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ONLINE APPENDICES I 

Appendix I.1: Related Literature on Payoff-Equivalent Public Good Games

To our best knowledge, Andreoni (1995) is the first study to look at behavior in positively-framed and negatively-framed voluntary contributions public good games. His between-subjects experiment co-varied game form (provision or appropriation) with wording of subject instructions that made highly salient the positive externality from contributions in a provision game or the negative externality from extractions in an appropriation game. Subsequent literature explored both empirical effects of variations in evocative wording of subject instructions and effects of changing game form (from provision to appropriation) with neutral wording in the subject instructions. We here summarize findings on effects of game form and various framings on contributions, extractions, and beliefs. 
Subjects’ Characteristics 
Some studies look at interaction between subjects’ attributes (social-value orientation, gender, attitudes towards gains and losses) and game framing (positive or negative). The main findings include: (1) play of individualistic subjects but not social-value oriented subjects is sensitive to the framing of the game (Park 2000); (2) more cooperative behavior by women than men in the negatively-framed game but not in the positively-framed game; (3) for both genders, positive framing elicits higher cooperation than negative framing (Fujimoto and Park 2010); and (4) lower cooperation in taking than in giving scenarios with gain framing but the effect appears to be driven entirely by behavior of male subjects (Cox 2015). With loss framing, no clear effect is detected (Cox 2015).[footnoteRef:1] Cox and Stoddard (2015) explore effects of interaction of partners vs. strangers pairing with individual vs. aggregate feedback in payoff equivalent provision (give) and appropriation (take) games and find that the take frame together with individual feedback induces bimodal behavior by increasing both complete free riding and full cooperation.  [1:  In the Loss-Giving setting, subjects contribute to prevent loss whereas in the Loss-Taking setting, subjects take to generate a loss (Cox 2015).] 

Beliefs and Emotions

While give vs. take frames are found to affect contributions, this effect appears to be less strong than the effect on beliefs (Dufwenberg, Gächter, and Hennig-Schmidt 2011; Fosgaard, Hansen, and Wengström 2014). A close look at triggered emotions in positively-framed and negatively-framed public good games is offered by Cubitt, Drouvelis, and Gächter (2011) who find no significant effects of punishments or reported emotions.[footnoteRef:2] This is one of few studies that find no game form effect on contributions.   [2:  Cubitt et al. (2011) use two measures of emotional response including self-reports and punishment.] 

Environment
Studies in this category focus on effects of features of the environment (such as status quo, communication, power asymmetry) on play across take or give public good games. Messer, et al. (2007) report an experimental design that interacts status quo (giving or not giving) in a public good game with presence or absence of cheap talk or voting. They find that changing the status quo from “not giving” to “giving” increases average contributions in the last 10 rounds from 18% (no cheap talk, no voting) up to an astonishing 94% (with cheap talk and voting). Cox, et al. (2013) report an experiment involving three pairs of payoff-equivalent provision and appropriation games. Some game pairs are symmetric while others involve asymmetric power relationships. They find that play of symmetric provision and appropriation, simultaneous-move games produces comparable efficiency whereas power asymmetry leads to significantly lower efficiency in sequential appropriation games than in sequential provision games. Cox, et al. (2013) conclude that reciprocity, but not unconditional other-regarding preferences, can explain their data. A framing effect on behavior is observed in public good games with provision points (Bougherara, Denant-Boemont, and Masclet 2011, Sonnemans, Schram and Offerman, 1998). In their experiment, van Soest, Stoop and Vyrastekova (2016) compare outcomes in a provision (public good) game with outcomes in a claim game in which subjects can appropriate the contributions of others before the public good is produced. They report non-positive production of the public good in the claim game even in early rounds of the experiment. 
	The experiment in the literature that is most closely related to ours is reported by Khadjavi and Lange (2015). They report on play in a mixed game with a between-subjects design that includes opportunities for both provision (give) and appropriation (take) with the initial (exogenously-specified) endowments between those in give or take scenarios. They find that (1) the appropriation game induces less cooperative behavior than the provision game (replicating the central result in Andreoni 1995) and that (2) their mixed frame data does not differ significantly from data for their provision game. 
One notable difference of our experimental approach from previous literature is inclusion of a within-subjects design for eliciting provision and appropriation responses in three different mixed games that span the design space between the pure provision and appropriation games. A more fundamental departure from previous experimental literature is our inclusion of endogenous contractions of feasible sets, in a within-subjects design, that is motivated by the Consistency property of rational choice theory (Arrow 1959, Sen 1971, 1986). While the Khadjavi and Lange (2015) design allows for exogenous contraction in the mixed game our design introduces endogenous contractions known to include previous allocations in (provision or appropriation) games in addition to elicited beliefs about others’ allocations. Such endogenous contractions are essential to ascertaining whether behavior in provision, appropriation, and mixed games exhibits monotonicity in moral reference points.

Appendix I.2: Play in Provision, Appropriation, and Mixed Games






 A general description of provision, appropriation, and mixed games with public goods is as follows. Each player,  chooses an allocation  of a scarce resource, W tokens, between two accounts:  to player i’s private account and  to the public account shared with n-1 other players. When the total of others’ allocations to the public account is , player i’s money payoff is the sum of returns from the private and public accounts:

(I.2.1)		 


where  and   denotes the mpcr from the public account. 






The initial per capita endowed tokens,  in the public account uniquely identifies the ge-game with total endowment  to the public account and endowment  to the private account of each of the n players. Special cases include: provision game, where a public good can be provided; appropriation game, where a public good can be appropriated; and mixed games, where both provision and appropriation of a public good are feasible. 


Let  be a vector of allocations to the public account by players other than player i. Let  denote the n-vector of payoffs to all players including i. In the [image: ]-game the feasible set of player i (in the money payoff space) is 

(I.2.2) 	




If we let  denote  a best-response allocation by agent i when others’ n-vector of allocations to the public account is  then the n-vector of payoffs,  belongs to the choice set, , that is

(I.2.3)  	  

Implications of Conventional Rational Theory for Choice in Provision, Appropriation and Mixed Games







The first observation (see Online Appendix II.2) is that Consistency implies that player i’s allocation set,  remains the same if, instead of , player i is asked to choose from some (non-binding) contracted subset,  that contains all allocations in vector  as well as i’s smallest best response allocation,  for which  For any given c such that (*)  the feasible payoff set is

(I.2.4)   	




where the inclusion follows from the minimum compulsory allocation (*) and payoff function (I.2.1). By the Consistency property and by construction, , so   Hence i’s allocations in the (nonbinding) contraction game remains the same,  for all c that satisfy (*).



The second observation is that the Consistency property requires that player i’s (best response) chosen allocations are not affected by initial (the endowed per capita) allocation,  in the public account (see Online Appendix II.2) because the feasible set in the payoff space,  remains the same for all .
Implications of these two observations are summarized in Proposition 3 in the text.
Moral Reference Point in ge-games 

Without any loss of generality, we focus on moral reference point from the perspective of player 1.[footnoteRef:3] The initial endowed payoff of each player  in a ge-game is  [3:  Separate detailed explanations of moral reference points in provision, appropriation, and mixed games with contraction () or without contraction () can be found in Online Appendix II.5.A.] 


(I.2.5) 	 





For any given vector,  of others’ allocation in the ge-game with feasible allocations from , player 1’s feasible set (in payoff space) is  The minimal expectation payoff of a player , as a consequence of player 1’s allocation, is when player 1 allocates the minimum required amount and leaves player  with payoff 

(I.2.6)		



where  is the total of voluntary allocations,  in the public account by other players. So, from the perspective of player 1, the moral reference point with respect to player  is the ordered pair, 

(I.2.7)		
The minimal expectation payoff of player 1, as a consequence of player 1’s allocation, is when player 1 allocates all his W tokens in the public account. Hence, player 1’s minimal expectation payoff is 

(I.2.8)		
So, from the perspective of player 1, the moral reference point with respect to oneself is the ordered pair, 

(I.2.9)		


Replace “1” with “i” in statements (I.2.7-9) to get the moral reference point,  from the perspective of player i at feasible set :

(I.2.10) 	
Implications of Moral Monotonicity for Best Response Allocations across ge-games



Contraction Effect. Let the ge-game and vector of others’ allocations,  be given. For any two constraints on minimum permissible allocations, let  denote the respective moral reference points as in statement (I.2.10): 

 

where . Verify that player k’s total change (defined in the Notation paragraph in the text) between the two reference points is 






For games with contraction,  compared to no contraction,  the set  Moral monotonicity requires that player i leaves some other player with larger extreme payoffs in the -game with contraction (than in the game without contraction), which player i can do by increasing his (best response extreme) allocations to the public account 







Initial Endowment Effect. By statement (I.2.10) for any two -games with initial (per capita) allocations  in the public account,  for all  It follows from  that  and by M-Monotonicity, player i aims for larger (extreme) final payoff in the game with the larger per capita endowed tokens,  in the public account. These findings are summarized in Proposition 4 in the text (see Online Appendix II.5.B for formal proofs).



Appendix I.3: Robustness Tests
Table I.3.1 Individual Allocations to Public Account in Our Experiment (Linear Reg.)
	Dep. Variable:

 Allocation
	Exclude data from contractions where the rule at least “-$1” does not apply 

	
	 Exclude data from
	           1st  C in CBC           C=B or 1st C in CBC 

	Guessed Other’s allocation
	
	0.61***
	0.60***
	0.64***
	0.63***

	
	
	(0.049)
	(0.047)
	(0.047)
	(0.044)

	
	
	
	
	
	

	
  [-]
	
	-0.05*
	-0.07**
	-0.05*
	-0.07**

	
	
	(0.031)
	(0.032)
	(0.029)
	(0.030)

	
    [+]
	
	0.43***
	0.44***
	0.40***
	0.42***

	
	
	(0.064)
	(0.061)
	(0.065)
	(0.059)

	Demographics
	

	
no
	yes
	
no
	yes

	Observations
	
	657
	657
	571
	571

	R-Squared
	
	0.421
	0.446
	0.442
	0.472


Notes: Total number of subjects is 232. Robust standard errors (clustered at subject level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Table I.3.1a. Individual Allocations to Public Account in Our Experiment (Tobit Reg.)
	Dep. Variable:

 Allocation
	All Data
	 

	
	
	exclude 1st  C in CBC
	  exclude C=B and 1stC in CBC

	Guessed Other’s allocation
	1.10***
	1.08***
	1.06***
	1.04***
	1.07***
	1.06***

	
	(0.091)
	(0.087)
	(0.093)
	(0.088)
	(0.089)
	(0.083)

	
  [-]
	-0.18***
	-0.20***
	-0.16***
	-0.19***
	-0.14**
	-0.16***

	
	(0.059)
	(0.060)
	(0.059)
	(0.060)
	(0.054)
	(0.055)

	
	0.23**
	0.24**
	0.46***
	0.48***
	0.43***
	0.45***

	
 [+]
	(0.109)
	(0.103)
	(0.128)
	(0.120)
	(0.126)
	(0.115)

	Demographics
	
no
	yes
	
no
	yes
	
no
	yes

	Observations
	696
	696
	657
	657
	571
	571

	(left-, un-, right-) censored obs
	(242, 352, 102)
	
(217, 340, 100)
	
(177, 305, 89)


Notes: Total number of subjects is 232. Predicted signs for moral monotonicity in square brackets. Demographics include dummies for Female, Black, Self Image (give to a stranger, give to charity, help others with homework, share secrets) and Other’s Image (disabled car assistance, selfish, dislike helping others). Robust standard errors (clustered at subject level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Further Data Analysis We looked at game form effect utilizing non-parametric tests for statistical inferences and conducted a within-subject analysis focusing only on allocations of subjects whose beliefs did not change.  
Allocations in Provision, Appropriation, and Mixed Games (Between-Subjects Analysis)
Figure I.3.1 shows histograms across games of subjects’ allocations in the full games, that is, allocations are from {0,…,10}. Extensive margin effect is visible: free-riding behavior (allocating nothing in the public account) is lowest in the provision game (21%), highest in the appropriation game (48%), with the mixed games in between (39%).[footnoteRef:4] Average token allocations in the public account exhibit a decreasing pattern: 4.01 (provision), 3.64 (mixed) and 3.09 (appropriation).[footnoteRef:5] For statistical inferences we use the Kolmogorov-Smirnov test for distributions  [4:  If we allow for one token error, classifying 0 or 1 token allocations as free-riding, we get similar figures: 30.13% in provision game, 42.59% in mixed games and 52.2% in appropriation game. The odds of free-riding in provision game is less than half (0.42, p-value=0.01) in mixed games but in appropriation game it is 1.44 (p-value=0.18).]  [5:  The 95% Confidence Intervals are: [3.46, 4.57] in provision game, [3.13, 4.15] in mixed game and [2.55, 3.63] in appropriation game. ] 


[image: ] 
Figure I.3.1. Histograms of subject’s g allocation from the full set, {0,…,10}
of g allocations in the public account and the Pearson chi-square test for free-riding behavior, and find that public good allocations of subjects in our experiment are characterized by:
(i) Larger public account allocations (p-value=0.022) and less free-riding (p-value=0.003) in provision than appropriation game data; 
(ii) Similar public account allocations (p-value=0.497) and less free-riding (p-value=0.247) in provision than mixed game data; 
(iii)  Similar public account allocations (p-values=0.384) but less free-riding (p-value=0.075) in mixed and appropriation game data. 
Based on these findings we conclude: 
Result 1. The provision game elicits higher average allocation to the public account than the appropriation game and the appropriation game elicits more free riding (public account allocations of 0 or 1).
Within-Subjects Data Analysis Controlling for Beliefs 





-Effect. In mixed game treatments, excluding selfish subjects (who allocated 0 in all three tasks) we have 35 observations with unchanged beliefs.[footnoteRef:6] For each subject, we constructed , when the subject’s guessed allocation of others in games  and  was the same, where superscripts i<j denote the initial per capita endowed tokens, from {2, 5, 8}. The null hypothesis from conventional rational choice theory is the mean of the distribution of Δg is not statistically different from 0 (Proposition 3, part b and Corollary 2, part b) whereas the alternative hypothesis that follows from moral monotonicity is mean (Δg) > 0 (Proposition 4, part b and Corollary 3, part b). The mean of Δg is 1.23 (95% C.I.=[-0.08, 2.53]) and the (conventional theory) null hypothesis is rejected by the t-test (t-statistic=1.91; p-value=0.064) in favor of moral monotonicity.[footnoteRef:7] Our next result is: [6:  If we include 0 allocations of selfish subjects with unchanged beliefs, the number of observations increases from 35 to 55.]  [7:  If we include 0 from selfish subjects, the mean of Δg decreases to 0.78 (the 95% C.I. is [-0.05, 1.61]); t-statistic=1.89; p-value=0.064).] 

Result 2. Allocation to the public account in mixed games decreases as the initial endowment of the public account increases, controlling for belief about other’s allocation.







Contraction Effect. For any given allocation by the other player, conventional theory requires that (best-response) g allocations in the provision game or appropriation game be invariant to nonbinding contractions whereas moral monotonicity predicts that (best-response) allocations increase in  for nonbinding contractions. We constructed a new variable,  that takes its values according to the difference between the subject’s observed g allocation in the public account from the contracted set, C={c,…,10} and the subject’s allocation chosen from the full set, B={0,…,10}. The null hypothesis from conventional theory is that the mean of  is not statistically different from 0, provided that the guess of other’s contribution did not change. We have 45 observations for  (24 and 21, resp., in the appropriation and provision treatments) observations with unchanged guesses and proper contractions (c>0). The mean of  is significantly larger than 0 in the provision game (0.95, p-value=0.042) but not in the appropriation game (0.54, p-value=0.313). We also looked at the subset of these 45 observations with non-binding contractions; this leaves us with 28 observations for  (17 and 11 in the provision and appropriation game) with unchanged guesses and proper contractions (i.e., c > 0). The mean of  is 0.88 and statistically significantly larger than 0 in the provision game (p-value=0.056) but not in the appropriation game (mean=-0.36, p-value=0.476). 





As a further check that the preceding tests are picking up (full vs. contracted game) treatment effects rather than decision-order effects, we also looked at , the within-subject difference in allocations in tasks in which subjects faced the full set, B={0,,10} more than once (e.g. in the BCB sessions) and their guesses did not change. There are 73 observations for with unchanged reported guesses. Both conventional rational choice theory and moral monotonicity require the mean of the distribution of  to be 0. Data fail to reject this null hypothesis (mean of  is 0.05, t-statistic=0.35, p-value=0.73). Our third result is: 
Result 3. Nonbinding lower bounds on public account allocations induce higher average allocations to the public account in the provision game, controlling for beliefs about other’s allocation.
I.4: Maximization Approach to Testing Conventional and Moral Monotonicity Theory
As an example for tractable applications, we apply moral monotonicity theory using a parametric choice function and comparative statics analysis for interior solutions.



Special Case Morally Monotonic Best Response Allocations

Without loss of generality, consider allocations by player 1. Assume a parametric form of the choice function,  discussed in the text:[footnoteRef:8] [8:  Superscript “1” on the reference point variables is dropped to simplify notation. ] 





(I.4.1)	 	 and for all , . 
Optimal (interior) solution is determined by: 

(I.4.2)		 				


Let G denote the total allocations to the public account. Verify that for all k, substitute it in (I.4.2) and solve for  to get

(I.4.3)		 		

Details of the derivation of (I.4.3) are reported in Online Appendix II.7. It is straightforward (see that appendix for details) to show that, consistent with the general-case Proposition 4,  increases in c and decreases in ge. 


Structural Analysis of Experimental Data.  Estimating equations applied to data come from the best response function in statement (I.4.3). We estimate parameters for  and  using data from Andreoni (1995), Khadjavi and Lange (2015), and the experiment reported herein. 
In our experiment, we have a two-player game and the belief about other’s allocation is elicited, so the estimating equation can be written as 

(I.4.4)		



where is the individual’s allocation at round t,  is the elicited belief at round t, and , where the moral reference point is as reported in Table 1 in the main text. 


In the Andreoni experiment and the Khadjavi and Lange experiment, at the end of each round subjects are informed of the total allocation,  in the public account and of course they know their own allocation, so they know total allocation by others in the public account, G-1t. Therefore, for empirical estimation we assume that, at the beginning of each period t, the elicited belief is that every other player’s allocation is the known average from the preceding period, . Hence, statement (I.4.3) becomes

(I.4.5) 	
Parameter estimation with data from the Andreoni experiment and the Khadjavi and Lange experiment thus uses the estimating equation 

(I.4.6)		





where  is individual’s allocation observed in round t,  reported after round t-1, and the moral reference point specification is as in the main text. An estimate of parameter  (weakly) smaller than 1 would be inconsistent with moral monotonicity. Table I.4.1 reports nonlinear least square estimates of  and  for all data, as well as separately for 
      Table I.4.1. Non-linear Least Squares Estimates for Parametric Choice Function
	
	Andreoni (1995)a 
	
	K&L (2015)a 
	New Experiment 

	Parameters
	All Data
	
	All Data
	No Contraction
	All Data
	No Contraction

	
	
	
	
	
	
	

	

	1.11***
	
	1.17***
	1.20***
	1.02***
	1.03***

	
	(0.012)
	
	(0.024)
	(0.026)
	(0.016)
	(0.019)

	
	[1.09, 1.14]
	
	[1.13, 1.22]
	[1.15, 1.26]
	[0.99, 1.05]
	[0.99, 1.07]

	
	
	
	
	
	
	

	

	1.70***
	
	3.38***
	3.04***
	2.69***
	2.74***

	
	(0.233) 
	
	(0.483)
	0.453))
	(0.340)
	(0.380)

	
	[1.24, 2.17] 
	
	[2.43, 4.33]
	[2.15, 3.94]
	[2.02, 3.36]
	[2.00, 3.49]

	
	
	
	
	
	
	

	Observations
	720
	
	1440
	1080
	696
	554

	R-squared
	0.41
	
	0.69
	0.53
	0.75
	0.67

	Clusters
	80
	
	160
	120
	232
	232


Notes: aRound 1 data are not included for Andreoni and K&L data because there is no information on others’ contributions. Required value for consistency with moral monotonicity in square brackets. Robust standard errors in parentheses. 95% Confidence Intervals in square brackets.




games without contraction because in Khadjavi and Lange’s experiment contraction is exogenous (and therefore can be binding for some subjects). The estimated parameter for  is significantly greater than 0, revealing increasing . The estimated parameter for  is significantly greater than 1 with data from each of the experiments, which is consistent with moral monotonicity.[footnoteRef:9] [9:  Using these estimates, the Nash (symmetric) equilibrium allocations (as a percentage of W) in the provision game are: 29% (Andreoni 1995), 33% (K&L 2015) and 32% (our experiment), and lower in the appropriation game: 16% (Andreoni 1995), 24% (K&L 2015) and 31% (our experiment). These figures suggest empirical support for Proposition 5. ] 


ONLINE APPENDICES II


Notation.  denotes the set of players, superscript * will be used for choices, subscript –i has the conventional meaning (i.e., all players other than i).
Appendix II.1 Proofs of Propositions 1 and 2








Proof of Proposition 1 To simplify writing we drop the superscript z (as agent z is given and fixed). Take any two feasible problems:  and  where S and T are nonempty finite sets in  and  are the reference points, respectively. Suppose ,  for some agent k and 











Consider some other problem, where the feasible set is T and the reference point, x is as favorable as s to every agent i, that is  with reference point  such that  By M-Consistency,  so . It follows that: (i)  and (ii) . Next, for problems  and , note that for all   








Case 1.  . By  and M-Monotonicity, , hence  which together with (ii) imply . If  is some point where is reached then  .








Case 2. . By  and M-Monotonicity, , hence , which together with (i) completes the proof as for  where  is reached, one has , that is .











Proof of Corollary 1. Without any loss of generality, let agent 2 be the one favored by the reference point t compared to reference point s, and agent 1 be the dis-favored one. Let  and  be agent 1’s choice sets in problems  and . It suffices to show that as by Pareto efficiency,  Consider feasible problem,  for some  such that and  




Compared to s, reference point x favors agent 2 but neither favors nor dis-favors agent 1, which together with  satisfy Scenario A for feasible problems  and  By Proposition 1,   (*) .





On the other hand, compared to t, reference point x favors agent 1 but neither favors nor disfavors agent 2. By M-Monotonicity, applied to feasible problems  and  , and by Pareto efficiency,    which together with (*)  imply 



Proof of Proposition 2. Let agent 1’s choice set,  for feasible (finite nonempty) set   in the payoff space and moral reference point , be determined as follows:

 			  (II.1.1)









where  for some strictly increasing  and weights  with  for some strictly increasing function  such that   Note that for any given reference points, t and s from  and all 

      (II.1.2)






M-Consistency is clearly satisfied; if  for all  then by (II.1.2) and[footnoteRef:10]  the weights satisfy, hence for all  	 [10:  Note that: as ] 





For M-Monotonicity, write  and note that for any  and any choices  and 

 				 (II.1.3)
Multiply (1) and (2)  by the respective denominators and add the  two expressions  to get 

			  	(II.1.4) 








M-Monotonicity Let We show that if  and  then there exists some nonempty set of players,  such that  for all   if  


It follows from ,  and (II.1.2) that statement (II.1.4)  is 

 		    (II.1.5)






For each k, the first term,  is positive, the second term is also positive as for all individuals from K, . Hence,  for some , and by monotonicity of u(),  for such k.



	Next, we show that if  then . Divide by  in (II.1.5) to get



Replace the second term with  and rearrange terms 

 		(II.1.6)



where the last inequality follows from (2) in (II.1.3). The first and the second terms on the left hand side of (II.1.6) are positive, hence , and by monotonicity of ,  

Appendix II.2: Payoff Equivalence of ge-Games and Conventional Theory






Recall that in the -game the initial allocation in the public account is  and  is in the private account of each player  We first show that each-game is payoff equivalent to the provision game, denoted as -game. Then we use this result and consistency properties to prove statements in Proposition 3. 

Provision Game. Let  be a vector of allocations to the public account. Player i’s payoff in the provision game is

  					(II.2.1)

We call contribution  in the provision game,  player i’s allocation to the public account.





	ge-Game. Transfers,  can be made between the two accounts. A negative transfer means moving resource from the public account to a player’s private account, whereas a positive transfer means moving resource from own private account to the public account. The consequence of a transfer  in -game is a “contribution” of  in the public account, which we call  allocation to the public account.  The one to one mapping 


  s.t.   	  	(II.2.2)	


between transfers, x and g allocations will be used to establish payoff equivalence across games. Indeed, for any vector of transfers,  in a -game, player i’s payoff is




Use (II.2.2) mapping of x transfer vector to g allocation vector,  for all  and verify that i’s payoff is exactly the same as the payoff in (II.2.1) in the provision game with contribution vector g,

       	 (II.2.3)
The payoffs in any ge-game can be written in terms of g allocations to the public account, so the e-superscripts will be dropped. 










Proof of Proposition 3 Let  and  be player i’s feasible set in the payoff space when the vector of others’ allocations is . If  denotes the set of player i’s best response allocations to the public account then the choice set in the payoff space is. When the feasible set in the payoff space is  and the choice set is  Let  denote i’s smallest allocation in the best response set, . 








Part (a). Let   be a nonbinding contraction, that is  By  and Consistency,Hence, , and since every is also from C (as ) ,  .  






	Part (b). By payoff equivalence, . Thus, for any -game, in the payoff space the (- conditional) feasible set is the same as in the provision game,  and, by Consistency Property, . Hence, the best response allocation set is .

Appendix II.3. Belief-based kindness g-Allocations
Belief-based model of kindness 



Player 1’s utility (Dufwenberg and Kirchsteiger 2004) at allocation,  and first- and second-order beliefs,  and , is







where the first term is her material payoff,  ,  is her reciprocity sensitivity parameter, (un) kindness function of player 1 towards player 2 is  and player 1’s belief about player 2’s (un)kindness is  where  is player i’s equitable payoff.
Equitable payoff as the reference point 

Observation 1. In a linear public good game, the equitable payoff corresponds to allocating  to the public account and is the same for all beliefs. 

 Proof. Let player 1’s first-order belief be some. Player 2’s highest payoff is when player 1 allocates the maximum feasible amount, W


whereas the lowest payoff is when player 1 allocates the minimum permissible allocation, c

.
The equitable payoff, the average of the highest and lowest payoffs, is





which is the same as player 2’s payoff when player 1 contributes  Similarly, for player 1, . So, while the level of equitable payoff depends on the first and second order beliefs, it always corresponds to allocating the average of the highest and lowest permissible allocations,  in a linear public good game.           	
Observation 2. In a linear public good game, second-order beliefs are irrelevant for allocations to the public account.
Proof. Verify that 



and  . Thus, player 1’s utility is 



It should be noted that the second order belief,  does not appear in player 1’s utility.
Observation 3 Contraction has a negative effect on allocations to the public account.   




Proof. Differentiating U() w.r.t. ,  which is positive if and only if   Note that the right-hand-side, the smallest level of first-order belief at which player 1 switches from free-riding to full contribution, increases in c. 	

Specification with a non-linear (concave increasing) u() for material payoffs
Player 1’s utility is 


Observation 4. With a nonlinear function of material payoffs:  
a. 
If  then player 1 fully free-rides (allocates c)
b. 

If then optimal (interior) allocation increases in other’s allocation, and decreases in minimum permissible contribution, c





Proof. Differentiating  w.r.t. ,   which is negative if  , hence part a.  For part b, note that at an interior solution, , and by the implicit function theorem


and



Hence, player 1’s allocation increases in  and decreases in c.  		



Appendix II.4. Reference Dependence with Loss Aversion
II.4.1 Conventional Loss Aversion Model of Tversky and Kahneman (1991). 




For any given other’s allocation, , player 1’s feasible (payoff) set is . We consider two alternative reference points for set  (1) the “other’s choice conditional” reference point, i.e., the vector of payoffs in before player 1 makes a choice; or (2) the “initial endowment” reference point, i.e., the vector of initial payoffs at the beginning of the game before any player makes a choice.

Reference Point Alternative 1. The reference point is the initial vector of payoffs in set  before player 1 makes a choice.


Game Form Effect. In the appropriation game, the payoff vector before player 1 makes her choice is  Compared to ra, any point from  is a gain for player 1 as her payoff increases (when she appropriates anything) but a loss for player 2 as other’s payoff decreases (compared to player 1 appropriating nothing). Using the TK additive specification (page 1051), when reference point is ra 






for some concave increasing u() and v() and some loss aversion parameter   The optimal interior allocation,  for the appropriation game satisfies the f.o.c.,

 				(II.4.1)	



	In the provision game, the payoff vector before player 1 makes her choice is . Compared to rp, any point from  is a loss for player 1 (by free-riding condition,) but a gain for player 2, so




for some loss aversion parameter,  Differentiating w.r.t. , we get 

 			(II.4.2)	

Evaluate this expression at the optimal allocation,  in the appropriation game and use (II.4.1) 




where the inequality follows from loss aversion, , free-riding condition and increasing u(). Hence, [image: ] is too large to be optimal in provision game, so [image: ], which is at odds with provision games eliciting larger allocations to the public account than payoff-equivalent appropriation games.


Contraction Effect. The low bound on allocations has no effect on the reference point, ra in the appropriation game, so there is no contraction effect. In the provision game with contraction, . If player 1 allocates more than c, compared to rpc her payoff decreases (a loss) and player 2’s payoff  increases (a gain). So, the TK utility at all points from  is 


Recall that contraction is non-binding, so the optimal allocation in the full provision game is also available in the contraction game, and since the f.o.c. is the same as in (II.4.2), the optimal allocation in the full game remains optimal in the contraction game. 


Reference Point Alternative 2. The reference point is the payoff vector before any player makes a choice:  in the provision game and  in the appropriation game. 


Contraction Effect. In either game, for any  the reference point remains the same for all , so the implication is that non-binding contractions have no effect on best response allocations. 




Game Form Effect. The effect is ambiguous. It suffices to show two cases with opposite predictions. Consider the scenario when, at some other’s allocation , player 1’s best response (interior) allocation  in the provision game results in payoff vector, P in the gain-gain domain, that is and  by f.o.c.  If this payoff vector, P  in the appropriation game is from:
(i) 
the loss-gain domain then 
(ii) 
the gain-loss domain then 
II.4.2 Reference Dependent Model of  Kőszegi and Rabin (2006) 



Kőszegi and Rabin (2006, p.1138) define reference dependent utility, u() as the sum of the consumption utility, f() and gain-loss utility, , that is

  				  (II.4.3)	


where f() and h() are additively separable across dimensions. The decision problem is 






for some increasing concave  ,   and , a universal gain-loss function:  and 




 for some loss aversion parameter,  for dimension   

Reference Point Alternative 1. Player 1’s reference points when the other player allocates  are as in II.4.1 and the reference dependent utilities are:





Game Form Effect. For any given  at the (interior) optimal allocation,  with consequence material payoffs,  in the appropriation game satisfies the f.o.c.,

				(II.4.6)	


Evaluating the derivative of (II.4.5) w.r.t. , in the provision game, at the optimal allocation in the appropriation game () , and substituting from (II.4.6) yield 





where the inequality follows from the free riding condition,  and loss aversion (the first term in the square bracket is larger than 1 whereas the second is smaller than 1). Hence,  is too large to be optimal in the provision game, that is, 

Contraction Effect. The low bound on allocations has no effect on the reference point in the appropriation game, so the prediction is no contraction effect. In the provision game, the low bound on allocations affects the reference point, as shown in the TK model, but any allocation larger than c still results in a loss in own payoff and gain in other’s payoff. So, the gain-loss  dimensions are preserved, and for linear ,  the f.o.c. in the contraction game is the same as in the full game, that is,  the optimal allocation in the full game is also optimal in the contraction game because the non-binding contraction set contains it.

          Reference Point Alternative 2. The reference point is  in the appropriation game and rp=(W,W) in the provision game with or without contractions. 
         Game Form Effect. The effect of game form is ambiguous, and the proof is similar to the proof for the TK model.
        Contraction Effect. In the provision game, for any nonbinding contraction, C of the set of feasible allocations to the public account: 


Similarly for the appropriation game. 



Appendix II.5. Morally Monotonic g-Allocations
II.5.A Moral Reference Points across Games
We provide details for moral reference points of player 1 in two-player provision, appropriation, and general[image: ]-games. 












Provision Game. Initially there is 0 in the public account,  and in each private account, so initial endowed payoffs for the two players are . When player 2 allocates  to the public account, player 1’s feasible set in the payoff space is [footnoteRef:11] Minimal expectations payoffs in , from the perspective of player 1, are as follows. The maximum payoff player 1 can get is when he allocates 0 to the public account, in which case player 2 ends up with ; this is player 2’s minimal expectation payoff in  from the perspective of player 1. On the other hand, player 2’s maximum payoff occurs when player 1 allocates  to the public account, in which case player 1 ends up with  this is player 1’s minimal expectation payoff in  from the perspective of player 1. So, from the perspective of player 1, the moral reference point for feasible set  in the provision game is  [11:  See Figure 1 in the main text for an illustration of S(5), initial endowed payoffs, minimal expectation payoffs and moral reference point.] 


	 	 (II.5.1)	
Note that all variables on the right-hand-side of (II.3.1) are observable in an experiment.  






Contractions in Provision Game. In the presence of a required minimum contribution, c, the maximum payoff player 1 can get is when he allocates  to the public account, in which case player 2 ends up with . On the other hand, player 2’s maximum payoff remains when player 1 allocates  to the public account, hence  Therefore the moral reference point from the perspective of player 1 for feasible set  in the provision game with contraction, C= is 

	 (II.5.2)	 









Appropriation Game. Initially there is  in the public account and 0 in the private account of each player, so initial endowed payoffs of the two players are . Suppose player 2’s transfer is  Player 1’s feasible set in the payoff space is . The maximum payoff player 1 can get is when he appropriates the maximum allowed (i.e., ) in which case player 2 ends up with ; this is player 2’s minimal expectation payoff for  from the perspective of player 1. On the other hand, player 2’s maximum payoff occurs when player 1 appropriates nothing, in which case player 1 ends up with  this is player 1’s minimal expectation payoff for  from the perspective of player 1. Hence, the moral reference point of player 1 in the appropriation game is 



By (II.2.1),  and hence, the moral reference point in the appropriation game in terms of g allocations left in the public account is 

		(II.5.3)	





Contractions in Appropriation Game. In the presence of a quota,  on the amount extracted, the maximum payoff player 1 can get is when he takes all he can (i.e., ) from the public account, in which case player 2 ends up with . Player 2’s maximum payoff remains when player 1 takes nothing from the public account, hence . Player 1’s moral reference point in Appropriation game with quota t, at opportunity set  is 

		 	




In terms of g allocations, contraction  in appropriation game is equivalent to allocations from C=[c, W] where [footnoteRef:12] Substitute  and  in the last two statements  [12:  Quota on extractions, implies  which in terms of g allocations is ] 


		(II.5.4)	  






	General ge-Games. Generalizing the above to a two-player ge-game is straightforward. The initial distribution of the total resource, 2W is  in the public account and  in each player’s private account. Each player starts the game with a payoff  from her private account plus  from the public account, so . The minimal expectation payoffs for feasible set  are



Hence, from the perspective of player 1, the moral reference point for feasible set  in a ge-game with contraction is 

	          (II.5.5)

II.5.B (Best Response) Morally Monotonic Choice



Proof of Proposition 4 Let the ge-game and the vector of others’ allocations,  be given.[footnoteRef:13] Let  be player 1’s best response allocation set. In the payoff space, player 1’s corresponding feasible set is , the choice set is [13:  Without any loss of generality, the proof is written for player 1.] 


		 (II.5.6)

and player 1’s moral reference point, rc  such that  where[footnoteRef:14]  [14:  For the full game (no contractions) the moral reference point  corresponds to c=0. To make reading easier, when there is no contraction, we’ll use notation S() instead of T(|c=0).  ] 




  and  	 (II.5.7)







Part 1. Effect of (nonbinding) constraint c. Letand  denote the largest player 1’s (best response) allocations in  and  in the ge-game with constraints, c and 0 (i.e., no contraction), respectively. We show that .  Proof for the smallest allocations is similar. Note that, as others’ payoffs increase in  for all 

  		    (II.5.8)



It suffices to show that  for some player k>1, as that together with k’s payoff increasing in  require . The proof consists of the following two steps. 








	Step 1. Consider the following two scenarios, a and d. In both scenarios, player 1’s feasible set in the payoff space is  but the initial endowed payoffs are different. In scenario a, the initial endowed payoff is . In scenario d, the initial endowed payoff is  for player 1 and  for all  Player 1’s moral reference points, ra and rd, in scenarios a and d are: for all   and  









For problems  and   as  and By M-Monotonicity,  for some player , which implies that k’s payoffs,  and  satisfy

		   			 (II.5.9)



Next,  and  so by M-Consistency,  and by (II.5.8) 

				 (II.5.10) 




Last, there exists some allocation in call it  such that  as by construction, . Hence, by (II.5.9) 

 				(II.5.11)




It follows from (II.5.11) and k’s payoff increasing in  that  which together with  (for nonbinding c) imply  and

  			 (II.5.12)








	Step 2. For feasible problems  and : (i)as (ii)    and (ii) , by (II.3.12). By M-Consistency,  hence 

				 (II.5.13) 

Finally,  follows from 


where the first inequality follows from (II.5.8) and (II.5.13) and the second one from (II.5.11).  












Part 2. Effect of initial  For any given initial (per capita) allocations , let  and  denote player 1’s smallest (best response) allocations in these ge-games when others’ vector of allocations is . We show that  Proof for the largest allocations is similar. For the two feasible problems,  and , the total change in the moral reference point is So K=N, and by M-Monotonicity,  implying Hence  as player 1’s payoff decreases in own allocation, g1 (free-riding incentive). 
[bookmark: _GoBack]
Appendix II.6. Effects of per capita Initial, ge and Quota, c on Extreme Nash Equilibria








Proof of Proposition 5 Part a. By Proposition 4, best responses are invariant to  and (nonbinding) c, therefore, Nash equilibrium set is also invariant. Part b. We use Tarski (1955) to compare extreme Nash equilibria across ge. Proof for (nonbinding) quota effect is similar. Let  denote the product space, that is  and  denote the lattice with conventional, increasing partial order, . For any initial (per capita) allocation in the public account, let  where  is i’s largest (best response) allocation, that is





Since  is increasing in others’ allocations and is a complete lattice, the largest Nash equilibrium is[footnoteRef:15]    [15:  See Tarski (1955). Nash set is a subset of  and as follows. Existence of follows from  being a complete lattice. For all   and increasing  imply ; that is  is an upper bound of , hence . By increasing ,  implying , hence  ] 


 









For any two initial (per capita) allocations t and s, such as  by Proposition 4, best response largest allocations are smaller in the t-game than in the s-game, which implies  and therefore For ge-effect on the smallest Nash equilibrium,  replace  with ,  with  and . 

Appendix II.7. Special Case Objective Function Derivation and Application
Let the (best response) allocation be determined by the maximization of				

       (II.7.1)     



where ,  and  





Recall that,,   and    Player 1’s optimal (interior) allocation is determined by 

 			 (II.7.2)

Verify that , substitute it in (II.7.2) and solve for g1 to get

  		 (II.7.3)	
and note that:
a. 


Consistent with Proposition 4.a,  increases in c as for all ,  increases in c 
b. 






Consistent with Proposition 4.b,  decreases in ge. Indeed, take any two ge-games with initial (per capita) allocations, s and t in the public account such that  For all  . Use statement (II.7.3),  and  to verify that 

Appendix II.8. Questionnaire
Thank you very much for participating in our decision experiment.  We would like to ask you a few questions.  Your privacy is protected because your name will not appear on this questionnaire or on your decision tables.


1. What year are you in school?    Freshman __ Sophomore __   Junior ___ Senior __ Grad. __
2. What is your intended or declared major?      ___________________________

3. What is your current grade point average? 	 ________

4. In what year were you born?      		Year ________

5. What is your gender?   			Female ____    			Male _____

6. What is your race?   	Asian ___   Black/IIAfrican American ___  White ____   Other ___ 

8.  What is your religious affiliation?  		 ________________    No religion _____   

9. Most people would stop and help a person whose car is disabled
Disagree Strongly __  Disagree Slightly __    Agree Slightly  __    Agree Strongly __

10. People are usually out for only their own good 
Disagree Strongly __  Disagree Slightly __    Agree Slightly  __    Agree Strongly __

11. Most people inwardly dislike putting themselves out to help other people 
Disagree Strongly __  Disagree Slightly __    Agree Slightly  __    Agree Strongly __

12.  I have given money to a stranger who needed it (or asked me for it)
Never  ____    Once_____    More than once____  Often_____ Very often ___

13.  I have done volunteer work for charity   
Never  ____    Once_____    More than once____  Often_____ Very often ___

14.  I have helped a classmate who I did not know that well with an assignment when my knowledge was greater than his or hers   
Never  ____    Once_____    More than once____  Often_____ Very often ___

15. Do you share your secrets with some of of your close friends?    
Never  ____    Once_____    More than once____  Often_____ Very often ___
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