
Appendix: Mitigation or Adaptation to Climate Change?

The Role of Fiscal Policy

Mouez Fodha∗ and Hiroaki Yamagami†

A Proof of Proposition 1

We have the following characteristics regarding the dynamics of capital stock accumulation:

lim
kt→0

Γ(kt) =
β(1− v)h̄

(1− β)ϕ− β(1− v)
≡ k̆, (76)

Γ′(kt) =
(1− β)ϕ(1− δE)− (1− v)

{
1− α1−τy

1+τc (1 + ϵ/γ)
}
αβAkα−1

t

(1− β)ϕ− β(1− v)
, (77)

Γ′′(kt) =
(1− v)

{
1− α1−τy

1+τc (1 + ϵ/γ)
}
α(1− α)βAkα−2

t

(1− β)ϕ− β(1− v)
. (78)

From these derivations, the mitigation subsidy plays an important role in determining the steady
state and stability. We will discuss each case below.

A.1 Cases with the high mitigation subsidy: v > 1− ϕ1−β
β

≡ v

In this case, from (76) – (78), we have limkt→0 Γ(kt) = k̆ > 0 and Γ′(kt) ⋛ 0 but limkt→0 Γ
′(kt) =

−∞ and limkt→+∞ Γ′(kt) = (1−β)ϕ(1−δE)
(1−β)ϕ−β(1−v) > 0, and Γ′′(kt) > 0. These properties imply that

the dynamics of k exhibit a U curve, with a minimum value of kt+1 at k̄ satisfying Γ′(k̄) = 0.
Note that limkt→+∞ Γ′(kt) is greater than unity if v > v̄. This condition also plays a role in
determining the dynamics.

Case (i) and (ii): Γ(k) ≤ k

Suppose Γ(k̄) ≤ k and v ≥ v̄. In this case, because limkt→0 Γ(kt) = k̆ > 0 and Γ(k) ≤ k, there is a
unique steady state in which capital stock, kss, is in the range of (0, k). The stability depends on
kss compared with k, which is defined in (19). If kss > k, then the equilibrium sequence of {kt}∞t=0

is on an oscillatory convergence path towards the steady-state level kss because Γ
′(kss) ∈ (−1, 0).

Subsequently, the steady-state is stable. By contrast, it is unstable if kss ≤ k. In this case, unless
kt remains at kss from t = 0, the sequence {kt}∞t=0 does not remain at kss through an oscillatory
divergence path or a cycle path because Γ′(kss) ≤ −1.

Next, suppose Γ(k) ≤ k and v < v ≤ v̄. In this case, there are two steady states in which the
capital stock is given by k1ss and k2ss. Then, k1ss is in the range of (0, k] as in case (i), because
limkt→0 Γ(kt) = k̆ > 0 and Γ(k) ≤ k. In addition, because v ≤ v̄, there is another steady state

in which k2ss is greater than k because limkt→+∞ Γ′(kt) =
(1−β)ϕ(1−δE)
(1−β)ϕ−β(1−v) > 1. The steady state
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Figure 2: Capital stock dynamics in case (i): Γ(k̄) ≤ k̄ and v > v̄

with k2ss is unstable because Γ′(k2ss) > 1. The stability of the steady state with k1ss depends on
the location of the steady-state capital stock level, as in case (i). The steady state is stable if
k1ss > k via an oscillatory convergence path. By contrast, it becomes unstable if k1ss ≤ k through
an oscillatory divergence path or a cycle path. The stability of these two cases is shown in Figure
3 and is summarized in case (ii) of Proposition 1.

Figure 3: Capital stock dynamics in Case (ii): Γ(k) ≤ k and v < v ≤ v̄

Case (iii), (iv), (v), and (vi): Γ(k̄) > k̄

Suppose Γ(k) > k. In this case, steady states exist only for the range of kt > k. Moreover, by
supposing limkt→+∞ Γ′(kt) ≤ 1, equivalently, v ≥ v̄, we have a unique steady state in which the
capital stock, kss, is greater than k. This corresponds to case (iii) in Proposition 1 and is shown
in Figure 4. Then, kss is stable because Γ′(kss) < 1 as long as kss is finite.

If Γ(k) > k and v < v < v̄, there are three more cases classified with k̂ that satisfy Γ′(k̂) = 1
in (20). First, when Γ(k̂) < k̂, there are two steady states with k1ss and k2ss. This is depicted in
case (iv) in Figure 5. Because the lower steady state k1ss is between k and k̂, we have Γ′(k1ss) < 1.
Then, the steady state with k1ss is stable. By contrast, the other steady state with k2ss is unstable
because k2ss > k̂ and thus, Γ′(k2ss) > 1. Second, when Γ(k̂) = k̂, there is a unique steady state
with kss. The dynamics are depicted in case (v) in Figure 5. In this case, the U curve touches the
45◦ line at k̂. This dynamic curve is above the 45◦ line in all other ranges. As a result, capital
stock converges to kss from kt ≤ kss. Once capital stock exceeds kss, the economy diverges to,
where kt approaches infinity. Because the capital stock cannot stay in the steady state because
of fluctuations, the steady state is unstable. Finally, when Γ(k̂) > k̂, it is obvious that there is
no steady state.
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Figure 4: Capital stock dynamics in Case (iii): Γ(k̄) > k̄ and v ≥ v̄

Figure 5: Capital stock dynamics in cases (iv), (v), and (vi): Γ(k̄) > k̄ and v < v < v̄

A.2 Cases with the low mitigation subsidy: v < 1− ϕ1−β
β

≡ v

In this case, from (76) – (78), we have limkt→0 Γ(kt) = k̆ < 0 and Γ′(kt) ⋛ 0 but limkt→0 Γ
′(kt) =

+∞ and limkt→+∞ Γ′(kt) = (1−β)ϕ(1−δE)
(1−β)ϕ−β(1−v) < 0, and Γ′′(kt) < 0. These properties imply that

the dynamics of k exhibit an inverted-U curve with a maximum value of kt+1 at k̄ satisfying
Γ′(k̄) = 0. As the dynamics draws the inverted-U curve, Γ goes negative for some kt. When
Γ < 0, the capital stock converges to kt+1 = 0. As v̄ > v, we do not consider cases with v ≥ v̄.

Cases (vii), (viii), and (ix)

There are three cases, depending on k̂ that satisfy Γ′(k̂) = 1. First, if Γ(k̂) < k̂, then the inverted
U-curve is below the 45◦ line for all ranges of kt. This is shown in case (vii) in Figure 6. Because
kt+1 = 0 when Γ(kt) < 0, the steady state is unique and stable at kss = 0. Second, if Γ(k̂) = k̂,
then there are two steady states with k1ss and k2ss. This is depicted in case (viii) in Figure 6. On
the one hand, k1ss is zero, and the steady state is stable, as in case (vii). On the other hand,
as in case (v), the inverted U curve touches the 45◦ line at kt = k̂ and is below it for the other
range. Capital stock converges to k2ss only for kt ∈ [k2ss, k], whereas it converges to k1ss otherwise.
However, even after kt = k2ss holds, once the capital stock turns below k2ss by fluctuation, the
capital stock converges to k1ss = 0. Therefore, the steady state with k2ss is unstable.

Finally, if Γ(k̂) > k̂, then there are three steady states with k1ss, k
2
ss, and k3ss. This case is

depicted in case (ix) in Figure 7. k1ss is zero and stable, and kss in case (vii) and k1ss in case
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(viii). The steady state with k2ss is clearly unstable. By contrast, the stability of k3ss depends on
whether k3ss is greater than k. If k3ss is strictly lower than k satisfying Γ′(k) = −1 as shown in
(19), the steady state with k3ss is stable. By contrast, if k3ss is higher than k, it is unstable.

Figure 6: Capital stock dynamics in cases (vii) and (viii): Γ(k̂) ≤ k̂ and v < v

Figure 7: Capital stock dynamics in case (ix): Γ(k̂) > k̂ and v < v

A.3 Summary

Proposition 1 shows nine cases for the capital accumulation dynamics. Assumption 1 (a) ensures
that the sensitivity of consumption is greater than that of pollution, β > ϕ(1 − β). However,
the subsidy level also imposes constraints on these sensitivities. So we have two cases in terms
of capital stock dynamics: an inverted-U or a U curve.

First, the denominator of (16) is positive when the subsidy rate is low enough. When the
subsidy is small enough, savings lead to a well-known inverted-U curve with respect to the capital
stock. That is, as the capital stock grows from very low level, households income increases and
so do savings. For higher levels of capital stock, because the interest rates are lowered enough,
savings decrease.

Second, if the level of subsidy is sufficiently high, the dynamics of the capital stock will
change and take the form of a U-shaped curve. As the net cost of mitigation is low enough, and
because the households income increases with the capital stock, the mitigation is prioritised over
consumption, and savings are reduced. For sufficiently high levels of capital stock, the marginal
(positive) effect of mitigation on utility decreases as the capital stock increases. Instead, the
consumption and thereby the savings increase.

In addition to the subsidy rate, the capital stock itself affects the dynamics of capital stock
accumulation. Consequently, the mitigation subsidy generates three cases, while the capital stock
also adds three sub-cases.
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B Proof of Proposition 3

Mitigation and adaptation are complements if dmss

dh̄
> 0 in (26). This condition corresponds to

∆mdkss
dh̄

> 1. We examine the sign of each term with respect to v and kss. The key thresholds
are v̂, v̄, kn, and km as shown in (21), (24), and (27).

First, we suppose v ≤ v̂ < v̄. Then, 0 < kn ≤ km. In this case, if kss is sufficiently small or
large such that kss ≤ km ≤ kn or km ≤ kn ≤ kss, we have ∆mdkss

dh̄
≥ 0. If this term is strictly

greater than unity, m and h are complements. Otherwise, they are neutral or substitutes. By
contrast, if kss is in the middle range, such that km ≤ kss ≤ kn, we have ∆mdkss

dh̄
≤ 0. Thus, m

and h are substitutes.
Second, we suppose v̂ < v < v̄. Then, 0 < km < kn. In this case, if kss is sufficiently small

or large such that kss ≤ kn < km or km < kn < kss, then ∆mdkss
dh̄

> 0. Therefore, if this term
is strictly greater than unity, m and h complements. Otherwise, they are neutral or substitutes.
By contrast, if kss is in the middle range, such that km < kss < kn, we have ∆mdkss

dh̄
< 0. Thus,

m and h are substitutes.
Finally, we suppose v̂ < v̄ ≤ v. Then, km ≤ 0 < kn. In this case, if kss is sufficiently large,

such that km ≤ 0 < kn < kss, we have ∆mdkss
dh̄

≥ 0. Therefore, if ∆mdkss
dh̄

> 1, m and h are
complements. Otherwise, they are neutral or substitutes. If kss is in the middle range, such that
km ≤ 0 < kss < kn, we have ∆mdkss

dh̄
≤ 0. Thus, m and h are substitutes.

C Proof of Proposition 5

From (39), Γz(·) satisfies limkt→0 Γz(kt) = 0 and limkt→+∞ Γz(kt) ⋛ 0: Γz(·) also exhibits the
following characteristics:

Γ′
z(kt) =

(1− v)
{
1− α1−τy

1+τc (1 + ϵ/γ + ϵz)
}
αβAkα−1

t − (1− β)(1− δE)ϕ

(1− v)β − (1− β)ϕ
, (79)

Γ′′
z(kt) = −

(1− v)
{
1− α1−τy

1+τc (1 + ϵ/γ + ϵz)
}
(1− α)αβAkα−2

t

(1− v)β − (1− β)ϕ
. (80)

From these derivatives, the mitigation subsidy and adaptation provision rule play important roles
in determining the steady state and its stability. We will look at each case.

C.1 Case with v > v̄ and z > z̄

Because v̄ > v, we have v > v̄ > v. Then, limkt→0 Γ
′(kt) = +∞, limkt→+∞ Γ′(kt) = − (1−β)(1−δE)ϕ

(1−v)β−(1−β)ϕ >

0, and Γ′′(kt) < 0. By rearranging limkt→+∞ Γ′(kt), we obtain limkt→+∞ Γ′(kt) = − (1−β)(1−δE)ϕ

(1−β)(1−δE)ϕ+β
{
v−

(
1− 1−β

β
ϕδE

)} .
As v > v̄, we can see limkt→+∞ Γ′(kt) ∈ (0, 1). The dynamics shown by Γz(kt) exhibit an in-
creasing curve. This curve has two intersections with a 45◦ line at kt = k1ss and k2ss, as given
by (40). This case is depicted in Figure 8 and corresponds to case (i) in Proposition 5. The
steady state with k1ss is unstable because Γ′

z(0) → +∞, whereas that with k2ss is stable because
Γ′
z(k

2
ss) ∈ (0, 1).

C.2 Cases with v < v̄ and z < z̄

We divide these cases by either v < v or v < v < v̄.1

1From Assumption 3, we do not consider the case with v = v.
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Figure 8: Capital stock dynamics with a proportional adaptation in case (i): v > v̄ and z > z̄

Cases (ii) and (iii): v < v and z < z̄

If the mitigation subsidy is sufficiently small, such that v < v, we have limkt→0 Γ
′
z(kt) = +∞ and

limkt→+∞ Γ′
z(kt) = − (1−β)(1−δE)ϕ

(1−β)(1−δE)ϕ+β
{
v−

(
1− 1−β

β
ϕδE

)} < −1. The dynamics of capital stock then

illustrate an inverted U curve; thus, we have k̂z < kz < kz. This curve has two intersections,
with a 45 ◦ line at k1ss and k2ss as given in (40). Although the stability of the steady state with k1ss
is clearly unstable because Γ′

z(0) = +∞, that with k2ss is unclear. Therefore, we further divide
this case into two depending on where k2ss is placed.

First, we suppose k2ss < kz. As the policy mix of v < v and z < z̄ ensures the presence of
a nontrivial steady state with k2ss > 0, we have Γ′

z(k
2
ss) ∈ (−1, 1). The two figures in Figure 9

depict the two cases summarized in case (ii) of Proposition 5. If Γ′
z(kz) < kz, then the capital

stock converges via a monotone path from kt < k2ss and via an oscillatory path from kt > k2ss.
Additionally, if Γz(kz) ≥ kz, the capital stock converges to k2ss via an oscillatory path. This case
is depicted in Figure 9 and corresponds to case (ii) in Proposition 5.

Second, we suppose k2ss ≥ kz. Then, because of the policy mix of v < v̄ and z < z̄, there
is a steady state with k2ss > 0. However, the capital stock does not converge to a steady state
k2ss because Γ′

z(k
2
ss) ≤ −1. This case is depicted in Figure 9 and corresponds to case (iii) in

Proposition 5.

Figure 9: Capital stock dynamics with a proportional adaptation in cases (ii) and (iii): v < v
and z < z̄
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Case (iv): v < v < v̄ and z < z̄

If the mitigation subsidy is not as small as in cases (ii) and (iii), such that v < v < v̄, we

have limkt→0 Γ
′
z(kt) = −∞ and limkt→+∞ Γ′

z(kt) = − (1−β)(1−δE)ϕ

(1−β)(1−δE)ϕ+β
{
v−

(
1− 1−β

β
ϕδE

)} > 1. The

dynamics of capital stock then follows a U curve. In addition to the cases above, this curve also
has two intersections with a 45◦ line at k1ss and k2ss as given in (40). The steady state with k1ss is
stable because Γ′

z(0) = −∞. That with k2ss is unstable. This case is depicted in Figure 10 and
corresponds to case (iv) of Proposition 5.

Figure 10: Capital stock dynamics with a proportional adaptation in case (iv): v < v < v̄ and
z < z̄

D Proof of Proposition 6

First, we suppose z ≤ z. Then, the denominator of (57) is positive and the square brackets of
the numerator are positive. Because k2ss is also a factor that determines the sign of (57), we
rearrange the numerator with respect to k2ss. As a result, if k2ss < kℓ, we have dmss/dhss > 0;
that is, the two instruments are complements. This case is referred to as case (i) in Proposition
6. By contrast, if k2ss > kℓ, they are substitutes. If k2ss = kℓ, they are neutral.

Second, we suppose z < z < ẑ. Then, the denominator is negative and the square brackets
of the numerator are positive. Additionally, if k2ss < kℓ, the two instruments are substitutes.
Conversely, if k2ss > kℓ, then they are complements. This case is referred to as case (ii) in
Proposition 6. Moreover, if k2ss = kℓ, then they are neutral.

Third, we suppose z ≥ ẑ. Then, the denominator and numerator are both negative. Re-
gardless of k2ss, the two instruments are complements. This case is referred to as case (iii) in
Proposition 6.

E Proof of Proposition 7

From (62), (63), and (64), we can characterize the steady states and their stability using the
capital stock and mitigation subsidy. As Assumption 3 rules out v = v which leads to a trivial
result, we suppose that either v < v or v > v.

E.1 Cases with v < v

In this case, limkt→0 ΓB(kt) = limkt→+∞ ΓB(kt) = −∞, limkt→0 Γ
′
B(kt) = +∞, limkt→+∞ Γ′

B(kt) =

− (1−δE)(1−β)ϕ
(1−v)β−(1−β)ϕ < 0, and Γ′′

B(kt) < 0. This implies that ΓB(kt) exhibits an inverted U curve with
respect to kt.
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The economy then has steady states other than kss = 0 if there is a range of kt that satisfies
ΓB(kt) ≥ kt. This condition corresponds to ΓB(k̂B) > k̂B, where k̂B satisfies Γ′

B(k̂B) = 1. Using

k̂B, we can characterize the steady state in the following three cases:
First, if ΓB(k̂B) < k̂B, the inverted U-curve describing the dynamics of capital stock is below

the 45◦ line. Therefore, a unique steady state is characterized by kss = 0. As capital stock
converges to kss, it is stable. This case corresponds to case (i) of Proposition 7 and is depicted
in case (i) of Figure 11. Second, if ΓB(k̂B) = k̂B, then there are two steady states with k1ss = 0
and k2ss > 0. The inverted U-curve touches the 45◦ line at kt = k̂B and is below it for the other
range. Then, capital stock converges to k2ss only for kt ∈ [k2ss, kB] and converges to k1ss otherwise.
Even if capital stock reaches k2ss, once it is below k2ss by a fluctuation, it converges to k1ss = 0.
Therefore, the steady state with k2ss is unstable. This is presented as case (ii) in Proposition
7 and depicted in case (ii) in Figure 11. Finally, if ΓB(k̂B) > k̂B, then there are three steady
states with k1ss, k

2
ss, and k3ss. One steady state is characterized as k1ss = 0 and is stable, as in the

previous cases. The steady state with k2ss is clearly unstable. By contrast, because the stability
of k3ss is still ambiguous, we have two more cases, depending on whether k3ss is greater than kB.
If k3ss is strictly lower than kB satisfying Γ′

B(kB) = −1, capital stock converges to k3ss through
an oscillatory path. However, if capital stock is higher than k4 such that ΓB(k

4) = ΓB(k
2
ss), it

converges to k1ss. Therefore, the steady state with k3ss is locally stable. This case corresponds to
the former case (iii) of Proposition 7 and is depicted in case (iii–a) of Figure 11. By contrast,
if k3ss is higher than kB, the steady state with k3ss is unstable. This is the latter case (iii) of
Proposition 7 and is depicted in case (iii–b) of Figure 11.

Figure 11: Capital stock dynamics with debts in cases (i) – (iii): v < v

E.2 Cases with v > v

In this case, limkt→0 ΓB(kt) = limkt→+∞ ΓB(kt) = +∞, limkt→0 Γ
′
B(kt) = −∞, limkt→+∞ Γ′

B(kt) =

− (1−δE)(1−β)ϕ
(1−v)β−(1−β)ϕ > 0, and Γ′′

B(kt) > 0. This implies that ΓB(kt) exhibits a U curve with respect

to kt. Thus, steady states exist in a finite range if ΓB(k̂B) ≤ k̂B. Using k̂B, we can characterize
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the steady state in the following cases:
First, if ΓB(k̂B) > kB, the dynamics of capital stock lie above the 45◦ line and do not

intersect with it. Then, capital stock diverges to +∞. The steady state is undefined at a finite
level. This is presented as case (iv) of Proposition 7 and is depicted in Figure 12. Second, if
ΓB(k̂B) = kB, the dynamics touch the 45◦ line only when kss = k̂B. Capital stock converges to
kss for kt ∈ [kB, kss], whereas it diverges to infinity for kt > kss. Therefore, the steady state is
unstable. This case corresponds to case (v) in Proposition 7 and is depicted in case (v) in Figure
12. Third, if ΓB(k̂B) < k̂B, then there are two steady states: k1ss and k2ss. The steady state with
k2ss is clearly unstable because Γ′

B(k
2
ss) > 1. By contrast, the stability of the steady state with

k1ss depends on the location of k1ss. In this case, k1ss is less than k̂B. Therefore, stability depends
on whether the absolute value of Γ′

B(k
1
ss) is less than unity. This is equivalent to determining

whether k1ss is lower than kB. If kB < k1ss < k̂B, capital stock converges to k1ss via a monotone
or an oscillatory path for k3 < kt < k2ss, where k3 satisfies ΓB(k

3) = ΓB(k
2
ss). The monotone

path is depicted in case (vi–a) in Figure 12 and the oscillatory path is depicted in case (vi–b).
By contrast, if k1ss ≤ kB, the steady states with k1ss are unstable because Γ′

B(k
1
ss) ≤ −1. This

case is depicted in cases (vi–c) in Figure 12. As a result, these are summarized in case (vi) of
Proposition 7.

Figure 12: Capital stock dynamics with debts in cases (iv) – (vi): v > v
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F Proof of Proposition 8

The dynamics of the capital accumulation has the following characteristics: limkt→+∞ ΓH(kt) =
+∞,

lim
kt→0

ΓH(kt) =
β(1− v)

µ(1− β) + β(1− v)
(H̄ − m̄), (81)

Γ′
H(kt) =

µ(1− β)(1− δH)

µ(1− β) + β(1− v)
+

β(1− v)
(
1− α(1−τy)

1+τc

)
µ(1− β) + β(1− v)

αAkα−1
t ≥ 0, (82)

Γ′′
H(kt) = −

β(1− v)
(
1− α(1−τy)

1+τc

)
µ(1− β) + β(1− v)

α(1− α)Akα−2
t ≤ 0. (83)

From (82), the dynamics is monotonically increasing and is characterised by limkt→0 Γ
′
H(kt) =

+∞ and limkt→+∞ Γ′
H(kt) =

µ(1−β)(1−δH)
µ(1−β)+β(1−v) ∈ (0, 1).

First, suppose that the natural adaptation is large enough and greater than the mitigation,
H̄ > m̄. Then, we have ΓH(kt) > 0 ∀kt ≥ 0. And there is a stable and unique steady state at
kss > 0 because limkt→+∞ Γ′

H(kt) ∈ (0, 1). This case is shown as case (i) of Proposition 8 and in
Figure 13.

Second, if natural adaptation equals mitigation such that H̄ = m̄, the dynamics becomes
kt+1 = kt = 0, which is an unstable steady state. As Γ′

H(kt) > 0, Γ′′
H(kt) ≤ 0, and limkt→+∞ Γ′

H(kt) ∈
(0, 1), there is the other steady state, which is positive and stable, k1ss > 0. This case is shown
as case (ii).

Third, if the natural adaptation is small enough such that H̄ < m̄, ΓH(kt) turns negative
for some low kt. In the range of ΓH(kt) < 0, kt+1 goes to zero. Thus, in this case, there is a
steady state at k1ss = 0. Furthermore, letting k̂H be a capital stock satisfying Γ′

H(k̂H) = 1, we

have three more cases, case (iii) of ΓH(k̂H) > k̂H , case (iv) of ΓH(k̂H) = k̂H , and case (v) of
ΓH(k̂H) < k̂H . In case (iii), there exist two more steady states k2ss and k3ss with k2ss < k3ss, of
which k2ss is unstable and k3ss is stable. In case (iv), there is one more steady state, k2ss, which is
unstable. Finally, in case (v), there are no other steady states than k1ss = 0.
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Figure 13: Capital stock dynamics with private adaptation and public mitigation

11


