P2. It holds that AP1
= AP2

.

Proof

Let P2 = P1 − {r}, where there exists a rule r ∈ P1 such that head(r) ∈ body+(r). In

addition, let AP1
= (AP1

,AttP1
) and AP2

= (AP2
,AttP2

). Note that

• For each statement s ∈ SP1
, there exists s′ ∈ SP2

such that Conc(s) = Conc(s′),

and for each V ∈ Vul(s), there exists V ′ ∈ Vul(s) ∩ Vul(s′) such that V ′ ⊆ V .

• For each statement s′ ∈ SP2 , there exists s ∈ SP1 such that Conc(s′) = Conc(s),

and Vul(s′) = Vul(s).

Hence, AP1
= AP2

, and for each c ∈ AP1
, V is a minimal set (w.r.t. set inclusion) in

VulP1(c) iff V is a minimal set (w.r.t. set inclusion) in VulP2(c); it holds that AttP1 =

AttP2
.

Lemma 38

Let P1 and P2 be NLPs such that P1 7→P P2. It holds that AP1
= AP2

.

Proof



44 J. Alcântara, R. Cordeiro and S. Sá

Let c ← a1, . . . , am, not b, not b1, . . . , not bn ∈ P1 be a rule such that b ̸∈
{head(r) | r ∈ P1},

P2 =(P1 − {c← a1, . . . , am, not b, not b1, . . . , not bn})
∪ {c← a1, . . . , am, not b1, . . . , not bn} ,

AP1
= (AP1

,AttP1
) and AP2

= (AP2
,AttP2

). Note that

• For each statement s ∈ SP1
, there exists s′ ∈ SP2

such that Conc(s) = Conc(s′),

and Vul(s) = {V | ∃V ′ ∈ Vul(s′) such that V = V ′ or V = V ′ ∪ {b}}.
• For each statement s′ ∈ SP2 , there exists s ∈ SP1 such that Conc(s′) = Conc(s),

and Vul(s′) = {V ′ | ∃V ∈ Vul(s) such that V ′ = V or V ′ = V − {b}}.

Hence, AP1
= AP2

, and as b ̸∈ AP1
∪ AP2

, it holds that AttP1
= AttP2

.

Lemma 39

Let P1 and P2 be NLPs such that P1 7→M P2. It holds that AP1
= AP2

.

Proof

Let P2 = P1 − {r}, where there are two distinct rules r and r′ in P1 such that

head(r) = head(r′), body+(r′) ⊆ body+(r), body−(r′) ⊆ body−(r). In addition, let

AP1
= (AP1

,AttP1
) and AP2

= (AP2
,AttP2

). Note that

• For each statement s ∈ SP1
, there exists s′ ∈ SP2

such that Conc(s) = Conc(s′),

and for each V ∈ Vul(s), there exists V ′ ∈ Vul(s) ∩ Vul(s′) such that V ′ ⊆ V .

• For each statement s′ ∈ SP2
, there exists s ∈ SP1

such that Conc(s′) = Conc(s),

and Vul(s′) = Vul(s).

Hence, AP1 = AP2 , and for each c ∈ AP1 , V is a minimal set (w.r.t. set inclusion) in

VulP1
(c) iff V is a minimal set (w.r.t. set inclusion) in VulP2

(c); it holds that AttP1
=

AttP2 .

Theorem 28

For any NLPs P1 and P2, if P1 7→UTPM P2, then AP1
= AP2

Proof

It follows straightforwardly from Lemmas 36, 37, 38 and 39.

Theorem 29

The relation 7→UTPM is confluent, i.e., for any NLPs P , P ′ and P ′′, if P 7→∗
UTPM P ′ and

P 7→∗
UTPM P ′′ and both P ′ and P ′′ are irreducible, then P ′ = P ′′.

Proof

From Theorem 28, we know that AP = AP ′ = AP ′′ . Thus PAP ′ = PAP ′′ . As P ′ and P ′′

are RFALPs (Theorem 17), it holds (Theorem 14) that P ′ = PAP ′ = PAP ′′ = P ′′.


