
Appendix of “Mergers and Acquisitions and the Aggregate

Markup” (For Online Publication Only).

A Data Method and Additional Figures

Estimating Markups We use the price-marginal cost markup, Pi/MCi − 1, to indicate
the monopoly power of firm i, and measure it by using methods proposed in De Loecker
and Warzynski (2012) and De Loecker et al. (2020). The method starts with the typical
cost minimization problem of firm i is

L(Vi, Ki, λi) = PV
i Vi + riKi − λi(F(Vi, Ki)− Ȳ),

where PV
i and Vi are the price and quantity of the variable input, ri and Ki are the user

cost and quantity of capital. F(·) is the production function and Ȳ is the targeted output
level, and λi is the Lagrangian multiplier. The advantage of writing in this way is that
λ = ∂L

∂Ȳ , i.e. λi gives the marginal cost of firm i. The first order condition w.r.t. Vi reads

PV
i − λi

∂Yi

∂Vi
= 0.

Yi ≡ F(Vi, Ki) denotes total output. Equivalently

ξV,i ≡
∂Yi

∂Vi

Vi

Yi
=

1
λi

PV
i Vi

Yi
,

where ξV,i is the elasticity of output w.r.t. the variable input. It follows that the markup,
Mi = Pi/λi − 1, equals to

Mi = ξV,i
PiYi

PV
i Vi
− 1,

where PiYi and PV
i Vi are observed in data, and the elasticity of output w.r.t. the variable

input can be estimated from data.

Assume the production function is, Q = F(V, K) exp(z)1. Take log on both sides and use
lowercase letters to denote the natural logarithm of variables

q = ξvv + ξkk + z + ε.

1We assume the same production function at the 2-digit sector level among Compustat firms.
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Demand of the variable input, V, is a function of capital stock, K, and unobserved produc-
tivity, Z, V = g(K, Z). We can then represent productivity, Z(z), as a function of K(k) and
V(v), i.e., z = h(k, v). In the first stage, run the following regression non-parametrically
(or approximate φ by a polynomial)

q = φ(v, k) + ε.

Further, assume the exogenous productivity follows an AR(1) process

zt+1 = ρzt + εz.

Obtain ẑ = φ̂(v, k)− ξvv− ξkk from the first stage, and we then apply the general method
of moments to estimate ξv, by using the following moment conditions

E[(ẑt − ρẑt−1)Xt−1] = 0.

In the baseline case, we include capital stock in period t, kt, and variable input in period
t− 1, vt−1, in Xt−1.
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Figure A.1: The Lerner index 1951-2020

Note: This figure plots the aggregate Lerner index, the ratio of operating income after depreciation to sales.

Data source: Compustat.
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Figure A.2: The Number and Ratio of M&As in the U.S.

Note: The total number of M&As is from the official website of the Institute for Mergers, Acquisitions, and

Alliances, https://imaa-institute.org., while the total number of firms is from Business Dynamics Statistics.
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B Proofs for Propositions 1 and 2

We present proofs for Propositions 1 and 2 in this section, which are regarding theoretical
properties of the equilibrium relative size function q∗(z) and profit function π(z).

Step 1: q∗(z) is strictly increasing.

This statement can be derived directly from the first-order condition in equation (12). One
can easily verify that the left-hand side of the equation is strictly decreasing in q, while
the right-hand side is strictly decreasing in z. So as z increases, the equilibrium relative
size q∗ must also increase such that the equation holds. Besides, equation (12) also implies
that q∗(z) is continuously differentiable and bounded above by a constant β

β
α .

Step 2: q∗(z) is strictly convex on some (0, zq), and strictly concave on some (z̄q, ∞).

Equation (12) gives us a unique q∗ for each level of z. But unfortunately, we can not find
an analytical solution for the function q∗(z). So instead, we work with its inverse function,
z(q),2 which has a clear analytical form

z(q) =
wβ

β− 1
exp

(
q

α
β − 1

α

)(
β

β− q
α
β

)
.

Easy to see that z(q), as well as the original q∗(z), are continuously differentiable to an
infinite order. The first and second-order derivatives of z(q) are

z′(q) =
wβ

β− 1
exp

(
q

α
β − 1

α

) (
α + β− q

α
β

)
q

α−β
β(

β− q
α
β

)2 ,

and

z′′(q) =
w

β− 1
exp

(
q

α
β − 1

α

) (
α + β− q

α
β

)
q

2(α−β)
β(

β− q
α
β

)3

×

α + 2β− q
α
β − β(β− α)q−

α
β −

(
β− q

α
β

) /
α

1 +
(

β− q
α
β

) /
α

 .

2We drop the superscript ∗ for notation simplicity.
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One can verify that z′(q) > 0, ∀q ∈
(

0, β
β
α

)
, which validates our results in step 1. The

sign of z′′(q) though, is ambiguous on the full support
(

0, β
β
α

)
, so we only show limiting

properties.

Observe that in our expression of z′′(q), the term in the first line is always positive. As q
approaches its lower bound 0, the term in the second line approaches −∞. That proves
the concavity of z(q), or equivalently, the convexity of q∗(z), around its lower bound of
the support. The existence of zq follows immediately since q∗(z) and all of its higher-order
derivatives are continuously differentiable.

Using the same logic, one can check that as q approaches its upper bound β
β
α , the sec-

ond line term approaches 2α > 0. This proves the convexity of z(q), or equivalently, the
concavity of q∗(z), around its lower bound of the support, the existence of z̄q follows im-
mediately.

Step 3: π(z) is strictly increasing.

To prove this statement and the next one, we utilize the correlation between the profit π

and relative size q, which has an analytical form of

π(q) =
(β− 1)DY

β2 exp

(
1− q

α
β

α

)
q

α+β
β ,

where D and Y are positive constants in the aggregate economy.

The first-order derivative of π(q) is

π′(q) =
(β− 1)DY

β3 exp

(
1− q

α
β

α

)(
α + β− q

α
β

)
q

α
β ,

which is strictly positive on the support of (0, β
β
α ). Since we have shown that q∗(z) is

strictly increasing in z, and bounded above by β
β
α , the fact that π(z) ≡ π (q∗(z)) is strictly

increasing follows immediately.

Step 4: π(z) is strictly convex on some (0, zπ), and strictly concave on some (z̄π, ∞).

Now we need the second-order derivative of π(q), which is
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π′′(q) =
(β− 1)DY

β4 exp

(
1− q

α
β

α

)
q

α−β
β ×

[(
q

α
β

)2
− (3α + β)q

α
β + α(α + β)

]
.

Using quadratic algebra, one can verify that π′′(q) > 0 on (0, q̂) and < 0 on (q̂, β
β
α ),

where q̂ ≡
(

3α+β−
√

5α2+2αβ+β2

2

) β
α

. That is, π(q) is convex-concave in q. Consequently,

π(z) ≡ π (q∗(z)) is strictly convex (concave) in z when around 0 (approaching ∞). The
existence of zπ and z̄π follows the fact that π(z) and all of its higher-order derivatives are
continuously differentiable. That concludes our proofs for Propositions 1 and 2. QED
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C Quantitative Analysis Appendix

C.1 Numerical Solution Algorithm

We solve the stationary equilibrium of the model economy using an iteration method
with four loops. Among them, loop 1 is the outermost, while loop 4 is the innermost. We
discretize the state space of z by setting 400 grid points on a support of [1, 40]. To improve
precision, we set the grid points to be denser on the lower end of the support, where most
of the firms reside. The detailed algorithm is described as follows.3

• Guess

– Loop 1: Guess an effective wage rate w, solve for the relative size function q∗(z)
from the f.o.c. specified in equation (12).

– Loop 2: Guess a discretized probability mass vector representing F(z), solve
for the aggregate variables M, D, W, Y, and the profit function π(z) using the
following equations

M
∫

σ(q∗)dF(z) = 1;

D =

[
M
∫

σ′(q∗)q∗dF(z)
]−1

;

W = wD;

MY
∫ q∗

z
dF(z) = 1;

π(z) =
[
σ′(q∗)q∗ − w

z
q∗
]

DY.

– Loop 3: Guess a value vector representing V(z), construct the ∆V(zA, zT) ma-
trix based on the value vector and the merger technology.

– Loop 4: Guess a pair of market tightness θA and θT, solve for the optimal search
intensity vectors representing µA(z) and µT(z).

• Update

3MATLAB codes are available upon request, please email: caolinyi@mail.shufe.edu.cn.
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– Loop 4: Use the newly solved µA(z) and µT(z) vectors to find a new pair of
θA and θT. Define distance = max

{∣∣θnew
A − θold

A

∣∣, ∣∣θnew
T − θold

T

∣∣}, iterate the

process until the distance is below a tolerance of 10−5.

– Loop 3: Plug µA(z), µT(z), θA, and θT into the right-hand-side of the value
function, to find a new value vector. Define distance = max

{∣∣[Vnew(z) −

Vold(z)]/Vold(z)
∣∣}, iterate the process until the distance is below a tolerance

of 10−5.

– Loop 2: First calculate the equilibrium entrant mass ME = ηM + MT. Then
plug ∆V(zA, zT), µA(z), µT(z), θA, θT, and ME/M into the right-hand side
of the Kolmogorov forward equation, to find a new probability mass vector.
Define distance = max

{∣∣Fnew(z)− Fold(z)
∣∣}, iterate the process until the dis-

tance is below a tolerance of 10−5.

– Loop 1: Check the free entry condition specified by equation (25). If the en-
trant’s expected value

∫
V(z)dH(z) is larger than the entry cost cE, raise w; if

smaller, reduce w. Define distance =
∣∣ ∫ V(z)dH(z)− cE

∣∣, continue the process
until the distance or the change in w is below a tolerance of 10−5.
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C.2 Identification of the Parameters

To show that the parameters listed in Table 4.3 are well identified, we first check how the
total sum of distances changes when each parameter deviates from its benchmark value.
Figure C.1 gives the result, and the total sum of distances is indeed minimized at the pa-
rameters’ benchmark values.
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Figure C.1: Total Distance w.r.t. Each Parameter

Note: This figure shows how the total sum of distances (Y-axis) changes as we move each of the 9 parameters

(X-axis) away from its benchmark value.

Though estimated jointly by a minimum distance, some moments are particularly infor-
mative about the corresponding parameters. To support our argument, Figure C.2 plots
each of the 9 moments as a function of the corresponding parameter, keeping all other
parameters at their benchmark values. The figure shows significant variation in each mo-
ment when the corresponding parameter deviates from its benchmark value.
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Figure C.2: Informative Moment w.r.t. Each Parameter

Note: This figure checks the sensitivity of each of the 9 model-generated moments (Y-axis) as a function of

the corresponding parameter (X-axis).

C.3 Decreasing Return to Scale

Under the linear production technology specified by equation (9), it is possible that firms
whose productivity is low choose to produce nothing, i.e., q∗ = 0, a corner solution.
While the impact of this property on the aggregate markup is negligible, as such firms
are very small, we can fix the issue by assuming a decreasing return to scale production
technology

yt = z`δ
t , δ ∈ (0, 1).

In this setup, it is guaranteed that q∗(z) > 0, ∀z > 0. To check how it would change the
main results of the paper, we set δ = 0.99 to deviate as little as possible from the baseline
case and replicate Table 4.5 in the following Table C.1. As can be seen, the two results are
qualitatively and quantitatively similar.
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Table C.1: Surging M&As and the Aggregate Markup

B M̄model M̄data explanation Power

1981-1985 370.86 12.07% 13.93%
—

2013-2017 11.40 18.45% 23.68%
change — 6.38p.p. 9.75 p.p. 65.47%

Note: The explanation power is calculated as the model-generated
change in the aggregate markup divided by that in the data. All num-
bers are rounded to two decimal places for better presentation.

C.4 Output and Welfare

In the model, a lower merger cost affects the total output through three channels: (i) it
enhances productivity of the economy, thus raising total output; (ii) it worsens the misal-
location of the economy, thus reducing total output; and (iii) it increases firm values and
encourages entry, thus raising total output. In the quantified model, we find that the two
positive effects dominate, causing the total output to rise from 1.51 in the benchmark to
1.86 in the counterfactual economy.

To further decompose the strength of these three channels, we denote Ŷi, i = bm, c f as the
hypothetical output level under homogeneous markups, i.e., α = 0, for the benchmark
and counterfactual cases, respectively. The gap Ŷi −Yi thus measures the severity of mis-
allocation caused by the diminishing demand elasticity. Furthermore, we use the term
Ŷinterm to denote that output when we have the mass of firms in the counterfactual case
but keep the productivity distribution in the benchmark case. Then, changes in the total
output can be written as

Yc f −Ybm =
(
Ŷc f − Ŷinterm

)︸ ︷︷ ︸
(i) productivity-enhancing

−
[
(Ŷc f −Yc f )− (Ŷbm −Ybm)

]︸ ︷︷ ︸
(ii) misallocation

+
(
Ŷinterm − Ŷbm

)︸ ︷︷ ︸
(iii) entry

Table C.2 presents the decomposition results. The productivity-enhancing effect con-
tributes to an increase of 0.58 in the output, while the entry effect contributes to an addi-
tional 0.04. The worsening misallocation, indicated by the enlarging output gap Ŷi − Yi,
reduces output by -0.27.4

4Output increases less in an economy with heterogeneous markups compared to one with homoge-
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Table C.2: Surging M&As, Total Output, and Consumption

Yc f −Ybm (i) productivity-enhancing (ii) misallocation (iii) entry

0.35 0.58 -0.27 0.04
Contribution 165.71% -77.14% 11.43%

Note: The contribution of each channel is calculated by dividing the corresponding
number by the net change in Y. The detailed procedures of decomposition are given in
the main text. All numbers are rounded to two decimal places for better presentation.

As for welfare, which is simply measured by consumption in our setup

Consumption = Y−
∫

[C(µA(z)) + C(µT(z))] dF(z)︸ ︷︷ ︸
search costs

− MecE︸ ︷︷ ︸
entry cost

.

It also rises, but to a smaller extent of 0.24. That is because the rise in total output is par-
tially offset by the increased search and entry costs.

The output and welfare implications of the model analyzed above should be interpreted
under two caveats. First, the result that the negative impact of M&As on the markup
dispersion and misallocation is dominated follows from the restriction in our framework
that the markup is fully determined by productivity. In a framework where markup can
be separated from productivity and the impact of M&A on the two variables does not
necessarily always occur simultaneously, the dominance might be altered. Second, our
model only captures the impact of M&A on productivity and associated markups, but
abstracts from other effects. For example, M&A might have a negative impact on R&D
intensity (Hall et al., 1990), might kill potential competitors (Cunningham et al., 2021), or
affect the market power of rivals (Stiebale and Szücs, 2022). Our model, being silent on
all these dimensions, clearly underestimates the negative effects of M&As.

neous markups, as large, productive firms reduce their quantities to raise their markups. This implies that
antitrust policies need to be size-dependent.
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