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MATERIALS AND METHODS
[bookmark: _Hlk120259411]To compile the data analysed, we began by combining the Rural Settlement of Roman Britain and Defended Small Towns of Roman Britain datasets, both of which are available through the Archaeology Data Service, into a single relational database (Allen et al., 2018; Fulford et al., 2018). This database was used to identify records of excavations associated with quantified assemblages of at least 500 sherds or 4 kilograms of pottery, as reflected in the summary information for pottery in the source record, and to identify the associated publications and grey literature relating to these excavations. We obtained these reports through searches of the Archaeology Data Service Library, the online journals of county-level archaeological and historical societies, and libraries at the Universities of Cambridge and Colorado. We focused on pottery fabrics and wares that were quantified by count and/or weight and entered this information from summary tabulations in each report. 
We reviewed the pottery reports for each source and entered the total count and/or weight of pottery by fabric, using the fabric classification scheme in each report, in data tables created for this project. To harmonize the various methods of quantification, we prioritized weight and translated other forms of quantification into estimated weights. If weights were absent but counts were available, we multiplied counts by the average sherd weight across the dataset (15g) to convert these into estimated weights. And if only estimated vessel equivalents (EVE) were available, we treated these as counts and converted them to estimated weights too. We entered data for each context group available in the excavation report. In some cases, these were based on spatial subdivisions and in others on contexts dated to specific chronological intervals. The sources we consulted are listed in the references and grey literature reports associated with individual excavations in the online datasets (Allen et al., 2018; Fulford et al., 2018). We also added comparable information from excavations in seven primary towns (Caerwent, Cirencester, Colchester, Exeter, Leicester, Silchester, and Wroxeter) working from the literature, and we integrated the data for seventy sites in Allen and Fulford’s (1996) dataset that also featured in our database. Table S1 summarizes the sources we consulted to obtain the data for primary towns. Overall, we compiled data for 1408 pottery groups, and 21,691 quantified fabric entries across these groups, for 775 excavations in 690 distinct settlements. 
We encountered over 6,000 fabric codes in the source data—an unworkable number, and far more than the actual number of industries. This profusion of codes is a legacy of the historic development of Roman pottery analysis in Britain. Some fabric classification schemes (such as the Colchester Fabric Type Series) originated in major excavation reports and have been adopted by subsequent projects; others derive from county councils, municipalities, or county-based research units (Gloucester City Fabric Type Series, Museum of London Archaeology Fabric Codes, etc.); in still other cases analysts devised site-specific fabric type series. In the late 1990s, a National Roman Fabric Reference Collection (NRFRC, Tomber & Dore, 1998) was developed, but it is still by no means universally employed and has become outdated as more pottery industries have been identified in the last twenty years. Many reports include fabric code descriptions and/or correspondences with NRFRC codes with the data or in an appendix, but many others simply present the codes, with or without a reference to the type series used or publication in which they are defined. Fabric descriptions in certain reports are also misleading. For example, some coarse ware fabrics were referred to as 'fine grey ware' or 'fine sandy ware' despite being coarse wares. Finally, there are many cases where the same code refers to a different fabric (and industry) depending on the fabric type series used. 
Due to these complications, it was not possible to group the original fabric codes into a shorter list of industries. Instead, we had to re-translate each row in the dataset. The shorter list of fabrics we developed is based on a combination of the NRFRC, Paul Tyers’ landmark Roman Pottery in Britain (Tyers, 2003) and his Potsherd website (Tyers, 2022), the Study Group of Roman Pottery’s gazetteer of Roman kilns (SGRP, 2022), and a major list of fabrics produced by the Museum of London Archaeology (MoLA, 2019) for use in Greater London and neighbouring counties. The resulting list includes 162 pottery fabrics, including ninety that could be assigned to a specific industry, twenty-nine imported Continental fabrics, and forty-three more generic, unsourced fabrics. We also determined the pottery class (samian, coarse ware, fine ware, mortaria, flagon, amphora, and storage vessel) for each entry, following the classification developed by Tyers (2003), whenever possible. The fabrics assigned to specific industries (see Figure S1) group together all wares produced at a given source. So, for example, all wares produced at Verulamium (coarse white slipped, fine white slipped, mica dusted, mortaria, and marbled ware) were given a single industry code. In total, just under forty per cent of sherds by weight in our database could be assigned to identifiable British and Continental fabrics: most of the remainder reflects the output of small-scale local production, or represent various indeterminate, unknown, or other categories. Table S2 presents the fabric list, dates of production for each fabric, and the total amount of pottery assigned to each fabric. The production dates are something of a compromise between the pottery resources listed above, which differ in some specifics.
[bookmark: _Hlk119413109]Of the ninety industries in our list, we identified forty-nine where the production sites were well located, working from information compiled by Tyers (2003), Tomber and Dore (1998), and Swan (1984), and updated online by the Study Group for Roman pottery (SGRP, 2022). For those industries that have multiple production sites, we took the mean coordinate of these sites as the location of the production centre. In the following analysis, we calculated the distance from each production centre to each excavated site as a straight line. We explored the possibility of measuring distances using the Roman road network, but this produced a much wider dispersal of data and an average distance that was c. 50 km longer than straight line distances—implausible given that even the major industries transported ninety-five per cent of their pottery over distances shorter than 200 km. These differences between road and straight-line distances are probably owed to the locations of many secondary roads, which provided shorter routes to many locations, being lost. 

Apportioning pottery assemblages to periods
An important issue in examining changes in the spatial distribution of pottery over time is isolating assemblages that can be assigned to specific date ranges. This is a special problem because most of the material recovered from excavations derives from contexts of mixed or redeposited material; even contexts that are well-defined or sealed, such as pits, trenches, and subfloor deposits often contain significant quantities of residual and intrusive pottery. Recent attempts at synthesizing Romano-British pottery records (e.g. Perring & Pitts, 2013; Rippon, 2018) have either taken pains to select only precisely-dated assemblages representing short periods of time or have treated the entire Roman period as a single group. The latter approach cannot be used to analyse change over time; while the former approach requires systematic evaluation of each excavation, resulting in a much lower sample density, and smaller sample sizes, without necessarily eliminating sampling error. An alternative approach is to carry forward the judgements and decisions in individual reports, which often attempt to phase the material recovered. Unfortunately, this does not solve the problem, because the date ranges of these groups are usually tailored to the results of each excavation, and they incorporate differing spans of time, and differing rates of residuality and intrusiveness. 
In this study, we take a different, somewhat simpler approach. Rather than selecting and grouping subsets of the data based on stratigraphic or other contextual information, we assign fractions of excavated assemblages to periods based on the production span of each fabric in the assemblage. We use a technique known as Uniform Probability Density Analysis, developed for the study of ancestral Pueblo sites in the US Southwest (Roberts et al., 2012; Ortman, 2016; Mills et al., 2018), and using an approach generalized by Matthew Peeples (2008), to accomplish this. The approach is related to summed probability density approaches that have become widespread in the interpretation of radiocarbon dates (Rick, 1987; Shennan et al., 2013; Downey et al., 2014; Robinson et al., 2021; Bird et al., 2022). In our case, each piece of pottery plays the role of a radiocarbon date, but the chronological information is represented as a uniform distribution across the production span of that industry. Essentially, the probability that the sherd was deposited at the site during each year of its production span is one over the number of years of production, and for each year outside the production span it is zero. Although the output of a pottery industry was probably not uniform across its production span, the data required to establish more informative production intensity curves (time-series measures of output from kilns associated with each industry) are not yet available. In addition, the loss of information from using uniform distributions can be expected to be modest when working with many different varieties and broad chronological periods, as we do here.
The allocation procedure begins by multiplying the quantity of pottery of a given fabric by its corresponding uniform distribution, and these weighted distributions are then summed and divided by the total assemblage size to create a summed probability density distribution where the area under the curve equals one, and the height of the curve represents the probability that a gram of pottery was deposited during each time step. The procedure then uses Bayes’ Theorem to adjust the shape of this curve based on the likelihood of obtaining the observed mixture of fabrics if the site had been inhabited during each time step. Then, the procedure establishes beginning and ending dates for the assemblage by trimming away time steps for which the posterior probability is below a pre-selected threshold, and it reapportions the removed probability for each fabric within the resulting occupation span. Essentially, the procedure squeezes the uniform distributions of more vaguely dated fabrics based on the occupation span suggested by the more precisely dated fabrics, with the amount of squeezing being set by a tuneable threshold. Finally, these figures are summed across groups of years to create sub-assemblages consisting of quantities of pottery of each fabric that were deposited at a given site during each period of occupation. We aggregated the results into three periods: Early Roman (c. 50 BC–AD 150), Middle Roman (AD 150-–50) and Late Roman (AD 250–400). These periods roughly capture the start and end dates of production of key industries, including imported samian ware, Lower Nene Valley ware, Oxfordshire ware, New Forest ware, and South-East Dorset black burnished ware.
For our analysis, we computed summed probability distributions using 25-year time steps and set the minimum threshold indicating occupation at thirty per cent of the most probable period in the posterior distribution. We chose this threshold for several reasons. First, Romano-British sites clearly had varied occupation spans, but about seventy per cent of Roman pottery can be dated only to the Roman period overall. So, when a low threshold is used, posterior distributions suggest occupation across the Roman period at nearly every site. This is clearly unrealistic. Second, we found that, as we increased the threshold, the modelled occupation spans of sites stabilize at around thirty per cent, and it takes a substantial increase to change them appreciably from that point. Finally, a threshold at this level does not unduly restrict the occupation spans of sites with evidence for a lengthy occupation because the area under each posterior probability distribution is by definition equal to one. Because of this, the actual probability level represented by the threshold works out to be larger when the distribution is strongly peaked, suggesting a short occupation span, and smaller when the distribution is flatter, indicating a long occupation span. We found that a threshold of thirty per cent provided the most realistic overall interpretation of the data. Further studies could investigate more formal evaluation methods for this specific detail of uniform probability density analysis. 
Table S3 presents ordinary least squares fits for the relationship between the log-proportion of each tracked industry and distance from the production location after implementing the procedure above to assign portions of each assemblage to each time period. 


EXPONENTIAL DECAY OF POTTERY CONSUMPTION WITH DISTANCE
In quantitative geography, two kinds of decay patterns with distance from a source are typically observed empirically: exponential decay and power law decay. Power law decay with distance is often observed in commuting patterns in cities, as well as transportation and migration flows (Fotheringham & Webber, 1980; Batty, 2013; Bettencourt, 2021: chapter 8). Exponential decay is more general and is observed in a variety of other situations, both dealing with human activities and with dispersal processes in ecology (Haynes, 1974). Here, we describe the derivation and significance of exponential decay, as observed in our data, for pottery consumption away from their production centres.  
In the main article, we argue that the probability of consumption of a specific variety of pottery should exhibit exponential decay with distance from the production location, based on the following chain of reasoning: 1) consumption of a given variety of a manufactured good is proportional to the price (whether mediated through money or barter) of that variety in the local market relative to other varieties; 2) the increase in the price of a good with distance from its source is equivalent to the total transport cost; 3) transport costs accumulate in a linear fashion with distance; and 4) linear transport costs lead to a consistent fractional decline in the probability of consumption as distance increases, following the same mechanism seen with respect to time in survival analysis in demography. We discuss each link in this chain below.
First, consumption choices in any given location should follow from differences in price. The proportion of pottery from a given industry in an archaeological assemblage represents the fraction of pottery consumption represented by products from that industry, the remaining consumption being of pottery from other industries. According to the theory of consumer choice in economics (Krugman & Wells, 2009: 271–302), individuals have finite (or limited) resources to allocate to obtaining goods. Given this ‘budget constraint’, there are a range of combinations of related goods that can be obtained, given their relative prices. As the price of one variety increases relative to others, consumers will purchase fewer of that variety, on average, so that they can continue to consume the desired quantity and variety of goods. This view does not presume that all varieties of pottery were equivalent. Indeed, due to differences in quality, functionality, durability, and appearance, certain varieties of pottery were surely more desirable than others. It merely suggests that, in a context where consumers had limited resources to allocate to obtaining pottery, one would expect the probability of consumption of any given variety of pottery to decline as its price increased relative to that other varieties. 
Second, the ‘price’ of a good for a consumer will increase as the cost of transporting that good from where it is produced to where it is consumed increases. The basic idea is that distributors must recoup the costs of bringing a pot from its production site to a local market for it to be worth their while. The total cost of bringing a good to a consumer is the sum of the production costs and the transport costs. The production cost will be the same regardless of where the product is consumed, but the transport cost will vary, with the total transport cost being the product of the distance travelled and the cost per unit to transport it over that distance. 
Third, transport costs increase proportionately with distance. This is the standard approach in economics, where transport costs are typically modelled in the ‘iceberg’ form (Samuelson, 1954; Krugman, 1991). In this formulation, transport costs accumulate in a linear fashion and are ‘paid’ through a reduction in the amount that reaches a given distance. In our context, transport costs will increase the price of a pot as the transport distance increases. And as the price increases, the probability of consumption will decrease. 
Finally, the cost of transport per unit distance has an effect on spatial patterns of pottery consumption that is analogous to the effect of the hazard rate for mortality patterns in demography. Survival analysis (in demography and engineering) focuses on the fraction of an initial amount that persists over time (Lee & Wang, 2003), but the same reasoning can be applied to decay over distance. Consider a location which produces a certain quantity of pottery. Its products will be moved over some distance from production to consumption sites, thus reducing the portion that is carried further, and so on. The question is thus what fraction of the original product “remains” to be consumed with each additional increment of distance. This is equivalent to the probability that a product from that source will be consumed at a given distance. We can write this probability of consumption at distance as . This probability is analogous to the fraction of a birth cohort surviving at age , or the probability of survival to age , in the survival function. 
The decay in the fraction of pottery  that remains as distance increases is written in terms of a hazard or failure rate, describing the probability of loss at distance defined as
							(S.1)
This prescription is general because  can assume different dependences on  However, the simplest model has  as a constant in , resulting in 
		(S.2)
leading to  with  interpreted as the hazard rate, that is, the per cent decay in the remainder of the original product with each additional unit of distance. We can further interpret the parameter  as a cost of transport per unit length travelled, divided by some total energy allocated to transport, through the concept of ‘iceberg’ transport costs, which is common in economic geography. In this approach, transport costs accumulate in a linear fashion with distance, and they are ‘paid’ by subtraction from the initial amount. With each additional increment of distance, an amount equivalent to the cost of transport over that distance is removed from the remaining amount. In this reading, the cost of transport per unit distance is analogous to the momentary hazard rate, such that a constant fraction of the remaining product is consumed with each additional unit of distance travelled. Essentially, transport costs have the effect of ‘melting’ a fraction of the remaining product with each additional unit of distance, with the rate of melting being equivalent to the transport cost per unit distance, . Put simply, transport costs increase the price of a pot as the transport distance increases, leading to a decrease in the fraction that is transported over each new increment of distance, and a corresponding decrease in the probability of consumption with each new increment of distance. 
Iceberg transport costs were proposed long ago by Paul Samuelson (1954) and are commonly used in models of economic geography, such as Krugman’s influential core-periphery model (Krugman, 1991) for urbanization and regional trade, which matches industrial production to residential consumers across space. Finally, let us note that, insofar as the cost of moving pottery per unit distance travelled may decrease over time (for example because of improved transport technology and/or infrastructure), the mean distance travelled by pottery   for a given cost will be proportionally greater. We could also consider hazard rates that depend on the direction of travel from the source, for example along better roads, or upstream vs downstream along navigable water courses, or that are specific to different sources, but this is not attempted here. Other methods in quantitative geography, including origin-destination trip generation models under maximum entropy estimation (Wilson, 2013), also generate exponential decay of travel from a source with distance, expressing the same essential ideas but using more complex derivation strategies.

TRANSPORT, AGGLOMERATION, AND DIVERSITY IN POTTERY ASSEMBLAGES
In the main article, we note that transport costs and agglomeration both affect diversity in pottery assemblages. As the frictional effect of distance declines, the total cost of pottery at a given distance from the production location will also decline, leading to reductions in price too. As a result, the area over which a product can be effectively distributed will expand, and this will expand the potential market for the product. This will in turn stimulate an expansion in the scale and specialization of production (Arrow, 1994; Kelly, 1997; Smith, 2007). Hence, reductions in transport costs will result in an increase in the specialization of production, or a decrease in the diversity of production, as production focuses on fewer, more intensively produced and generally higher-quality varieties. In addition, reduced transport costs would have had consequences not just for individual industries, but would also have allowed competing industries to have easier access to local markets. Even sites where pottery was produced would have been increasingly open to competitors’ wares. As a result, the proportion of locally produced wares should decrease at their production sites (where the distance x = 0) as transport costs decrease and competing wares became increasingly available. 
[bookmark: _Hlk120281475]In addition to transport costs, the distribution of people in space also affects production and consumption patterns. Populations that are more concentrated in space will interact more frequently with more people of different kinds, and this will increase the connectivity of, and information available to, an individual (Ortman & Lobo, 2020). Thus, at any given time, individuals who live in more populous settlements will integrate more information about the choices available to them, including their consumption activities, than individuals who live in less populous settlements (Hanson & Ortman, 2020). Individuals in agglomerated populations also typically become more productive as a result of learning and sharing skills (Ortman & Lobo, 2020). This increase in individual-level productivity can in turn support increases in consumption. 
Transport costs and agglomeration thus have seemingly opposed effects on patterns of pottery consumption, with increasing agglomeration promoting greater diversity in consumption, and declining transport costs leading to greater specialization in production. These two effects are connected via the increase in demand for all goods that a reduction in transport costs creates. The analytical framework known as Settlement Scaling Theory integrates both forces. Previous work (Bettencourt, 2013; Bettencourt et al., 2014; Hanson et al., 2017; Lobo et al., 2020) has shown that the expected number of social connections experienced by an individual in his or her daily activities at time can be captured by a simple power function: 
,					(S.3)
where  is the connectivity of the individual (their degree, or number of links to others, in network theory terms) in a settlement with population  at time ,  is the baseline connectivity of individuals at time  (e.g. the number of connections maintained by an individual in an isolated farmstead), and the exponent  captures the network effects of concentrating people in space. Previous theoretical work has derived an expected value of  for this exponent, and this has also been observed empirically (Bettencourt, 2013; Andris & Bettencourt, 2014; Schläpfer et al., 2014). This formulation implies that the diversity of an individual’s consumption activities will also be proportional to the number of connections, and will therefore increase with the size of an individual’s local social network in the same way: 
.					(S.4)
However, the baseline diversity of an individual’s consumption activities, , will be subject to the levels of specialization in production, and this should in turn be inversely proportional to the baseline connectivity, . In other words, as the baseline connectivity of individuals increases over time, individuals can satisfy more of their needs through their social connections, and as a result their own productive activities can become less diverse, or increasingly specialized. Since baseline connectivity would be expected to increase as transport costs decrease,  should be proportional to transport costs. Equation (S.4) can be converted to a linear function by taking the logarithm of both sides: 
.				(S.5)
Now, a good measure of diversity is the Shannon Diversity Index (), defined as:
[bookmark: _Hlk119786052], 			(S.6)
where  represents the proportion of an assemblage produced at source . It is a measure of the amount of information integrated by an individual through their consumption choices. This would have included information from others in an individual’s social network regarding the range of products available, their functional and aesthetic qualities; their prices in previous exchanges; and their relative status appeal. Because the Shannon Diversity Index is a logarithmic diversity measure (), it can be substituted directly into Equation (S.5), yielding:
.					(S.7)
Equation (S.7) can be tested directly by fitting a linear function to the logarithm of a population proxy and the Shannon Diversity Index of the associated pottery assemblage for data from a variety of settlements dating from different times. This analysis is presented in the main article.

ADDITIONAL FACTORS THAT MAY HAVE INFLUENCED POTTERY DISTRIBUTIONS
In the main article, we emphasize that distance from production locations was merely one of many factors that contributed to patterns of pottery consumption in each location. This raises the question of whether evidence of these other factors might be visible in the data. We consider several possibilities below.
Figure S2 summarizes standardized residuals from a pooled (all periods) regression of the relationship between log-proportion and distance, with the residuals sorted according to the size of the settlement from which the excavated pottery sample derives. This analysis allows one to assess the extent to which the size of the local market affected pottery consumption, after taking distance into account. For example, if distributors could fetch higher prices for pottery in larger markets, one might expect these residuals to be more strongly positive for larger settlements, or more strongly negative for smaller settlements. The results suggest that any such effects were minor. For all settlement size classes, the ninety-five per cent confidence interval of the mean includes zero. This result is consistent with other studies which have found that primary towns did not exert a strong influence on pottery distributions (Fulford, 2017: 360).
Figure S3 compares these residuals by region. Several studies have argued that different regions of Britannia participated to differing degrees in the imperial economy. Studies have shown, for example, that British-style round houses persisted longer in the north and west than in the south-east, that Roman coins are generally more common in the south-east, and that military activity was more prominent in the north and west (Millett, 1990; Mattingly, 2006; Walton & Moorhead, 2015; Allen et al., 2017). Based on these findings, one might expect the distributions of residuals to be more negative in regions of Britannia that were less integrated into the provincial economy. Figure S3 shows that, for the most part, this is not the case. Settlements in the south-west and Wales, however, do have a positive bias to their residuals, potentially suggesting that pottery supply was influenced by military activity in these regions. However, our dataset contains relatively few settlements from these regions. Overall, these results suggest that our sampling of settlements and regions has not introduced any systematic biases to the data. They also suggest that transport costs were factored into the distribution of pottery even in regions where exchanges were not mediated by coins.
One might also ask whether changes in pottery vessels themselves could have contributed to the observed changes in distance-decay relationships. For example, if Early Roman industries produced primarily heavy, high-capacity jars used for transporting goods but Late Roman industries primarily tableware, including open forms that could be stacked for transport, these changes could have affected the slope of distance-decay relationships simply because of a change in the size and weight of the average vessel over time. We have attempted to control for this possibility in several ways. First, we excluded amphorae from our attributions to remove obvious transport pottery from the analysis. Second, we included samian and other continental imports because they were used in the same ways as other tablewares. These imports were common during the Early and Middle Roman periods but declined during the Late Roman period; hence, the increase in the slope of the distance-decay relationships from the Early to Middle Roman period cannot be attributed to this factor, nor can the increase from the Middle to Late Roman period. Third, we included all wares and vessel forms from each industry in the analysis in an effort to remove any associations between time, industry, and vessel form. When this is done, samples for most of the major industries, including Verulamium, Colchester, Hadham, Oxfordshire, New Forest, and Lower Nene, include large quantities of both fine and coarse wares. In addition, major industries that span multiple periods and include only coarse wares (Alice Holt, Dales, Dorset Black Burnished, Horningsea, and Savernake) each show decreases in the slopes of their distance-decay relationships over time (see Figure S1). In sum, there is no evidence that changes in the slopes of the distance-decay relationships are a by-product of changes in the types of vessels that were produced and distributed. 
Finally, we considered whether factors unrelated to transport could have been responsible for changes over time in the slope of the distance-decay relationships. While there was sophisticated pottery production in Late Iron Age Britain (Sutton, 2020), the idea of an ‘industry’ appears to have been an entirely Roman concept. The residents of Roman Gaul had practised ‘impersonal’ trade before arriving in Britain (Pitts, 2019), and it is not at all obvious that native Britons would have always applied kin- or clan-based rules when obtaining Roman-manufactured objects. Rippon (2018: 197) notes that some Early Roman industries developed in liminal locations near the borders of Iron Age ‘tribal’ territories, and he also found that the distributions of certain wares—including London Essex stamped, pink grog-tempered, Horningsea, Wattisfield, Packenham, Nar Valley, and Icenian rusticated wares—were partly constrained within socially embedded zones established during the Iron Age. It seems quite plausible that certain minor wares become associated with local ethnic identities, leading to marked boundaries in their distributions. Ethnoarchaeological studies suggest that in kin-based trade with overland animal transport, pottery from local workshops is distributed no more than  twenty to thirty kilometres from its source (Vossen, 1984: 376). Some of the territories identified by Rippon, based on the correspondence of minor wares with geophysical boundaries, are of this scale; but most of the major Romano-British pottery industries were distributed over a hundred kilometres or more, as is apparent from Figure S1 and Figure 4 in the main article. This is far larger than is plausible for an ethnic or tribal territory. Moreover, finds of major industries are clustered along roads and rivers more frequently than are contained within geophysical boundaries. We highlight this in Figure S4, a close-up map of the distribution of Early Roman pottery from Verulamium, which plainly clusters around the road system, which highlights that there were no obvious kin-based restrictions in its distribution. We conclude that the distributions of some minor wares (such as Horningsea Ware, see Figure 4c) may well have corresponded to ethnic areas, but even these had to be distributed across space, and would have required transport from production sites to producers. Therefore, while ethnic boundaries might have affected the spatial extent of some distributions, they should not have affected the distance-decay relationships within these spatial extents. 

CONSIDERATIONS ON DATA SYNTHESIS
Some archaeologists appear to conceptualize data synthesis as the compilation of many individual data points, each accurate enough to stand on its own. This approach was followed, for example, in Pitts and Perring’s study of pottery consumption in Early Roman Essex (Pitts & Perring, 2006; Perring & Pitts, 2013). This approach is feasible, but here we promote a different conception, which makes it possible to estimate the parameters of aggregate patterns across a region even when there are obvious errors in individual data points.  Indeed, aiming for consistently precise and accurate individual data points is often unrealistic. Even if one had access to perfect archaeological data—consistently dated assemblages of short duration analysed using a single methodology—there would still be errors in estimates of statistical population parameters for individual sites simply because of taphonomic, site formation, and sampling issues. So, ‘ideal’ datasets are not realistically obtainable. In our view, it is more reasonable to assume that inaccuracy and imprecision in the data from individual sites is unavoidable, and hence it is better to include data from as many sites as possible, such that all these sources of error ‘come out in the wash’ when estimating aggregate properties of the dataset. In other words, the issue is not error per se, but biased errors, and we have found that the best way to eliminate such bias is to include as many data points as possible and focus on estimating average relationships across these data points. 
When faced with large quantities of intractable data, there are essentially two approaches one can take: 1) retain the level of detail but reduce the scale to a manageable level; or 2) retain the scale but simplify the data. One is not better than the other, but in this study, there are pragmatic reasons to choose option 2. First, our interest is in the transport of goods across the entirety of Roman Britain, not smaller areas. There is no way to extrapolate upwards from regional results studies to an overall picture, which would have defeated the purpose of our research. Second, some of the most important pottery industries distributed their wares across large parts of Britannia; a regional study could not have captured these, and excluding them would have biased our results, which rely on a comprehensive analysis of all the major pottery industries. Third, the goal of this project was to assess the contribution of a single factor—transport—and its development over time. The goal was not to deal with the full complexity of pottery distribution and supply. Finally, since our focus is on transport, our goal was to create a method which could be applied to the distribution of many materials. Focusing narrowly on the specifics of pottery distribution and supply would have limited its transferability to other domains. 

Table S1. Pottery data from excavations in primary towns: sources consulted.
	Site (excavations)
	References

	Caerwent (Time Team)
	Wessex Archaeology, 2009

	Cirencester (St. Michaels and Town Centre, Beeches Road)
	McWhirr, 1986; Holbrook 1998

	Colchester (Fortress, Boudiccan, Roman)
	Crummy 1984, 1992; Symonds & Wade 1999; Gascoyne & Radford, 2013

	Exeter (Cathedral Close, 1971–79)
	Bidwell, 1979; Rippon & Holbrook, 2021a, 2021b

	Leicester (Causeway Lane)
	Connor & Buckley 1999

	Silchester (Defences, Insula IX, mapping)
	Fulford, 1984; Fulford, et al., 2006; Creighton & Fry 2016

	Wroxeter (Fortress, Baths, Basilica, Insula X, lining holes)
	Barker et al., 1997; Ellis, 2000; Webster, 2002; White et al., 2013



Table S2. Total estimated weight of pottery assigned to each industry in the dataset. All dates are AD unless specified.
	Fabric (industry)
	Start date
	End date
	Total weight (g)

	Alice Holt-Farnham*
	43
	410
	643915

	Alice Holt-Farnham, Early*
	40
	160
	937

	Alice Holt-Farnham, Late*
	250
	410
	24333

	Argonne (eastern Gaul)
	150
	200
	570

	Argonne colour-coated ware
	150
	200
	146

	Belgic (Aylesford-Swarling)
	50 BC
	80
	767508

	Bourne-Greetham shelly ware
	150
	250
	1185

	Caerleon
	100
	200
	2184

	Canterbury
	80
	150
	7204

	Central Gaul
	40
	200
	197199

	Central Gaul (Rhenish)
	40
	200
	11731

	Céramique à l'éponge marbled ware (southern Gaul)
	200
	400
	233

	Colchester
	43
	250
	140145

	Colchester Samian
	150
	200
	1965

	Cologne (Germany)
	80
	250
	2379

	Continental
	43
	260
	15917

	Continental (colour coat)
	43
	260
	137

	Continental (eggshell)
	43
	260
	21

	Continental Samian
	43
	260
	248481

	Corfe Mullen
	43
	300
	1921

	Crambeck
	300
	410
	18372

	Dales
	200
	375
	33808

	Derbyshire
	140
	350
	41028

	Dorset black-burnished ware
	150
	400
	956115

	East Anglian
	100
	200
	54776

	Eastern Gaul
	120
	260
	48478

	Eastern Gaul (Rhineland)
	120
	260
	6535

	Fortress wares (Devon)
	55
	80
	21612

	Gabbroic (South-west)
	50 BC
	410
	165732

	Gallo-Belgic
	50 BC
	100
	2516

	Gaul
	20 BC
	70
	13047

	Gloucestershire, Early*
	43
	200
	1039

	Gloucestershire, Late*
	150
	400
	22367

	Hadham
	200
	410
	195353

	Hampshire
	270
	400
	2640

	Harrold shelly ware
	260
	410
	81781

	Heiligenberg (Germany)
	43
	260
	15

	Highgate Wood
	70
	160
	5232

	Holme on Spalding Moor
	200
	400
	19359

	Hoo island ware
	43
	100
	971

	Horningsea
	60
	370
	467324

	Huntcliffe
	300
	400
	17992

	Imitation black burnished ware
	150
	410
	71810

	Imitation black burnished ware 1
	150
	410
	29178

	Imitation Gallo-Belgic
	50 BC
	100
	23

	Imitation Oxfordshire ware
	250
	410
	8716

	Imitation Samian
	43
	260
	3796

	Imitation Severn Valley
	40
	410
	36228

	Imitation Terra nigra
	20 BC
	70
	10748

	Imitation Terra rubra
	0 BC
	70
	531

	Imitation Wiltshire Samian
	43
	80
	3

	Kent
	100
	300
	252

	Knapton
	200
	400
	2760

	La Graufesenque (southern Gaul)
	40
	120
	9596

	Late Roman (S. Midlands) shelly ware
	300
	410
	64024

	Les Matres-de-Veyre (central Gaul)
	40
	200
	4361

	Lezoux (central Gaul)
	40
	200
	79846

	Lincoln
	100
	200
	11746

	London (city)
	70
	160
	3195

	London-Essex stamped wares
	100
	200
	3950

	London-type ware
	70
	160
	6449

	Lower Nene Valley
	150
	410
	744782

	Lyon (southern Gaul)
	40
	70
	5899

	Malvernian (Severn Basin)
	100
	200
	359908

	Mancetter/Hartshill (Midlands)
	200
	400
	110114

	Mayen (Germany)
	300
	410
	17787

	Montans Samian
	50
	180
	72

	Mortaria, not further specified
	50 BC
	410
	278785

	Moselkeramik (Germany)
	180
	250
	526

	Nar Valley (Norfolk)
	150
	300
	20588

	Native
	50 BC
	100
	34044

	New Forest
	260
	370
	56257

	Normandy Gauloise
	50
	300
	1576

	North Africa
	140
	400
	819

	North African
	70
	410
	116

	North Fitzwarren (Devon)
	43
	410
	7233

	North Kent
	43
	200
	63172

	Northern Gaul
	70
	300
	16261

	Northern Gaul Samian
	70
	300
	68

	Overwey (South-east)
	300
	410
	44363

	Oxfordshire
	250
	410
	1168898

	Pakenham (Suffolk)
	100
	300
	1549

	Patch Grove (Kent)
	43
	200
	101077

	Pink (Midlands)
	160
	410
	94237

	Pompeian red ware
	43
	200
	3254

	Pulborough (Sussex)
	120
	150
	160

	Rettendon (Essex)
	50
	400
	114232

	Rheinzabern (Germany)
	120
	260
	891

	Rossington
	135
	190
	1686

	Rowlands Castle
	80
	320
	4096

	Rusticated wares (Midlands)
	43
	120
	140

	Savernake (Wiltshire)
	40
	300
	278482

	SE England glazed ware
	70
	120
	7410

	Severn Valley
	40
	120
	47956

	Severn Valley
	40
	410
	2363022

	Shepton Mallet (Somerset)
	100
	200
	1124

	Silchester (Hampshire)
	50 BC
	80
	77138

	Soller Nordrhein-Westfalen (Germany)
	150
	220
	1157

	South Carlton (Lincolnshire)
	100
	200
	1200

	South Gaulish
	40
	250
	1019

	South Gaulish Samian
	40
	120
	59945

	South-western
	100
	300
	258059

	South Yorkshire ware
	100
	200
	76834

	Southern British 
	70
	120
	248007

	Storage jar fabrics
	50 BC
	410
	2386956

	Swanpool (Lincolnshire)
	250
	410
	6039

	Terra nigra
	20 BC
	70
	13928

	Terra rubra
	20 BC
	60
	9404

	Thameside Kent
	110
	250
	102933

	Unsourced
	50 BC
	410
	461114

	Unsourced BB1
	150
	410
	741756

	Unsourced BB2
	150
	410
	148597

	Unsourced black burnished ware
	150
	410
	583203

	Unsourced black slipped ware
	50 BC
	410
	992775

	Unsourced calcareous temper
	50 BC
	410
	333801

	Unsourced chalk temper
	50 BC
	410
	7269

	Unsourced clay pellet temper
	50 BC
	410
	2849

	Unsourced coarse wares
	50 BC
	410
	1691060

	Unsourced colour coat ware
	150
	410
	138799

	Unsourced Early Roman ware
	43
	250
	11598

	Unsourced eggshell ware
	50 BC
	410
	334

	Unsourced flint temper
	50 BC
	410
	50130

	Unsourced glazed
	43
	200
	2922

	Unsourced grog and organic temper
	50 BC
	410
	6892

	Unsourced grog and shell temper
	50 BC
	410
	660

	Unsourced grog temper
	50 BC
	410
	2896360

	Unsourced grog temper
	43
	120
	2760

	Unsourced iron temper
	50 BC
	410
	475

	Unsourced Late Roman ware
	250
	410
	1980

	Unsourced limestone temper
	50 BC
	410
	10001

	Unsourced micaceous
	50 BC
	410
	338609

	Unsourced micaceous
	43
	120
	1003

	Unsourced micaceous and calcite gritted
	50 BC
	410
	1321

	Unsourced micaceous and sand tempered
	50 BC
	410
	10768

	Unsourced mica-dusted
	80
	120
	11949

	Unsourced Middle Roman
	150
	250
	559

	Unsourced mixed temper
	50 BC
	410
	115698

	Unsourced organic temper
	50 BC
	410
	22737

	Unsourced oxidised fabric
	43
	410
	1726727

	Unsourced parchment ware
	260
	410
	17207

	Unsourced red slipped
	50 BC
	410
	4358

	Unsourced red ware
	50 BC
	410
	52830

	Unsourced reduced fabric
	50 BC
	410
	6654093

	Unsourced rock temper
	50 BC
	410
	9203

	Unsourced Samian
	40
	250
	111443

	Unsourced sand temper
	50 BC
	410
	2733831

	Unsourced sand temper
	43
	120
	19578

	Unsourced shell temper
	50 BC
	120
	45101

	Unsourced shell temper
	50 BC
	410
	1745677

	Unsourced vesicular fabric
	50 BC
	410
	814

	Unsourced white slipped
	50 BC
	410
	192839

	Unsourced whiteware
	50 BC
	410
	311510

	Upchurch (Kent)
	43
	250
	54052

	Upper Nene Valley
	150
	410
	20263

	Verulamium (Hertfordshire)
	43
	200
	449123

	Wattisfield reduced ware
	100
	400
	167

	West Stow-Essex-London
	70
	120
	84451

	Wiggonholt (Sussex)
	43
	400
	5378

	Wilderspool (Cheshire)
	110
	190
	217622

	Wiltshire
	80
	200
	284503

	Wroxeter
	100
	170
	22362

	York
	75
	250
	11688


*These industries were pooled into single industries following attribution.

Table S3. Regressions for each industry and period. 
	Type
	Period
	N Sites
	Intercept
	SE
	Slope
	SE
	r2
	F-Statistic
	P-Value

	Alice Holt-Farnham
	ERP
	30
	0.317
	0.396
	-0.058
	0.007
	0.692
	62.881
	.0000

	Alice Holt-Farnham
	MRP
	36
	-0.333
	0.450
	-0.050
	0.006
	0.617
	54.833
	.0000

	Alice Holt-Farnham
	LRP
	54
	-0.245
	0.441
	-0.052
	0.006
	0.502
	52.475
	.0000

	Bourne-Greetham shelly ware
	MRP
	3
	0.222
	2.494
	-0.090
	0.036
	0.758
	3.127
	.3277

	Caerleon
	ERP
	2
	0.936
	NA
	-0.158
	NA
	1.000
	NA
	NA

	Caerleon
	MRP
	6
	-2.087
	1.538
	-0.092
	0.035
	0.534
	4.580
	.0991

	Canterbury
	ERP
	9
	-0.669
	1.496
	-0.065
	0.057
	0.195
	1.692
	.2345

	Colchester
	ERP
	51
	-3.887
	0.436
	-0.019
	0.005
	0.241
	15.559
	.0003

	Colchester
	MRP
	68
	-4.003
	0.472
	-0.015
	0.005
	0.129
	9.786
	.0026

	Colchester Samian
	MRP
	3
	-4.665
	0.084
	-0.098
	0.002
	0.999
	769.001
	.0229

	Corfe Mullen
	ERP
	1
	-3.225
	NA
	NA
	NA
	0.000
	NA
	NA

	Corfe Mullen
	MRP
	5
	-5.835
	3.835
	-0.022
	0.144
	0.010
	0.030
	.8733

	Corfe Mullen
	LRP
	4
	-4.266
	1.668
	-0.176
	0.068
	0.709
	4.873
	.1580

	Crambeck
	LRP
	10
	-1.977
	0.988
	-0.033
	0.018
	0.206
	2.075
	.1877

	Dales
	MRP
	49
	-3.111
	0.478
	-0.029
	0.007
	0.190
	11.015
	.0018

	Dales
	LRP
	54
	-2.995
	0.377
	-0.023
	0.006
	0.157
	9.668
	.0030

	Derbyshire
	MRP
	16
	-0.538
	0.730
	-0.102
	0.014
	0.706
	33.544
	.0000

	Derbyshire
	LRP
	15
	-0.648
	0.746
	-0.102
	0.016
	0.671
	26.456
	.0002

	Dorset black burnished ware
	MRP
	139
	0.351
	0.297
	-0.024
	0.003
	0.352
	74.523
	.0000

	Dorset black burnished ware
	LRP
	164
	0.002
	0.299
	-0.022
	0.003
	0.248
	53.355
	.0000

	East Anglian
	ERP
	5
	1.123
	0.634
	-0.062
	0.017
	0.695
	6.832
	.0794

	East Anglian
	MRP
	7
	-1.174
	1.384
	-0.041
	0.020
	0.436
	3.858
	.1067

	Gloucestershire
	ERP
	2
	108.500
	NA
	-6.424
	NA
	1.000
	NA
	NA

	Gloucestershire
	MRP
	17
	-3.178
	1.205
	-0.084
	0.065
	0.165
	2.971
	.1053

	Gloucestershire
	LRP
	14
	-2.157
	1.230
	-0.113
	0.065
	0.280
	4.671
	.0516

	Hadham
	MRP
	88
	-3.988
	0.476
	-0.030
	0.008
	0.188
	19.859
	.0000

	Hadham
	LRP
	105
	-3.331
	0.418
	-0.026
	0.007
	0.153
	18.570
	.0000

	Harrold shelly ware
	LRP
	37
	-1.687
	0.645
	-0.029
	0.009
	0.173
	7.304
	.0105

	Highgate Wood
	ERP
	12
	-5.620
	1.584
	-0.006
	0.033
	0.004
	0.042
	.8411

	Holme on Spalding Moor
	MRP
	1
	-2.400
	NA
	NA
	NA
	0.000
	NA
	NA

	Holme on Spalding Moor
	LRP
	3
	-1.398
	0.516
	-0.019
	0.013
	0.490
	0.961
	.5063

	Hoo island ware
	ERP
	3
	4.083
	3.886
	-0.284
	0.158
	0.616
	1.607
	.4252

	Horningsea
	ERP
	19
	-0.016
	0.458
	-0.096
	0.026
	0.596
	25.113
	.0001

	Horningsea
	MRP
	40
	-0.433
	0.346
	-0.092
	0.017
	0.542
	45.056
	.0000

	Horningsea
	LRP
	49
	-0.844
	0.315
	-0.069
	0.013
	0.456
	39.446
	.0000

	Huntcliffe
	LRP
	4
	-0.316
	0.820
	-0.036
	0.008
	0.780
	7.101
	.1167

	Lincoln
	ERP
	7
	-1.581
	1.416
	-0.076
	0.045
	0.307
	2.217
	.1967

	Lincoln
	MRP
	25
	-4.003
	0.472
	-0.029
	0.006
	0.267
	8.392
	.0081

	London (city)
	ERP
	12
	-8.915
	2.229
	0.038
	0.035
	0.122
	1.384
	.2667

	Lower Nene Valley
	MRP
	246
	-1.462
	0.163
	-0.034
	0.002
	0.522
	266.648
	.0000

	Lower Nene Valley
	LRP
	288
	-1.514
	0.158
	-0.032
	0.002
	0.453
	236.572
	.0000

	Mancetter/Hartshill (Midlands)
	MRP
	91
	-4.349
	0.611
	-0.020
	0.007
	0.143
	14.838
	.0002

	Mancetter/Hartshill (Midlands)
	LRP
	98
	-3.811
	0.505
	-0.015
	0.006
	0.104
	11.197
	.0012

	Nar Valley (Norfolk)
	MRP
	14
	-2.289
	1.431
	-0.041
	0.039
	0.146
	2.056
	.1771

	Nar Valley (Norfolk)
	LRP
	13
	-3.230
	1.592
	-0.040
	0.042
	0.123
	1.549
	.2391

	New Forest
	LRP
	115
	-2.160
	0.417
	-0.035
	0.006
	0.311
	50.996
	.0000

	North Fitzwarren (Devon)
	MRP
	1
	-3.436
	NA
	NA
	NA
	0.000
	NA
	NA

	North Fitzwarren (Devon)
	LRP
	1
	-3.307
	NA
	NA
	NA
	0.000
	NA
	NA

	Overwey (South-east)
	LRP
	33
	-4.882
	0.566
	-0.007
	0.008
	0.042
	1.352
	.2537

	Oxfordshire
	LRP
	341
	-1.771
	0.200
	-0.024
	0.002
	0.246
	110.446
	.0000

	Pakenham (Suffolk)
	ERP
	3
	-2.425
	1.308
	-0.208
	0.110
	0.641
	1.785
	.4091

	Pakenham (Suffolk)
	MRP
	14
	-5.342
	0.570
	-0.012
	0.010
	0.030
	0.372
	.5536

	Pakenham (Suffolk)
	LRP
	13
	-5.910
	0.534
	-0.019
	0.009
	0.072
	0.858
	.3743

	Pulborough (Sussex)
	ERP
	3
	-5.324
	0.994
	-0.025
	0.032
	0.238
	0.312
	.6758

	Rettendon (Essex)
	ERP
	5
	-2.833
	3.553
	-0.074
	0.166
	0.057
	0.180
	.7002

	Rettendon (Essex)
	MRP
	7
	-1.628
	2.518
	-0.118
	0.103
	0.189
	1.167
	.3294

	Rettendon (Essex)
	LRP
	7
	-1.691
	2.504
	-0.111
	0.102
	0.173
	1.046
	.3534

	Rossington
	ERP
	3
	-3.197
	0.338
	-0.372
	0.085
	0.906
	9.614
	.1986

	Rossington
	MRP
	4
	-4.747
	0.437
	0.048
	0.014
	0.638
	3.527
	.2011

	Rowlands Castle
	ERP
	2
	-4.507
	NA
	0.092
	NA
	1.000
	NA
	NA

	Rowlands Castle
	MRP
	5
	-4.472
	0.763
	0.064
	0.022
	0.638
	5.297
	.1048

	Rowlands Castle
	LRP
	5
	-5.266
	0.582
	0.079
	0.020
	0.698
	6.948
	.0779

	Savernake (Wiltshire)
	ERP
	48
	-0.458
	0.436
	-0.052
	0.010
	0.396
	30.189
	.0000

	Savernake (Wiltshire)
	MRP
	60
	-0.843
	0.437
	-0.044
	0.009
	0.329
	28.498
	.0000

	Savernake (Wiltshire)
	LRP
	66
	-2.020
	0.569
	-0.046
	0.010
	0.213
	17.291
	.0001

	Severn Valley
	ERP
	91
	-0.410
	0.338
	-0.052
	0.009
	0.329
	43.691
	.0000

	Severn Valley
	MRP
	116
	0.179
	0.295
	-0.055
	0.006
	0.388
	72.185
	.0000

	Severn Valley
	LRP
	120
	0.750
	0.321
	-0.063
	0.007
	0.435
	90.769
	.0000

	Shepton Mallet (Somerset)
	ERP
	2
	1.909
	NA
	-0.257
	NA
	1.000
	NA
	NA

	Shepton Mallet (Somerset)
	MRP
	4
	-5.070
	2.111
	0.034
	0.082
	0.062
	0.132
	.7513

	Silchester (Hampshire)
	ERP
	7
	0.284
	0.547
	-0.227
	0.035
	0.768
	16.594
	.0096

	South-western
	ERP
	40
	-0.564
	0.996
	-0.060
	0.010
	0.416
	27.119
	.0000

	South-western
	MRP
	62
	-1.786
	0.622
	-0.037
	0.007
	0.306
	26.417
	.0000

	South-western
	LRP
	59
	-2.258
	0.748
	-0.042
	0.009
	0.304
	24.869
	.0000

	Southern British
	ERP
	28
	-1.933
	1.568
	-0.017
	0.020
	0.020
	0.523
	.4760

	Swanpool (Lincolnshire)
	LRP
	24
	-4.127
	0.450
	-0.025
	0.009
	0.227
	6.453
	.0186

	Upchurch (Kent)
	ERP
	15
	-1.418
	0.412
	-0.038
	0.006
	0.647
	23.810
	.0003

	Upchurch (Kent)
	MRP
	14
	-1.751
	0.526
	-0.022
	0.010
	0.346
	6.342
	.0270

	Upper Nene Valley
	MRP
	6
	-3.346
	2.041
	-0.009
	0.027
	0.008
	0.031
	.8683

	Upper Nene Valley
	LRP
	6
	-3.222
	2.032
	-0.009
	0.027
	0.009
	0.036
	.8583

	Verulamium (Hertfordshire)
	ERP
	90
	-2.048
	0.377
	-0.024
	0.005
	0.210
	23.426
	.0000

	Verulamium (Hertfordshire)
	MRP
	112
	-2.426
	0.312
	-0.024
	0.004
	0.266
	39.932
	.0000

	Wattisfield reduced ware
	MRP
	5
	-2.394
	2.226
	-0.062
	0.023
	0.358
	1.676
	.2861

	Wattisfield reduced ware
	LRP
	5
	-2.473
	2.240
	-0.061
	0.023
	0.349
	1.609
	.2941

	Wiggonholt (Sussex)
	ERP
	4
	3.326
	0.863
	-0.205
	0.012
	0.961
	49.513
	.0196

	Wiggonholt (Sussex)
	MRP
	5
	1.995
	1.322
	-0.177
	0.020
	0.835
	15.168
	.0300

	Wiggonholt (Sussex)
	LRP
	5
	1.943
	1.325
	-0.175
	0.021
	0.833
	14.945
	.0306

	Wilderspool (Cheshire)
	ERP
	3
	-0.398
	0.130
	0.008
	0.005
	0.517
	1.072
	.4890

	Wilderspool (Cheshire)
	MRP
	4
	-0.458
	0.217
	-0.017
	0.002
	0.920
	23.033
	.0408

	Wiltshire
	ERP
	31
	-1.797
	0.585
	-0.050
	0.010
	0.306
	12.781
	.0013

	Wiltshire
	MRP
	37
	-2.194
	0.561
	-0.053
	0.009
	0.325
	16.843
	.0002

	Wroxeter
	ERP
	5
	-2.201
	0.579
	-0.019
	0.009
	0.615
	4.783
	.1166

	Wroxeter
	MRP
	6
	-3.343
	0.272
	-0.016
	0.006
	0.647
	7.335
	.0536

	York
	ERP
	1
	-1.984
	NA
	NA
	NA
	0.000
	NA
	NA

	York
	MRP
	4
	-6.337
	2.529
	0.049
	0.049
	0.192
	0.474
	.5624





Figure captions

Figure S1. Scatterplots illustrating relationships between consumption (log-proportions) and distance (up to 200 km) for specific industries over time. 
Figure S2. Distribution of standardized residuals from pooled regression analysis, grouped by settlement size. The solid line represents the mean residual for each group, and the dashed lines represent the ninety-five per cent confidence interval of the mean. The confidence interval includes zero for all settlement size classes, indicating that there is no statistical evidence for a bias in distance-decay relationships related to settlement size.
Figure S3. Distribution of standardized residuals from pooled regression analysis, grouped by region. The solid line represents the mean residual for each group, and the dashed lines represent the ninety-five per cent confidence interval of the mean. The confidence interval includes zero for most regions, except for the south-west and Wales. This may reflect military activity in these regions. Fortunately, the sample sizes from these regions are also small, so they are unlikely to introduce substantial bias to distance-decay relationships.
Figure S4. Distribution of Early Roman pottery made at Verulamium. Note the correspondence between the distribution and the road system, indicating transport primarily by road, and with no obvious barriers to distribution.
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