
Online Appendix

CONSUMER PREFERENCES AND INFLATION
DIFFUSION

This Online Appendix provides additional details on the following aspects: (i)

the theoretical model describing price dependencies arising from value chains of

production networks; (ii) the mapping of the input-output (I-O) classification to

the COICOP classification, using the concordance matrices from Cai and Vandyck

(2020); (iii) the Bayesian VAR model and the prior densities employed in the analy-

sis; (iv) robustness checks related to the identification of the Bayesian VAR model,

the inclusion of additional explanatory variables in the panel regressions, and the

informational content of alternative network topology measures. Finally, the com-

plete list of subindices for both the COICOP (three-digit) and I-O classifications

(two-digit) is provided.

Authors:
C. Glocker: Austrian Institute of Economic Research, Vienna, Austria.
E-mail: christian.glocker@wifo.ac.at

P. Piribauer: Austrian Institute of Economic Research, Vienna, Austria.
E-mail: philipp.piribauer@wifo.ac.at .



2

Contents

1. Cross-price effects from a supply side view 3

1.1. From the I-O to the COICOP (CPI) classification 4

1.2. Price dependencies from the supply side 5

2. Bayesian estimation and prior densities 6

3. Robustness and extensions 7

3.1. Alternative identification: sign restrictions on the impulse response

functions 7

3.2. Alternative identification: using a combination of sign and size

restrictions 10

3.3. Additional explanatory variables 12

3.4. Additional network topology measures 14

4. Additional tables 16

References 21



3

1. Cross-price effects from a supply side view

This section motivates price-dependencies arising from value chains along produc-

tion networks. We follow Acemoglu et al. (2012) in this respect. Consider again a

static economy with n ∈ N goods. We now assume that the demand by consumers for

these n goods is perfectly price inelastic. Each good is produced in a distinct indus-

try and can be either purchased by the consumers or used as an intermediate input

for the production of other goods. Firms in each industry employ Cobb-Douglas

production technologies with constant returns to scale to transform intermediate

inputs and labor into final goods. In particular, the output of industry i is given by

(1) xi = ξilγii
n

∏
j=1

x
γij
ij

where li is the amount of labor hired by firms in industry i, xij ∈ R+ is the quantity

of good j used for the production of good i, γi > 0 denotes the share of labor in

industry i’s production technology and ξi is an industry specific productivity shock.

The exponents γij ≥ 0 in equation (1) formalize the idea that firms in an industry

may need to rely on the goods produced by other industries as intermediate inputs

for production. Note that, in general, γij ≠ γji and γi + ∑n
j=1 γij = 1. Firms in

industry i choose their demand for labor and intermediate goods to maximize profits,

πi = Pixi − li − ∑n
j=1Pjxij, while taking all prices (P1, ...,Pn) as given and the wage

is normalized to one. The first-order conditions imply that xij = γijPixi/Pj and

li = γiPixi. Plugging these expressions into firm i’s production function, equation

(1), and taking logarithms implies that

(2) ∆pi =
n

∑
j=1

γij∆pj + εi

where εi = −∆log(ξi) and pi = log(Pi). Since the above relationship has to hold for

all industries i = 1, ..., n, it provides a system of equations to solve for all relative

prices in terms of productivity shocks. It can be rewritten in matrix form

(3) ∆p = Γ∆p + ε

where Γ = [γij]nij=1 is the economy’s input–output matrix, p = [pi]ni=1 ∈ Rn is again

the price vector and ε = [εi]ni=1 ∈ Rn is a vector of supply shocks. Since demand

is price inelastic, equilibrium prices are set by goods’ supplies only according to
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equation (3). Consequently, the equilibrium CPI inflation rate is given by

(4) π =w′(I −Γ)−1ε

where the price level according to the CPI is given by log(p) =w′p and π =∆log(p) =

w′∆p. Equation (4) expresses the inflation rate in terms of industry-level shocks

and the economy’s production network. The latter captures the input-output (I-

O) linkages between various industries, and they are summarized in the matrix Γ.

From an empirical point of view, the I-O matrix of an economy is constructed by

the national statistical offices and it is defined in terms of input expenditures as

a fraction of sales, that is, ηij = Pjxij/Pixi. However, in the special case that all

technologies are Cobb-Douglas, ηij coincides with the exponent γij in equation (1).

Some remarks on the matrix Γ are in order. First, note that the assumption

that γi + ∑n
j=1 γij = 1 with γi > 0 implies that for all rows i = 1, ..., n in Γ we have

that ∑n
j=1 γij < 1. Following Werner (2009), this implies that the matrix Γ has a

spectral radius ϱ(Γ) that satisfies 0 < ϱ(Γ) < 1, which in turn guarantees that I −Γ

is invertible and, moreover, the economy’s Leontief inverse L̃ = (I − Γ)−1 can be

decomposed in form of a Neumann-series: L̃ = (I − Γ)−1 = ∑∞k=0Γk. This implies

that l̃ij = γij +∑n
h=1 γihγhj + [...], where l̃ij ∈ L̃, with the first term in this expression

accounting for industry j’s role as a direct intermediate goods’ supplier to industry

i, the second term accounting for j’s role as a supplier to i’s suppliers, and so on.

Interpreted in terms of the production network representation of the economy, l̃ij

accounts for all possible directed walks (of various lengths) that connect industry j

to industry i over the network. The latter in turn shapes the transmission of price

shocks originating in specific industries on the CPI inflation rate.

1.1. From the I-O to the COICOP (CPI) classification. In what follows, we

examine the conversion of the production network Γ based on the I-O classification

into the COICOP classification on which the CPI is based upon. This serves to

enable a direct comparison of the two price networks given by A and Γ. We use the

input-output (I-O) tables to this purpose. I-O tables can be product-by-product or

industry-by-industry matrices combining both supply and use tables into a single

matrix. We use the latter for our purposes. These tables depict inter-industry

relationships within an economy, showing how output from one industry may become
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an input to another industry. They quantify the inter-industry relationships by

means of a matrix. Their column entries capture inputs to an industry, while row

entries represent outputs from a given industry. This arrangement, therefore, shows

the extent of dependency of one industry on another, both as a customer of outputs

from other industries and as a supplier of inputs. Industries may also depend on

their own output, that is, on a portion of their own production; this is delineated

by the entries of the main diagonal. Each column of the I-O matrix shows the

monetary value of inputs to each sector and each row represents the value of each

sector’s outputs.

We convert the I-O classification into the COICOP classification on which the CPI

is based upon by using the concordance matricesB of Cai and Vandyck (2020). This

gives rise to a production network expressed in terms of the COICOP classification,

which we denote by Γ̃, and it is given by

(5) Γ̃ =B′

ΓB

Equation (5) maps the production network based on the I-O classification into a new

production network based on the COICOP classification. Moreover, the transforma-

tion in equation (5) makes sure that both matrices (A from the demand (consumer)

side and Γ̃ from the supply (firm) side) have the same dimension (n × n). This

implies that the two price-Jacobian matrices can now be compared directly to each

other.

1.2. Price dependencies from the supply side. We collect the I-O tables (Γ)

for the UK and the current EU member countries for the year 2015 which allows for

the highest data coverage across countries; no I-O tables are available for Bulgaria

and Luxembourg. The classification which these tables are based upon is outlined

in Table 4 below. We re-classify the tables by using the concordance matrices of Cai

and Vandyck (2020) which map the I-O tables (Γ) based on the I-O classification

(Table 4) into the COICOP classification (Table 3) by using equation (5). This

yields Γ̃. We re-classify the matrix Γ̃ in line with the assumptions of equation (1)

and the constraint that γi+∑n
j=1 γij = 1, where we set the labor share γi equal to 0.45

for each sector i = 1, ..., n (Acemoglu et al., 2012). This implies that the elements

γ̃ij ∈ Γ̃ satisfy 0 ≤ γ̃ij < 1 ∀ i, j = 1, ..., n. We then compute the average of Γ̃ across all
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countries in our sample and show the corresponding production network in Figure

3 of the main text. We omit self-loops and use size-thresholding to enable a better

visual inspection. The size-thresholding applies to the value of the edges γ̃ij and we

omit all those edges which are less than 0.01 in value. This gives rise to a link density

equal to 33 percent, see Table 2 of the main text. Note that the price network Γ

as of the production network does not need to be estimated as it was the case for

the price network A as of the consumer demand side. This is due to the fact that

the I-O tables identify the links (edges) of the network (compare Bilgin and Yılmaz,

2018).

The resulting network shown in Figure 3 of the main text has some interesting

characteristics. First of all, the prices associated with the nodes 1, 3, 7, 10 and 39 act

as the central sources of shocks in the network. In each case, the out-degree clearly

predominates over the in-degree (nodes in red). While the interaction among them-

selves is limited, they in turn shape the dynamics of a series of other prices (nodes)

which are connected to these five central prices. This particular network structure

gives rise to a disassortative network (negative degree-correlation, see Table 2 of the

main text). Secondly, the network is characterized by rich dynamics, since a cycle

applies twice involving on the one hand prices No. 1 and 3 and prices No. 7 and 39

on the other hand. This can also be seen by the high value of the graph energy (GE)

measures as provided in Table 2 of the main text. Third, the network gives rise to

three blocks and can hence be considered as a stochastic block model (Holland et

al., 1983; Karrer and Newman, 2011). The first involves the prices in the upper-left

corner of Figure 3 of the main text with prices No. 7 and 39 as the central ones;

the second block is given by the prices in the right part of the figure involving price

No. 10 as the central one, and finally, the third block is comprised by the prices in

the lower-left corner involving prices No. 1 and 3 as the central ones.

2. Bayesian estimation and prior densities

Our benchmark BVAR model can be re-arranged to the following expression:

(6) Y =Xb +E,

where X now includes all regressors of equation (22) of the main part (that is, lagged

endogenous and exogenous variables), and E has a variance-covariance matrix Σ.
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We use a rather diffuse version of the conjugate prior densities. To this purpose,

we utilize the Normal-Wishart prior density for b and Σ−1: p(b,Σ−1) = p(b)p(Σ−1),

where b ∼ N (b, V ) and Σ−1 ∼ W (H,v). The rather agnostic setup of the prior

densities is then obtained by using v = 0 and H−1 = I, where I is the identity matrix

of conformable size. For the slope parameters we set b = 0 and V = 100I. Given this

particular specification for the prior densities, we obtain the following conditional

posterior densities for p(b∣Y,Σ−1) and p(Σ−1∣Y, b):

b∣Y,Σ−1 ∼ N (b̄, V̄ ) Σ−1∣Y, b ∼W (H̄, v̄) ,(7)

with V̄ = (V −1 +∑T
t=1X

′Σ−1X)−1, b̄ = V̄ (V −1b +∑T
t=1X

′Σ−1Y ), v̄ = T − v and

H̄ = (H−1 +∑T
t=1X

′Σ−1(Y −Xb)(Y −Xb)′)−1.

We employ a Gibbs sampler to draw from the multivariate Normal p(b∣Y,Σ−1)

and the Wishart p(Σ−1∣Y, b) distribution.

We sample 6,000 draws from the posterior distribution. After discarding the

first 1,000, we are left with 5,000 draws for each parameter. As is common in the

literature for Bayesian estimation of VARs, we use rejection sampling to impose

stability on the BVAR coefficients and only keep stable draws. Our results are

qualitatively not affected by this choice of the sampling.

3. Robustness and extensions

We consider various robustness checks which concern both the estimation of the

demand-driven cross-price dependencies, the role of additional explanatory variables

for the results and finally additional network topology measures to capture the

spillover effects that emanate from the network structure. In what follows we address

each aspect.

3.1. Alternative identification: sign restrictions on the impulse response

functions. The baseline results presented in Sections 3 and 4 rely on the identi-

fication of the matrix A, which governs the contemporaneous interactions among

the endogenous variables in yij
t . This identification captures only the demand-driven

cross-price dependencies that arise from contemporaneous effects, while ignoring any

delayed effects. In the following, we explore an alternative approach that accounts

for demand-driven cross-price dependencies that may arise with a delay. Specifically,
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we adopt the traditional method of sign restrictions, which imposes constraints on

the columns of the matrix H of equation (23) of the main part to identify the sign

of the impact response of structural shocks on the endogenous variables in yij
t .

We maintain the sign restrictions derived from the structural system of equations

(16)-(19) of the main part, but now apply them to the impact responses of the

endogenous variables to the structural shocks, consisting of two supply and two

demand shocks. According to this system, supply shocks induce opposite movements

in prices and quantities, whereas demand shocks cause prices and quantities to move

in the same direction. Thus, we assume that the signs of the elements in H = A−1

are characterized as follows:

(8) sign(H) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ ⋅ + ⋅

⋅ + ⋅ +

− ⋅ + ⋅

⋅ − ⋅ +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where again a dot refers to unrestricted elements. The first two columns identify

the supply shock to good i and to good j, while the latter two identify the demand

shock to good i and to good j.

We employ the same procedure for implementing sign restrictions as previously

described, which involves the eigenvalue-eigenvector decomposition of the reduced-

form variance-covariance matrix, along with the extension using orthonormal Q-

matrices from the QR decomposition.

Our focus extends beyond the entries h34 ∈ H and h43 ∈ H, as we now consider

demand-driven cross-price effects that occur beyond contemporaneous interactions.

To this end, we compute the impulse responses, which are given by

(9) Hs =
∂yt+s

∂u′t
=ΨsH

with Ψ0 = I, and Ψs is found from the first 4 rows and columns of Fs, which is the

companion matrix of the reduced form model as put forth in equation (22) of the

main part.

We compute impulse response functions over a horizon s of up to three months and

use the average from the first to the third month as a quantitative measure for the aij

elements of the price-Jacobian matrix A. This pertains to the elements h34,1 ∈ H1



9

Table 1. Network topology statistics

Demand Demand
(h = 3) (contemporaneous)

Standard Standard
Mean deviation Mean deviation

Positive edges ratio(1) 0.75 0.09 0.74 0.09
Link (degree) density (LD) 0.25 0.06 0.19 0.06

Network density (ND) 0.06 0.08 0.03 0.05
Graph energy (binary, GEZ2) 47.95 3.61 43.14 5.60

Graph energy (non-binary, GER) 11.24 4.83 6.55 2.72

(Dis-)Assortativity(2) 0.06 0.03 0.03 0.07

Notes: The moments (Mean and Standard deviation) are computed for each net-
work topology measure across the countries. The figures shown are the mean and
the standard deviation across the countries. (1) Positive edges ratio denotes the
number of edges with a positive value relative to the total number of non-zero edges.
(2) Assortativity (Dis-assortativity if negative) is a measure of the preference of nodes
in a network to attach to others that are (dis-)similar in terms of their degree. It is
operationalized as the correlation between two nodes.

through h34,3 ∈ H3, and h43,1 ∈ H1 through h43,3 ∈ H3. Thus, aij = 1
3 ∑

3
s=1 h34,s

and aji = 1
3 ∑

3
s=1 h43,s, respectively. Given that we have a posterior distribution

for the elements in Hs, we also obtain a posterior distribution for the aij terms,

enabling inference and the exclusion of insignificant responses, as discussed and

done in Section 3.1 of the main part.

We subsequently carry out the same exercises as in Sections 3 and 4. Table 1

compares the network topology statistics across the price-Jacobian matrices which

emerge from the different approaches. As can be seen, there is a similar positive

edges ratio, however, the number of links tends to be higher when a larger horizon

is considered (link density rises to 0.25 from 0.19). At the same time, also the

network density increases slightly. The larger number of links is also reflected in

the binary graph energy measure which now has a higher value, but also the non-

binary graph energy measure rises. Finally, the extent of assortativity is now higher

(0.06 instead of 0.03), with a now smaller standard deviation across countries. The

higher assortativity is shaped by three nodes solely, which are the ones capturing

(i) catering services (No. 32), (ii) maintenance and repair of dwelling (No. 8), and

(iii) household appliances (No. 13).

The network is depicted graphically in Figure 1. As observed, its shape and

structure align with those presented in Figure 2 of the main part; however, the

increased number of links renders the network denser. This larger number of links
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Figure 1. Demand-driven cross-price dependencies (long horizon)

Note: The figure shows the cross-price dependencies as a network. We only show the edges that are present
in 50 percent of the countries. Nodes in red indicate out-degree dominance, while those in green indicate
in-degree dominance; nodes in blue indicate equality between out- and in-degree. Edges in red refer to
positive valued links (complements) and those in black to negative ones (substitutes). The identification
is based on sign restrictions on the impulse response functions (H matrix).

The key nodes are: (8) “Maintenance and Repair of the Dwelling”, (13) “Household Appliances”, (19)

“Hospital Services”, (21) “Operation of Personal Transport Equipment”, (31) “Package Holidays”, (32)

“Catering Services”, and (39) “Other services”.

underscores the importance of delayed effects in shaping demand-driven interactions

among prices (and quantities).

Finally, we also carry out the regression analysis as put forth in Section 4 of

the main part. We observe that with the higher horizon of the impulse responses,

the statistical significance level of the network topology measures in the first-order

type regressions (Reg. 2 – Reg. 6) declines. However, the high level of statistical

significance of the interaction terms in the second-order type regressions (Reg. 8 –

Reg. 11) is preserved. We interpret this in favor of the overall robustness of the

baseline results.

3.2. Alternative identification: using a combination of sign and size re-

strictions. We consider yet another identification strategy. It differs from the one

of the previous section by again applying sign restrictions on the (rows of the) A

matrix of the SVAR model, as was done in the main part, however, it is distinct

to the identification strategy carried out in the main part as we now consider an

identification that relies on a combination of sign and size restrictions.
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Figure 2. Demand driven cross-price dependencies

Note: The figure shows the cross-price dependencies as a network. We only show the edges that are present
in 50 percent of the countries. Nodes in red indicate out-degree dominance, while those in green indicate
in-degree dominance; nodes in blue indicate equality between out- and in-degree. Edges in red refer to
positive valued links (complements) and those in black to negative ones (substitutes). The network shown
is the average over all countries (the UK and the current EU member countries). The identification is
based on a combination of sign and size restrictions on the A matrix.

The key nodes are: (8) “Maintenance and Repair of the Dwelling”, (13) “Household Appliances”, (19)

“Hospital Services”, (21) “Operation of Personal Transport Equipment”, (31) “Package Holidays”, (32)

“Catering Services”, and (39) “Other services”.

The core of this new identification strategy retains the individual good-specific

sign restrictions for both the demand and supply curves, as originally specified, that

is, the supply curve for each good is upward sloping, while the demand curve for

each good is downward sloping. However, we dismiss the restrictions concerning the

simultaneity of supply and demand shocks, i.e., the occurrence of aggregate shocks.

Instead of these aggregate restrictions, we introduce size restrictions that require the

demand (supply) elasticity for a good with respect to its own price to be larger (in

absolute value) than that with respect to other goods’ prices. The size restriction is

motivated by Lemma 1, which discusses the stability and invertibility of the price-

Jacobian matrix (in the case for the demand elasticities). While the size restriction

we impose is slightly distinct from the one in Lemma 1, they are still closely related,

since in both cases the own-price elasticity is set relative to the cross-price elasticity.

We use this alternative identification strategy and carry out the same analysis

as in the main part. Figure 2 illustrates the resulting demand-driven cross-price

dependencies, again displayed as a network. By comparing this network with the

one shown in Figure 2 of the main part, it becomes clear that all links from the
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previous identification scheme are preserved in the new one. Furthermore, the new

identification introduces an additional link between good 1 (“food”) and good 2

(“non-alcoholic beverages”), which was absent in the old identification. We consider

this as a fairly similar set of demand-driven cross-price dependencies, which, in

our view, strengthens the validity of the results obtained from both identification

strategies.

Additionally, we extend our analysis by conducting the temporal investigation, as

described in Section 4 of the main part, in which we examine the time variation next

to the variation across countries by means of panel data regressions. Specifically,

we again estimate the BVAR models over different time windows (nine windows)

and compute the three network topology measures (such as link density, network

density, and graph energy) accordingly. We then repeat the panel data regressions

from Section 4 of the main part using these new estimates. The results are presented

in Table 2. We observe that, while there are some quantitative changes in the pa-

rameter estimates, overall the results remain unchanged qualitatively. Notably, the

statistical significance of the parameters related to the network topology measures

is still consistent across both identification schemes (sign restrictions as carried out

in Section 4 in the main part and the sign & size restrictions approach carried out

here).

We interpret these findings as supporting the stability of our baseline results

with respect to distinct identification approaches, indicating that the results are not

sensitive to the specific choice of identification approach.

3.3. Additional explanatory variables. The estimation of the cross-price de-

pendencies (A) in equation (22) of the main part does not use exogenous variables.

This specification is motivated for reasons specific to parsimoniousness, however, it

is still important to examine whether controlling for exogenous influences shapes the

baseline results. In what follows, we check for the stability of the estimates of the

adjacency matrix Ã that emerges from the baseline estimation. To this purpose, we

consider various exogenous variables, which are: the 10-year government bond rate,

a measure of administered prices, global measures such as shipping costs (Carrière-

Swallow et al., 2023), the oil price (Brent), a price measure for natural gas (Dutch

TTF), the global supply chain impairment measure of Benigno et al. (2022). We
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employ each of these listed exogenous variables once at a time and put them into the

VAR model given by its reduced form representation in equation (22) of the main

part as truly exogenous variables. We consider this specification as appropriate as

none of these variables is likely to be affected by the dynamics of the three-digit

level goods quantities and prices in a particular country in our sample.

We subsequently re-estimate Ã and the network topology measures for each coun-

try, to then re-run the panel data regression models as of equation (32) of the main

part. We find that the results put forth in Table 3 of the main part hold qualita-

tively and conclude that our results are robust to extensions in the form of exogenous

variables.

In a second extension in this context, we employ our baseline results for the es-

timated price-Jacobian matrix A and the corresponding adjacency matrix Ã and

consider additional exogenous variables in the panel data regression model. We con-

sider the country-specific nominal effective exchange rate, unit labor costs, GDP,

the money supply (M1), and labor market conditions such as the labor force par-

ticipation rate and the number of job vacancies. Each of these variables is used in

annual growth rates (except the labor force participation rate) and a temporal dis-

aggregation to a monthly frequency is implemented, if necessary, using the method

of Chow-Lin. We examine these variables solely in the first-order set-up in equation

(32) of the main part to assess the differences in the parameter estimates of the

network topology measures relative to those of the baseline results. We find that

there are no qualitative changes to the results of the panel data regression models,

provided in Table 3 of the main part. Most importantly, also the significance pattern

of the estimated parameters remains unchanged. It has to be noted, though, at this

point that the comparison is impaired to some extent by the fact that the country

coverage is limited in some cases since not all countries provide (long) time series

on vacancies, and alike.

3.4. Additional network topology measures. We challenge the baseline results

with various additional network topology measures. This is important in our context

since we utilize network topology measures to proxy for the spillover effects that

emerge from the extent of network connectedness. To this purpose we consider
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the following additional measures: (i) transitivity, (ii) rich-club metric, and (iii)

assortativity.

With a view to the network structure as provided in Figure 2 in the main part, Xu

et al. (2010) stress the importance of high-degree nodes for the structure of a complex

system. This is commonly referred to as transitivity (“rich-club” phenomenon) and

has been discussed in several instances in both social and computer sciences and

refers to the tendency of high-degree nodes–the hubs of the network–to be very

well connected to each other. For example, the clustering coefficient (Watts and

Strogatz, 1998) is used to measure the transitivity property of a network. If a social

network has a high clustering coefficient, it means that the “friends” of someone are

also likely to be “friends” themselves (Newman and Park, 2003). It is calculated by

the ratio between the observed number of closed triplets and the maximum possible

number of closed triplets in the graph. However, the clustering coefficient ignores

the extent of interaction among high-degree nodes. To this purpose, Opsahl et al.

(2008) extended the rich-club metric (Colizza et al., 2006) to take the tightness

among connected nodes into account. Finally, the (dis-)assortativity is yet another

measure in this context (Newman, 2003). It captures the preference for a network’s

nodes to attach to others that are (dis-)similar in some way.

We use each of these alternative network topology measures at a time instead of

the ones in Table 3 of the main part. We find that all of these three measures have

a statistically significant first-order effect on the CPI inflation rate. The level of

statistical significance is particularly high in case of the rich-club metric (<0.005).

This highlights the role of the high-degree nodes in shaping the network structure,

the overall network connectedness and hence the size (and sign) of the spillover

effects of microeconomic price shocks on the CPI inflation rate.
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4. Additional tables

Table 3. The three-digit subindices of the CPI (COICOP classifica-
tion)

ID Description

1 cp 011 Food

2 cp 012 Non-Alcoholic Beverages

3 cp 021 Alcoholic Beverages

4 cp 022 Tobacco

5 cp 031 Clothing

6 cp 032 Footwear

7 cp 041 Actual Rentals for Housing

8 cp 043 Maintenance and Repair of the Dwelling

9 cp 044 Water Supply and Miscellaneous Services Relating to the Dwelling

10 cp 045 Electricity, Gas and Other Fuels

11 cp 051 Furniture and Furnishings, Carpets and Other Floor Coverings

12 cp 052 Household Textiles

13 cp 053 Household Appliances

14 cp 054 Glassware, Tableware and Household Utensils

15 cp 055 Tools and Equipment for House and Garden

16 cp 056 Goods and Services for Routine Household Maintenance

17 cp 061 Medical Products, Appliances and Equipment

18 cp 062 Out-Patient Services

19 cp 063 Hospital Services

20 cp 071 Purchase of Vehicles

21 cp 072 Operation of Personal Transport Equipment

22 cp 073 Transport Services

23 cp 081 Postal Services

24 cp 082 Telephone and Telefax Equipment

25 cp 083 Telephone and Telefax Services

26 cp 091 Audio-Visual, Photographic and Information Processing Equipment

27 cp 092 Other Major Durables for Recreation and Culture

28 cp 093 Other Recreational Items and Equipment, Gardens and Pets

29 cp 094 Recreational and Cultural Services

30 cp 095 Newspapers, Books and Stationery

31 cp 096 Package Holidays

32 cp 111 Catering Services
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Table 3. The three-digit subindices of the CPI (COICOP classifica-
tion)

ID Description

33 cp 112 Accommodation Services

34 cp 121 Personal Care

35 cp 123 Personal Effects N.E.C.

36 cp 124 Social Protection

37 cp 125 Insurance

38 cp 126 Financial Services N.E.C.

39 cp 127 Other Services N.E.C.

Not used:

– cp 101 Pre-Primary and Primary Education

– cp 102 Secondary Education

– cp 103 Post-Secondary Non-Tertiary Education

– cp 104 Tertiary Education

– cp 105 Education Not Definable by Level
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Table 4. The I-O tables: Classification

ID Description

1 CPA A01 Products of agriculture, hunting and related services

2 CPA A02 Products of forestry, logging and related services

3 CPA A03 Fish and other fishing products; aquaculture products; support services

to fishing

4 CPA B Mining and quarrying

5 CPA C10-12 Food, beverages and tobacco products

6 CPA C13-15 Textiles, wearing apparel, leather and related products

7 CPA C16 Wood and of products of wood and cork, except furniture; articles of

straw and plaiting materials

8 CPA C17 Paper and paper products

9 CPA C18 Printing and recording services

10 CPA C19 Coke and refined petroleum products

11 CPA C20 Chemicals and chemical products

12 CPA C21 Basic pharmaceutical products and pharmaceutical preparations

13 CPA C22 Rubber and plastic products

14 CPA C23 Other non-metallic mineral products

15 CPA C24 Basic metals

16 CPA C25 Fabricated metal products, except machinery and equipment

17 CPA C26 Computer, electronic and optical products

18 CPA C27 Electrical equipment

19 CPA C28 Machinery and equipment n.e.c.

20 CPA C29 Motor vehicles, trailers and semi-trailers

21 CPA C30 Other transport equipment

22 CPA C31 32 Furniture and other manufactured goods

23 CPA C33 Repair and installation services of machinery and equipment

24 CPA D Electricity, gas, steam and air conditioning

25 CPA E36 Natural water; water treatment and supply services

26 CPA E37-39 Sewerage services; sewage sludge; waste collection, treatment and dis-

posal services; materials recovery services; remediation services and oth-

ers

27 CPA F Constructions and construction works

28 CPA G45 Wholesale and retail trade and repair services of motor vehicles and

motorcycles

29 CPA G46 Wholesale trade services, except of motor vehicles and motorcycles
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Table 4. The I-O tables: Classification

ID Description

30 CPA G47 Retail trade services, except of motor vehicles and motorcycles

31 CPA H49 Land transport services and transport services via pipelines

32 CPA H50 Water transport services

33 CPA H51 Air transport services

34 CPA H52 Warehousing and support services for transportation

35 CPA H53 Postal and courier services

36 CPA I Accommodation and food services

37 CPA J58 Publishing services

38 CPA J59 60 Motion picture, video and television programme production services,

sound recording and music publishing; programming and broadcasting

services

39 CPA J61 Telecommunications services

40 CPA J62 63 Computer programming, consultancy and related services;Information

services

41 CPA K64 Financial services, except insurance and pension funding

42 CPA K65 Insurance, reinsurance and pension funding services, except compulsory

social security

43 CPA K66 Services auxiliary to financial services and insurance services

44 CPA L68 Real estate services

45 CPA M69 70 Legal and accounting services; services of head offices; management con-

sultancy services

46 CPA M71 Architectural and engineering services; technical testing and analysis

services

47 CPA M72 Scientific research and development services

48 CPA M73 Advertising and market research services

49 CPA M74 75 Other professional, scientific and technical services and veterinary ser-

vices

50 CPA N77 Rental and leasing services

51 CPA N78 Employment services

52 CPA N79 Travel agency, tour operator and other reservation services and related

services

53 CPA N80-82 Security and investigation services; services to buildings and landscape;

office administrative, office support and other business support services
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Table 4. The I-O tables: Classification

ID Description

54 CPA O Public administration and defence services; compulsory social security

services

55 CPA P Education services

56 CPA Q86 Human health services

57 CPA Q87 88 Residential care services; social work services without accommodation

58 CPA R90-92 Creative, arts, entertainment, library, archive, museum, other cultural

services; gambling and betting services

59 CPA R93 Sporting services and amusement and recreation services

60 CPA S94 Services furnished by membership organisations

61 CPA S95 Repair services of computers and personal and household goods

62 CPA S96 Other personal services

63 CPA T Services of households as employers; undifferentiated goods and services

produced by households for own use
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