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Appendix 1: Technical Assumptions and Proofs

Appendix 1.1: Assumptions

This section lists the assumptions used to prove Theorems 1 and 2. We denote a generic constant by C, whose

magnitude is inconsequential for the asymptotic analysis and can vary from one place to another. A generic

function ζ(v) ∈ Cj if ζ(v) and all of its partial derivatives of order less than or equal to j are continuous

and uniformly bounded on its support. For any vector A, define the norm ||A|| =
√
A⊤A. Assumptions:

A1 (1) Random sample {yi,t, ω⊤
i,t}ni=1 is identical and independent (i.i.d.) across i = 1, . . . , n for each fixed

t, {yi,t, ω⊤
i,t, xt, zt}Tt=1 is stationary and strongly mixing, with α-mixing coefficient αi(t) for each fixed
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i. (2) Let pn = p + n − 1 be the dimension of ϑ = (θ⊤, α⊤
−1), where p = dw + Kσ + Kλ + 4 is the

dimension of θ = (δ⊤, γ⊤). Then αi(t) ≤ α(t) ≤ Ct−B for some constant B > pn + 1
2 . (3) zt has a

compact support Z ⊂ ℜ. (4) Fixed effect αi satisfies
∑n

i=1 αi = 0 and allows E(αi|ωi,t, xt, zt) ̸= 0.

A2 (1) ei,t is i.i.d. conditioning on (ω⊤
i,t, xt, zt, αi). (2) E(|ϵ̄t|2+δ|xt, zt) = E(|ϵ̄t|2+δ|zt) ∈ C1,∀δ > 0. (3)

E(ϵ̄2t |zt) ≡ σ2
ϵ̄ (zt) ∈ C2.

A3 (1) Θ ⊂ ℜpn is a compact subset of ℜpn , and its interior points contain ϑ0 = (θ⊤0 , α
⊤
0,−1). (2)

∀ϑ ∈ Θ, if ϑ ̸= ϑ0, l(ei,t(ϑ);xt, zt) ̸= l(ei,t(ϑ0);xt, zt), where ei,t(ϑ) = ỹi,t − ω̃⊤
i,tδ − d⊤i,−1α−1 +

1
n

∑n
i=1 ei,t. (4) If {ϑs}s=1,2,... is a random sequence in Θ such that ϑs → ϑ as s → ∞, then

ln l(e(ϑs);x, z) → ln l(e(ϑ);x, z),∀ϑ ∈ Θ. (5) For ϑj being the j-th element of ϑ with j = 1, . . . , pn,

E
[
supϑj∈Θ | ln l(ei,t(ϑ);xt, zt)|δ

]
< C, E

[
supϑj∈Θ | ∂

∂ϑj
ln l(ei,t(ϑ);xt, zt)|δ

]
< C.

(6) supγ∈Θ |λ(xt, zt; γ)|2 < C, supγ∈Θ |σ(xt, zt; γ)|2 < C, and infγ∈Θ |σ(xt, zt; γ)| > C > 0,∀(xt, zt).

A4 (1) ln l(e(ϑ);x, z) ∈ C2 with respect to ϑ ∈ Θ. (2) ln l(e(ϑ);x, z) is continuously differentiable on an

open ball S(ϑ, d(ϑ)) centered at ϑ with radius d(ϑ) > 0. (3) E(vi,t) = E(ui,t) = 0, where vi,t =

∂
∂αi

ln l(ei,t(ϑ);xt, zt)|αi=α0i
and ui,t =

∂
∂θ ln l(ei,t(ϑ);xt, zt)|θ=θ0 . (4) Define vji,t ≡ ∂vi,t/∂j and uji,t ≡

∂ui,t/∂j for j ∈ {αi, θ}, Hα0i
= E(vαi

i,t) and Hθ0 = E
[
uθit −

E(ui,tvi,t)
E(vi,t)

vθi,t

]
are finite and negative

definite matrix. Σα0i = E(v2i,t) and Σθ0 = E
[
ui,t − E(ui,tvi,t)

E(vi,t)
vi,t

] [
ui,t − E(ui,tvi,t)

E(vi,t)
vi,t

]⊤
are symmetric

and positive definite matrix. (5)
∫
supϑ∈S(ϑ0,d(ϑ0)) ||

∂
∂ϑ ln l(e;x, z)||de < C, with e ≡ e(ϑ0).

B1 (1) k(v) : ℜ → ℜ is univariate and symmetric kernel function. (2) For j = 0, 1, 2, 3, (i) |k(v)vj | < C;

(ii)
∫
|k(v)vj |dv < C; (iii)

∫
k(v)dv = 1,

∫
k(v)sdv = 0 for s = 1, 3, . . .,

∫
k(v)v2dv ≡ µk,2 < C, and∫

k(v)v4dv < C.

B2 (1) Marginal density of z is fz(z) ∈ C2, infz∈Z fz(z) > 0. (2) For t ̸= s = 1, . . . , T , E(|xt|2+δ|zt) <

C,∀δ > 0. E(xjtx
j′

s |zt) ∈ C2, infz∈Z E(xjtx
j′

s |z) > 0,∀(j, j′) ∈ {0, 1} and j ̸= j′, ||ω||2 < C. (3)

β(z) ∈ C2. (4) E(ϵ̄1ϵ̄t+1|x1, xt+1, z1, zt+1) < C and continuously differentiable in (z1, zt+1). (5)

Σβ0
= [1 − E(xt|zt)2E(x2t |zt)−1] > 0 is finite. Define finite constants Cϵ̄(t) = E(ϵ̄1ϵ̄t+1) < C and

Cx|z(t) = E
[
(1− x1E(x2|z1)−1E(x|z1))(1− xt+1E(x2|zt+1)

−1E(x|zt+1))
]
< C, Ωβ0 = Σβ0σ

2
ϵ̄ (zt) +

2
∑∞

t=1 Cϵ̄(t)Cx|z(t) < C.

B3 (1) As n → ∞ and T → ∞, n/T → 0. (2) As T → ∞, Tb3 → ∞, Tb7 → 0. (3) For s > 2 and some

δ > 0, TB+1.5(0.2+δ)−B/2+1.25b−1.75−0.5(1+B) ln(T )0.5B−0.25 → 0, T 1−2/5−2δb → ∞. (4) For δ > 0,

T
B−1
B b

2+δ
1+δ → ∞ as T → ∞ with B defined in A1(3).
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Assumption A1(1) focuses on panel data in which observations are i.i.d. across i and stationary across t

with α-mixing coefficients. A2(2) requires that the mixing coefficients satisfy a certain order, which allows us

to characterize the covariance structure of the panel data asymptotically (Chen et al., 2013). A1(3) assumes

the support of zt to be compact that eases arguments on the local approximation of β(·). A1(4) normalizes

fixed effects αi for identification (Su and Ullah, 2006; Sun et al., 2009), and allows αi to be arbitrarily

correlated with observables. A2(1) assumes the conditional i.i.d. property of the error term facilitating the

construction of likelihood function (Wooldridge, 2010). A2(2)-(3) place the usual boundedness conditions

on the higher conditional moment of ei,t for the analysis of asymptotic distribution analysis. A3(1)-(5)

guarantee that a unique maximum of E(ln(e(ϑ);x, z)) exists at ϑ by Theorem 2.5 in Newey and McFadden

(1994). A3(6) ensures that the scale and shape functions are bounded and well defined for all xt and zt.

A4(1)-(5) assumes that higher-order derivatives of the log likelihood function are smooth and bounded to

derive asymptotic normality of θ̂ and α̂i. In particular, A4(3) ensures that the zero moment conditions hold

for maximizer θ̂ and α̂i to exist with the corresponding (asymptotic) covariance matrix given in A4(4). A4(5)

follows Lemma 3.6 in Newey and McFadden (1994) to allow the order of differentiation and integration to

be interchanged, which facilitates the investigation of the normality of ϑ̂.

Assumption B1 gives standard moment and smoothness conditions on the kernel function, which are

satisfied by popular second-order Gaussian kernel. As stated in B2(3), the coefficient function β(·) to be

estimated is continuously differentiable up to the second degree, so there is no need to explore the gain of

using a higher-order kernel for a higher degree of the smoothness of β(·). B2(1) requires that the marginal

density of z is smooth, finite, and bounded away from zero. Those conditions allow us to perform an

asymptotic analysis of the estimator β̂(z). B2(2) places conditional moment conditions involving x that are

continuously differentiable, making it feasible for the asymptotic analysis of the intercept β0 and the function

β(·). B2(4) states that the conditional variance of the error term is to be bounded and locally expanded

around (z1, zt+1) by the stationary property of our data in time dimension. B2(5) defines a finite variance

term associated with β̂0, which reduces to Σ−1
β0
σ2
ϵ̄ (z) for independent data in the time dimension (Fan and

Huang, 2005). Finally, B3(1) requires n→ ∞ slower than T → ∞, so n/T → 0 eliminates the bias of θ̂ driven

by the estimated fixed effects α̂i. B3(2) governs the rates at which T diverges toward infinity while b shrinks

toward zero. This rate allows for MSE-optimal bandwidth bcv to be used (see Remark 3). B3(3) provides

specific rates of T and b for Lemma 1 to hold, which corresponds to those rates in nonparametric regression

model with dependent data (Martins-Filho and Yao, 2009). Finally, B3(4) is the sufficient condition for

applying Lyapounov central limit theorem on the distribution of second-step estimator (Cai and Li, 2008).
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Appendix 1.2: Proofs

The following Lemmas 1-3 are used to prove Theorems 1 and 2.

Lemma 1. Define Ŝj(z) = 1
Tb

∑T
t=1 k

(
zt−z
b

) (
zt−z
b

)j
xst , for j = 0, 1, 2 and s = 1, 2. As T → ∞, with

assumptions A1(1)-(2), B1, B2(1)-(2), B3(2)-(3), for z ∈ Z,

(a) supz∈Z |Ŝ0(z)− E(xs|z)fz(z)| = Op

(√
ln(T )
Tb

)
.

(b) supz∈Z |Ŝ1(z)| = Op

(
b+

√
ln(T )
Tb

)
.

(c) supz∈Z |Ŝ2(z)− E(xs|z)fz(z)µk,2| = Op

(√
ln(T )
Tb

)
.

Proof. The arguments for the uniform convergence rate of Ŝj(z) follows tightly to Theorem 1 in Martins-Filho

and Yao (2009), except that one needs to account for the dependence of xst and zt through the conditional

mean function E(xs|zz), which is bounded and continuously differentiable by B2(2). The rest of the proof

is thus omitted for brevity.

Lemma 2. Define Fb
a as the σ-algebra of events generated by a random variable {xt : a ≤ t ≤ b}. For

u and v as two random variables that are Fs
−∞- and F∞

s+t-measurable, respectively, denote ||u||p < C and

||v||q < C, where ||u||p = [E|u|p]
1
p such that p, q > 1 and 1

p + 1
q < 1. Then

|E(uv)− E(u)E(v)| ≤ 8α(t)r||u||p||v||q,

where r = 1− 1
p − 1

q .

Proof. The result is Davydov’s inequality in Corollary A2 in Hall and Heyde (1980).

Lemma 3. Let v1, . . . , vL be α-mixing stationary random variables that are F j1
i1
, . . . ,F jq

iq
-measurable, re-

spectively, where 1 ≤ i1 < j1 < i2 < j2 · · · < jq, il+1 − jl ≥ t, and |vl| ≤ 1 for l = 1, . . . , q. Then∣∣∣∣E
(

q∏
l=1

vl

)
−

q∏
l=1

E(vl)

∣∣∣∣ ≤ 16(q − 1)α(t).

Proof. See Lemma 6.1 in Fan and Gijbels (1996).

Proof of Theorem 1

We prove the consistency property in Theorem 1(a) and normality in Theorem 1(b).
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Proof of Theorem 1(a). Define L∗
nT (ϑ) =

1
nT

∑n
i=1

∑T
t=1 ln l(e

∗
i,t(ϑ)|xt, zt) with e∗i,t(ϑ) = ỹi,t−ω̃⊤

i,tδ−d⊤i,−1α−1+

µ(xt, zt; γ). Also, define L0(ϑ) = E(ln l(ei,t(ϑ)|xt, zt)) be the non-stochastic, probability limit function of

LnT (ϑ) with ei,t(ϑ) = ỹi,t−ω̃⊤
i,tδ−d⊤i,−1α−1+ ēt. By definition, ϑ̂ = argmax

ϑ∈Θ
L∗
nT (ϑ) and ϑ0 = argmax

ϑ∈Θ
L0(ϑ).

With assumptions A3(1)-(3) and Amemiya (1985), if L∗
nT (ϑ)

p→ L0(ϑ) uniformly over ϑ ∈ Θ, then ϑ̂
p→ ϑ0

as n, T → ∞.

To see this, let Nη(ϑ0) = {ϑ : ||ϑ − ϑ0|| < η, η > 0} be an open ball centered at ϑ0 with positive radius

η > 0. Also, let N c
η(ϑ0) be the complement set of Nη(ϑ), so Nη(ϑ0) ∪ Nη(ϑ0)

c = Θ. This also implies

that N c
η(ϑ0) is compact so that the maximizer of L∗

nT (ϑ) exists by A3(1). Define the event Aϵ = {ω :

|L∗
nT (ϑ) − L0(ϑ)| < ϵ

2 ,∀ϑ ∈ Θ}. In addition, define the difference ζ = L0(ϑ0) − max
ϑ∈Nη(ϑ0)∩Θ

L0(ϑ). First,

replacing ϑ by ϑ̂ in Aϵ gives

L0(ϑ̂) > LnT (ϑ̂)−
ϵ

2
(A.1)

by the definition of unique maximizer ϑ̂ for L∗
nT (·). Second, replacing ϑ by ϑ0 in Aϵ gives

L∗
nT (ϑ0) > L0(ϑ0)−

ϵ

2
(A.2)

by the definition of unique maximizer ϑ0 for L0(·). However, (A.1) also implies that L∗
nT (ϑ̂) > L∗

nT (ϑ0),

indicating that

L0(ϑ̂) > LnT (ϑ0)−
ϵ

2
. (A.3)

Then adding (A.2) and (A.3) gives L0(ϑ̂) > L0(ϑ0) − ζ, or equivalently L0(ϑ̂) > max
ϑ∈Nη(ϑ0)∩Θ

L0(ϑ). This

implies ϑ̂ ∈ Nη(ϑ0), so Aϵ =⇒ ϑ̂ ∈ Nη(ϑ0) and thus P (Aϵ) ≤ P (ϑ̂ ∈ Nη(ϑ0)) = 1 by the condition that

L∗
nT (ϑ)

p→ L0(ϑ) uniformally. Thus, P (Aϵ) → 1 and thus ϑ̂
p→ ϑ0 as n, T → ∞ as claimed above.

We now show L∗
nT (ϑ)

p→ L0(ϑ) uniformally over ϑ ∈ Θ. It is sufficient to show that

sup
ϑ∈Θ

|L∗
nT (ϑ)− L0(ϑ)| ≤ sup

ϑ∈Θ
|L∗

nT (ϑ)− LnT (ϑ)|+ sup
ϑ∈Θ

|LnT (ϑ)− L0(ϑ)|

≡ A1(ϑ) +A2(ϑ)

= op(1).

(1) Focus on A1(ϑ), we follow Graves (1927) to apply Gateaux differentials for its order. If G is a normed

space and there is a functional T (g) : G→ ℜ, the Gateaux differentials of T (·) at g with increment s ∈ G of

order 1 is given by δ1T (g, s) = ∂
∂aT (g + as)|a = 0. By Theorem 5 in Graves (1927), a Taylor expansion of

T (g + s) around g gives T (g + s) = T (g) +
∫ 1

0
δ1T (g + sr, s)dr = T (g) +

∫ 1

0

[
∂
∂aT (g + s(r + a))|a = 0

]
dr. In

our case, g = ỹi,t − ω̃⊤
i,tδ − αi + ēt and s = µ(xt, zt; γ)− ēt. Following notations in Section 2.2 of the paper,
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we observe that

L∗
nT (ϑ) =

1

nT

n∑
i=1

T∑
t=1

ln l(e∗i,t(ϑ);xt, zt) =
1

nT

n∑
i=1

T∑
t=1

ln l(ỹi,t − ω̃⊤
i,tδ − αi + µ(xt, zt; γ);xt, zt)

=
1

nT

n∑
i=1

T∑
t=1

ln l(ỹi,t − ω̃⊤
i,tδ − αi + ēt − (ēt − µ(xt, zt; γ));xt, zt)

≡ 1

nT

n∑
i=1

T∑
t=1

Ti,t(g + s)

=
1

nT

n∑
i=1

T∑
t=1

ln l(ei,t(ϑ);xt, zt) +
1

nT

n∑
i=1

T∑
t=1

∫ 1

0

[
∂

∂a
Ti,t(g + s(r + a))|a = 0

]
dr.

Define λt = λ(xt, zt; γλ) and σt = σ(xt, zt; γσ), the integral part in the second term of the last equality above

gives ∫ 1

0

[
∂

∂a
Ti,t(g + s(r + a))|a = 0

]
dr

=

∫ 1

0

[
∂

∂a
ln l(ỹi,t − ω̃⊤

i,tδ − αi + ēt − (r + a)(ēt − µ(xt, zt; γ));xt, zt)|a = 0

]
dr

=

∫ 1

0

[
lnϕ

(
1

σt
(ei,t − (ēt − µ(xt, zt; γ)))(r + a)

)
|a = 0

]
dr

+

∫ 1

0

[
lnΦ

(
λt
σt

(ei,t − (ēt − µ(xt, zt; γ)))(r + a)

)
|a = 0

]
dr

≡ R1(ϑ) +R2(ϑ).

It is easy to see that R1(ϑ) =
∫ 1

0
1
σ2
t
[ei,t − (ēt − µ(xt, zt; γ))r] dr [ēt − µ(xt, zt; γ)] =

1
σt

[
ei,t − 1

2r
2(ēt − µ(xt, zt; γ))|10

]
= 1

σt

[
ei,t − 1

2 (ēt − µ(xt, zt; γ))
]
[ēt − µ(xt, zt; γ)], so

sup
γ∈Θ

|R1(ϑ)| ≤
C

infγ∈Θ σ(xt, zt; γ)
sup
ϑ∈Θ

|ei,t −
1

2
(ēt − µ(xt, zt; γ))| sup

γ∈Θ
|ēt − µ(xt, zt; γ)|

= Op(n
−1/2)

because |ei,t| = O(1) by A2(2), and E supγ∈Θ |ēt − µ(xt, zt; γ)| = Op(n
−1/2) by the weak law of large

number and assumptions A3(5)-(6). R2(ϑ) =
∫ 1

0
ϕ(Qr)
Φ(Qr)

dr
[
−λt

σt
(ēt − µ(xt, zt; γ))

]
, where Qr = ei,t − (ēt −

µ(xt, zt; γ))r. Note that ϕ(Qr)
Φ(Qr)

is the inverse Mill’s ratio such that Qr → ∞ leads to ϕ(Qr)
Φ(Qr)

→ 0, while

Qr → −∞ leads to ϕ(Qr)
Φ(Qr)

→ −Qr by L’Hôpital’s rule. Thus, R2(ϑ) <
∫ 1

0
|Qr|dr

[
−λt

σt
(ēt − µ(xt, zt; γ))

]
=[

ei,t − 1
2 (ēt − µ(xt, zt; γ))

] [
−λt

σt
(ēt − µ(xt, zt; γ))

]
, which gives supϑ∈Θ |R2(ϑ)| = Op(n

−1/2) following similar

arguments in R1(ϑ). The results together gives A1(ϑ) = op(1) as n→ ∞ in B3(1), as claimed above.

(2) Focus on A2(ϑ), let’s denote N = nT . Given that Θ is compact by A3(1), by Heine-Borel Theorem,

the open-covering Θ can have a finite (KN ) number of sub-covering {S(ϑk, d(ϑk))}KN

k=1, each of which is an
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open ball centered at ϑk with radius d(ϑk) > 0. Then for ϑk ∈ S(ϑk, d(ϑk)),

|LnT (ϑ)− L0(ϑ)| = |LnT (ϑ)− LnT (ϑk) + L0(ϑk)− L0(ϑ) + LnT (ϑk)− L0(ϑk)|

≤ | 1

nT

n∑
i=1

T∑
t=1

ln l(ei,t(ϑ);xt, zt)− ln l(ei,t(ϑk);xt, zt)|

+ | 1

nT

n∑
i=1

T∑
t=1

E(ln l(ei,t(ϑk);xt, zt)− ln l(ei,t(ϑ);xt, zt))|

+ | 1

nT

n∑
i=1

T∑
t=1

ln l(ei,t(ϑk);xt, zt)− E(ln l(ei,t(ϑk);xt, zt))|

≡ A21 +A22 +A23.

A21 ≤ C supϑk∈S(ϑk,d(ϑk))
|l(ei,t(ϑ);xt, zt) − ln l(ei,t(ϑk);xt, zt)| = op(1) almost everywhere by A3(4). Sim-

ilar arguments applied to A22 with dominated convergence theorem, implying that A22 = op(1). A23 ≤
1
nT

∑n
i=1

∑T
t=1 | ln l(ei,t(ϑk);xt, zt)− E(ln l(ei,t(ϑk);xt, zt))|. For some constant ∆ϵ > 0, we show that

P

((
ln(N)

N

)− 1
2

max
1≤k≤KN

| ln l(ei,t(ϑk);xt, zt)− E(ln l(ei,t(ϑk);xt, zt))| > ∆ϵ

)
→ 0, ∀N > ∆ϵ,

which implies A23 = op(1). Let Gi,t = l(ei,t(ϑk);xt, zt)−E(ln l(ei,t(ϑk);xt, zt)) and sup1≤i≤n,1≤t≤T |Gi,t|∞ <

b for finite constant b, where |G|∞ ≡ inf a : P (G > a) = 0 places uniform boundedness on Gi,t. Let q =

1, 2, . . . ,
[
N
2

]
, where [v] takes integer part of a real number v. By Bernstein’s inequality in Bosq (1996), for

ϵN = ln(N)
N

1
2
∆ϵ we have

P

(
1

N
|

n∑
i=1

T∑
t=1

Gi,t| > ϵN

)
≤ 4

(
− ϵ2N
8V 2(q)

q

)
+ 22(1 +

4b

ϵN
)−

1
2 qα

([
N

2q

])
, (A.4)

where V 2(q) = 2
m2σ

2(q) + bϵN
2 , m = N

2q , and

σ2(q) = max
0≤j≤2q−1

E
[
([jm] + 1− jm)Z[jm]+1 + Z[jm]+2 + · · ·+ Z[jm]+m + ((j + 1)m− [(j + 1)m])Z[(j+1)m+1]

]2
,

where {Zj}Nj=1 = {Gi,t}n,Ti=1,t=1. We know that

σ2(q) ≤ max
0≤j≤2q−1

 ∑
[jm]<i≤[(j+1)m+1]

E(Z2
i ) +

∑
[jm]+1<l≤[(j+1)m]

∑
[jm]+1<i≤[(j+1)m+1]

|E(ZiZl)|

 .

In the first term, by A1(2) we have
∑

[jm]<i≤[(j+1)m+1]E(Z2
i ) = O(m) by stationary property. By A3(5),

E|Zi|δ < C for δ > 0. Then by Lemma 2, E(ZiZl) ≤ Cα(i − l)1−
2
δ . Let’s fix index l such that, for any

[jm] + 1 < l ≤ [(j + 1)m],
∑

[jm]+1<i≤[(j+1)m+1] |E(ZiZl)| ≤
∑m∗−1

i=1 E|ZlZl+i| +
∑m∗−1

i=1 E|ZlZl−i|, for

m∗ = [(j + 1)m + 1] − [jm]. By A1(2),
∑m∗−1

i=1 E|ZlZl+i| ≤ C
∑m∗−1

i=1 α(i)1−
2
δ ≤ C

∑m∗−1
i=1 i−B(1− 2

δ ) < C,
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provided that B > (1− 2/δ)−1 by A1(2).
∑m∗−1

i=1 E|ZlZl−i| < C by similar arguments, so σ2(q) < C. Thus,

we find that mV 2(q) = 2
mV

2(q) + bm
2 ϵN < C if we restrict m = 1

bϵN
. This implies m =

(
b
(

ln(N)
N

) 1
2

∆ϵ

)−1

,

and q = N/2m = b∆ϵ
2 (N ln(N))

1
2 .

Now the first term in (A.4) gives 4 exp
(
− ϵ2N

8V 2(q)
N
2

2q
N

)
= 4 exp

(
− ϵ2NN

16V 2(q)m

)
< 4 exp

(
−∆ϵ2

16C

)
= 4N−∆ϵ2

16C ,

where the inequality applies because ϵ2NN = ln(N)∆ϵ2 and mV 2(q) < C. For N sufficiently large and

recall that m = (bϵN )−1, the second term in (A.4) gives 22(1 + 4b
ϵN

)−
1
2 qα

([
N
2q

])
≤ C( b

ϵN
)

1
2

N
2m [m]−B ≤

Cb1.5+BNϵ
1
2+B

N . Combining above results, the right hand side of (A.4) is bounded by 4N−∆ϵ2

16C +Cb1.5+BNϵ
1
2+B

N .

This implies that

P

(
max

1≤k≤KN

|Gi,t| > ϵN

)
≤ KN (4N−∆ϵ2

16C + Cb1.5+BNϵ
1
2+B

N )

≤ CN
pn
2 −∆ϵ2

16C + CN
pn
2 +1b1.5+Bϵ

1
2+B

N

= op(1),

where the second inequality holds by restricting KN < CN
pn
2 , and the last inequality holds by making ∆ϵ2

sufficiently large in the first term and letting B > pn + 1
2 by A1(2) in the second term. In all, results (1)-(2)

completes the proof.

Proof of Theorem 1(b). Establishing asymptotic normality of ϑ̂ calls for special treatment because fixed

effect estimates α̂i converges slower at rate of 1/
√
T compared to parameters for other interested parameters

θ̂ = (δ̂⊤, γ̂⊤). Recall that α̂i is the maximizer from

α̂i ≡ α̂i(θ) = argmax
αi∈Θ

1

T

T∑
t=1

ln l(ei,t(ϑ);xt, zt), (A.5)

where the dependence of α̂i(θ) with θ is highlighted. Clearly, only T observations are used to provide

information for each fixed effect. It has been documented in linear/nonlinear panel regression model (i.e.,

the error component has zero conditional mean), estimator θ̂ would appear a bias term of order O(1/T )

induced by α̂i, which is not asymptotically negligible if T grows at the rate with n such that n/T → ρ ̸= 0

(Arellano et al., 2007; Hahn and Moon, 2006; Hahn and Newey, 2004). Below, we show that this observation

is continue to hold in our skewed panel model, in which α̂i induces non-negligible bias in θ̂ of order 1/T due

to non-centered skew error and dynamic regressor yi,t. We eliminate this bias by letting ρ = 0, which is a

reasonable assumption in our empirical dataset with large T and small n.

First, recall that we partition ϑ = (θ⊤, α⊤
−1). Expanding

∂
∂θLnT (ϑ), evaluated at (α̂i, θ0), around (α0i, θ0)

gives

∂

∂θ
LnT (ϑ)|α̂i,θ0 =

∂

∂θ
LnT (ϑ)|α0i,θ0 +

∂2

∂αi∂θ
LnT (ϑ)|α∗

i ,θ0
(α̂i − α0i), (A.6)
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where α∗
i is trapped between α̂i and α0i. Similarly, expanding ∂

∂αi
LnT (ϑ), evaluated at (α̂i, θ0), around

(α0i, θ0) gives

∂

∂αi
LnT (ϑ)|α̂i,θ0 =

∂

∂αi
LnT (ϑ)|α0i,θ0 +

∂2

∂2α2
i

LnT (ϑ)|α∗
i ,θ0

(α̂i − α0i). (A.7)

As T → ∞, the indicator function 1(α̂i ∈ S(α0i, d(α0i))
p→ 1 by results in Theorem 1(a). Thus, the left-

hand-side of (A.7) gives
[

∂
∂αi

LnT (ϑ)|α̂i,θ0

]
1(α̂i ∈ S(α0i, d(α0i)) = 0. By A4(2), LnT (ϑ) is continuous in

(αi, θ
⊤), so supαi∈S(α0i,d(α0i)) |

∂2

∂2α2
i
LnT (ϑ)− ∂2

∂2α2
i
L0(ϑ)| = op(1). Then by Theorem 21.6 in Davidson (1994),

∂2

∂2α2
i
LnT (ϑ)|α∗

i ,θ0
= ∂2

∂2α2
i
L0(ϑ)|α0i,θ0 + op(1), so

(α̂i − αi) = −
[
∂2

∂2α2
i

L0(ϑ)|α0i,θ0

]−1
∂

∂αi
LnT (ϑ)|α0i,θ0(1 + op(1)). (A.8)

Similar arguments applied to (A.6) to have

∂

∂θ
LnT (ϑ)|α̂i,θ0 =

∂

∂θ
LnT (ϑ)|α0i,θ0 +

∂2

∂αi∂θ
L0(ϑ)|α0i,θ0(α̂i − α0i), (A.9)

with probability one as n, T → ∞. For notation simplicity, let’s denote scalar vi,t(αi, θ) =
∂

∂αi
ln l(ei,t(ϑ))|αi,θ

and p × 1 vector ui,t(αi, θ) = ∂
∂θ ln l(ei,t(ϑ))|αi,θ. Also, let vji,t(αi, θ) ≡ ∂

∂j vi,t(αi, θ) be the derivative

with respect to j ∈ {αi, θ} and similarly for uji,t. We further drop arguments in vi,t(·) and ui,t(·) when

they are evaluated at (α0i, θ
⊤
0 ), e.g., vi,t ≡ vi,t(α0i, θ0). Using conventional identity that, for j ̸= s =

1, . . . , p, E
[

∂2

∂θj∂θs
ln l(e(ϑ);x, z)

]
= −E

[
∂

∂θj
ln(e(ϑ);x, z) ∂

∂θs
ln(e(ϑ);x, z)

]
and E

[
∂2

∂2α2
i
ln l(e(ϑ);x, z)

]
=

−E
[

∂
∂αi

ln l(e(ϑ);x, z)
]2
, which holds by A4(5) allowing interchangeable integration and derivative (Newey

and McFadden, 1994). Thus, as T → ∞, (A.8) reduces to

(α̂i − α0i) =
1

T

T∑
t=1

E(v2i,t)
−1vi,t(1 + op(1)), (A.10)

which coincides with the stochastic expansion results in Rilstone et al. (1996). Substituting A.10 in (A.9),

and notice that ∂2

∂αi∂θ
L0(ϑ)|α0i,θ0 = −E(vi,tui,t), some algebra shows that (A.9) reduces to a concentrated

moment condition for θ̂ as

1

nT

n∑
i=1

T∑
t=1

ui,t(α̂i, θ0) =
1

nT

n∑
i=1

T∑
t=1

[
ui,t(α0i, θ0)−

E(ui,tvi,t)

E(v2i,t)
vi,t(α0i, θ0)

]
. (A.11)

Define Ui,t(αi, θ) = ui,t(αi, θ) − E(ui,tvi,t)

E(v2
i,t)

vi,t(αi, θ), it can be shown that θ̂ is the unique maximizer of the

concentrated moment above in an sense that
∑n

i=1

∑T
t=1 Ui,t(α̂, θ̂) = 0, with α̂ defined in A.5 (Arellano et al.,

2007; Hahn and Newey, 2004). Thus, following similar practice above, we expand Ui,t(α̂, θ̂) = Ui,t(α̂, θ0) +

Uθ
i,t(α̂i, θ

∗)(θ̂ − θ0) for some θ∗j trapped between θ̂j and θ0j , for j = 1, . . . , p.

9



Since 1
nT

∑n
i=1

∑T
t=1 U

θ
i,t(α̂i, θ

∗)
p→ Hθ0 + op(1) defined in A4(4) by arguments in (A.8), we see that

√
nT (θ̂ − θ0) = −Hθ0

1√
nT

n∑
i=1

T∑
t=1

Ui,t(α̂i, θ0)(1 + op(1)) (A.12)

= −Hθ0

1√
nT

[
n∑

i=1

T∑
t=1

Ui,t +

n∑
i=1

T∑
t=1

(
Uαi
i,t (α̂i − α0i) +

1

2
Uαi,αi

i,t (α̂i − α0i)
2

)]
(1 + op(1)),

where Ui,t ≡ Ui,t(α0i, θ0), U
αi
i,t ≡ ∂

∂αi
Ui,t, and Uαi,αi

i,t ≡ ∂2

∂α2
i
Ui,t. Substituting (α̂i − α0i) with (A.10), and

using conditional i.i.d assumption in A2(1), some tedious derivation shows that
∑n

i=1

∑T
t=1(U

αi
i,t (α̂i −α0i)+

1
2U

αi,αi

i,t (α̂i − α0i)
2) =

∑n
i=1 bi,T , where

bi,T =
1

T

T∑
t=1

T∑
t′=1

E(v2i,t′)
−1Uαi

i,t vi,t′ +
1

T 2

T∑
t=1

T∑
t′=1

1

2
Uαi,αi

i,t E(v2i,t′)
−2v2i,t′ .

It is easily see that E(bi,T ) ≡ b̄i = E(v2i,t)
−1[E(Uαi

i,t vi,t) +
1
2E(Uαi,αi

i,t )] < C. A further lengthy calculation

(omitted) shows that b̄i ̸= 0 in our model because E(ei,t|xt, zt) ̸= 0 and yi,t is included as a dynamic regressor

in ωi,t. In a special case where E(ei,t|xt, zt) = 0 (i.e., λ(xt, zt; γ0λ) = 0) and yi,t is not included, then b̄i = 0

by assuming all regressors are strictly exogenous. Let B(θ0) = −Hθ0
1
n

∑n
i=1 b̄i, (A.12) becomes

√
nT (θ̂ − θ0) =

(
−Hθ0

1√
nT

n∑
i=1

T∑
t=1

Ui,t +

√
n

T
B(θ0)

)
(1 + op(1)), (A.13)

where B(θ0) is the bias of θ̂ induced by the fixed effect estimates α̂i, which vanishes by letting n/T → 0 as in

B3(1) so that
√
nT (θ̂−θ0) = −Hθ0

1√
nT

∑n
i=1

∑T
t=1 Ui,t(1+op(1)). Notice that E(Ui,t) = 0 and V (Ui,t) ≡ Σθ0

in A4(4). By assumptions A1(1), A2(1), and A4(4), we apply Cramer-Rao device and Lindeberg-Levy central

limit theorem to have 1√
nT

∑n
i=1

∑T
t=1 Ui,t

d→ N (0,Σθ0). Then by Slutsky’s Theorem, we arrive the claim

in Theorem 1(b).

Proof of Theorem 2.

We show in turn the result of Theorem 2(a) and Theorem 2(b).

Proof of Theorem 2(a). Recall that Yi,t(ϑ) = yi,t − ω⊤
i,tδ − αi − µ(xt, zt; γ), so Ȳt(ϑ) = 1

n

∑n
i=1 Yi,t =

ȳt − ω̄⊤
t δ − ᾱ− µ(xt, zt; γ). Notice that by the identification condition

∑n
i=1 α0i = 0 and

∑n
i=1 α̂i = 0, both

Ȳt(ϑ̂) and Ȳt(ϑ0) wipe out the average of fixed effects. Following notations in Section 2.2 of the paper, the

regression model considered in the second step (in vector form) gives

Ȳ(θ0) = ιTβ0 + βT (x, z) + ϵ̄, (A.14)
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where the t-th element of ϵ̄ gives ϵ̄t = ēt − µ(xt, zt; γ), satisfying E(ϵ̄t|xt, zt) = 0 by our construction. Our

constant estimator β0 takes the form

β̂0 =
[
ι⊤T (IT − ST )

⊤(IT − ST )ιT
]−1

ι⊤T (IT − ST )
⊤(IT − ST )Ȳ(θ̂). (A.15)

For non-stochastic constants Σβ0 > 0 and Ωβ0 < C defined in B2(5), we show below that

(a) 1
T ι

⊤
T (IT − ST )

⊤(IT − ST )ιT = Σβ0
(1 + op(1)).

(b)
√
T (β̂0 − β0) =

√
TΣ−1

β0

1
T (IT − ST )

⊤ϵ̄(1 + op(1)).

(c) 1√
T
(IT − ST )

⊤ϵ̄
d→ N (0,Ωβ0).

Then by Slutsky’s Theorem, (a)-(c) implies
√
T (β̂0 − β0)

d→ N(0,Σ−2
β0

Ωβ0
) as claimed in Theorem 2(a).

Proof of (a). Define a T × 1 vector G = (IT − ST )ιT = ιT − ST ιT from

G =


1− [x1, 0]

⊤ (X (z1)
⊤K(z1)X (z1)

)−1 X (z1)
⊤K(z1)ιT

...

1− [xT , 0]
⊤ (X (zT )

⊤K(zT )X (zT )
)−1 X (zT )

⊤K(zT )ιT

 ≡

G
⊤
1
...
G⊤

T

 .

Define Db =

(
1 0
0 b

)
be a 2 × 2 diagonal matrix. In G⊤

t , [xt, 0]
⊤ (X (zt)

⊤K(zt)X (zt)
)−1 X (zt)

⊤K(zt)ιT =

[xt, 0]
⊤D−1

b Ŝ(zt)
−1D−1

b
1
TbX (zt)

⊤K(zt)ιT , where

Ŝ(zt) =
1

Tb
D−1

b X (zt)
⊤K(zt)X (zt)D

−1
b ≡

(
Ŝ0(z) Ŝ1(z)

Ŝ1(z) Ŝ2(z)

)
, (A.16)

with Ŝj(z) defined in Lemma 1. Thus, we readily obtain Ŝ(zt) = S(zt) +Op(
√

ln(T )/Tb), where

S(zt) =

(
E(x2|zt)fz(zt) 0

0 E(x2|zt)fz(zt)µk,2

)
is non-stochastic and invertible matrix. Thus,

G⊤
t = 1− xtE(x2|zt)−1fz(zt)

−1 1

Tb

T∑
τ=1

k

(
zτ − zt
b

)
xτ (1 +Op(

√
ln(T )/Tb)) (A.17)

= 1− xtE(x2|zt)−1fz(zt)
−1

[
E(x|zt)fz(zt) +

1

Tb

T∑
τ=1

k

(
zτ − zt
b

)
xτ − E(x|zt)fz(zt)

]
(1 +Op(

√
ln(T )/Tb))

= 1− xtE(x2|zt)−1fz(zt)
−1
[
E(x|zt)fz(zt) +Op(

√
ln(T )/Tb)

]
(1 +Op(

√
ln(T )/Tb))

= 1− xtE(x2|zt)−1E(x|zt)(1 +Op(
√

ln(T )/Tb)),

where supzt∈Z | 1
Tb

∑T
τ=1 k(

zτ−zt
b )xτ − E(x|zt)fz(zt)| = Op(

√
ln(T )/Tb) is applied on the third equality by

Lemma 1. Thus, 1
TG

⊤G = 1
T

∑T
t=1GtG

⊤
t = (1−E2(x|zt)E(x2|zt)−1(1 +Op(

√
ln(T )/Tb)) = Σβ0

(1 + op(1))
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by B3(2), as claimed in (a).

Proof of (b). Let ŜG = 1
TG

⊤G, we known from (b) that ŜG = Σβ0
(1 + Op(

√
ln(T )/Tb)). Based on (A.15),

we can readily decompose β̂0 to obtain

√
T (β̂0 − β0) =

√
T Ŝ−1

G

1

T
ι⊤T (IT − ST )

⊤(IT − ST )βT (x, z)

+
√
T Ŝ−1

G

1

T
ι⊤T (IT − ST )

⊤(IT − ST )(Ȳ(ϑ̂)− Ȳ(ϑ0))

+
√
T Ŝ−1

G

1

T
ι⊤T (IT − ST )

⊤(IT − ST )ϵ̄

≡ B1 +B2 + V.

i) We focus on B1 by first observing that

B1 =
√
TΣ−1

β0

1

T
ι⊤T (IT − ST )

⊤(IT − ST )βT (x, z)(1 +Op(
√
ln(T )/Tb))

=
√
TΣ−1

β0

1

T

T∑
t=1

Gt

[
xtβ(zt)− [xt, 0]

⊤D−1
b Ŝ(zt)

−1D−1
b X (zt)

⊤K(zt)xtβ(zt)
]
(1 +Op(

√
ln(T )/Tb)).

We know that |Gt| < C as shown in (A.17) for all t = 1, . . . , T . Also, for any z ∈ Z, we have

[xt, 0]
⊤D−1

b Ŝ(zt)
−1D−1

b X (z)⊤K(z)xtβ(z)

= xtE(x2|z)−1fz(z)
−1

[
E(x2t |z)fz(z) +

1

Tb

T∑
t=1

k

(
zt − z

b

)
x2t − E(x2t |z)fz(z)

]
β(zt)

× (1 +Op(
√

ln(T )/Tb))

= xtβ(z)(1 +Op(
√

ln(T )/Tb)).

Thus, B1 =
√
TΣ−1

β0

1
T

∑T
t=1

[
1− xtE(x2|zt)−1E(x|zt)

]
xtβ(zt)(1 + Op(

√
ln(T )/Tb))Op(

√
ln(T )/Tb). Since[

1− xtE(x2|zt)−1E(x|zt)
]
xtβ(zt)

p→ E(xtβ(zt)−x2tE(x2|zt)−1E(x|zt)β(zt) = E(β(zt)(E(x|zt)−E(x|zt))) =

0 by law of iterative expectation, the term
[
xt − x2tE(x2|zt)−1E(x|zt)

]
is orthogonal to any function of zt.

Thus, 1
T

∑T
t=1

[
1− xtE(x2|zt)−1E(x|zt)

]
xtβ(zt) = Op(1/

√
T ) by B2(2). This givesB1 =

√
TOp(1/

√
T )Op(1+

Op(
√
ln(T )/Tb))Op(

√
ln(T )/Tb) = Op(1)op(1) = op(1) by B3(2).
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(ii) By similar arguments in (i), it is easy to show that

|B2| ≤ C
√
TΣ−1

β0
| 1
T

T∑
t=1

[1− xtE(x2|zt)−1E(x|zt)]|Op(||ω|| · ||δ̂ − δ0||+ |µ(xt, zt; γ̂)− µ(xt, zt; γ0)|)

× (1 +Op(
√

ln(T )/Tb))Op(
√
ln(T )/Tb)

=
√
TOp(

1√
nT

)(1 +Op(
√

ln(T )/Tb))Op(
√

ln(T )/Tb)

= Op(1/
√
n)op(1) = op(1)

where the first equality applies Cauchy-Schwartz inequality, the second equality uses Theorem 1(b) that

θ̂ − θ0 = Op(1/
√
nT ), and the last equality holds given B3(2). So B2 = op(1).

(iii) V =
√
T Ŝ−1

G
1
TG

⊤ϵ̄−
√
T Ŝ−1

G
1
TG

⊤ST ϵ̄ ≡ V1−V2. First, V1 =
√
TΣ−1

β0

1
T (IT−ST )ϵ̄(1+Op(

√
ln(T )/Tb)).

Second,

V2 =
√
TΣ−1

β0

1

T
G⊤ST ϵ̄(1 +Op(

√
ln(T )/Tb))

=
√
TΣ−1

β0

1

T

T∑
t=1

GtxtE(x2|zt)−1fz(zt)
−1

[
1

Tb

T∑
τ=1

k

(
zτ − zt
b

)
xτ ϵ̄τ

]
(1 +Op(

√
ln(T )/Tb))

=
√
TΣ−1

β0

1

T

T∑
t=1

[1− xtE(x2|zt)−1E(x|zt)]xtE(x2|zt)−1fz(zt)
−1Op(

√
ln(T )/Tb)(1 +Op(

√
ln(T )/Tb))

=
√
TOp(1/

√
T )Op(

√
ln(T )/Tb)(1 +Op(

√
ln(T )/Tb))

= op(1)

where the third equality uses the fact that E( 1
Tb

∑T
τ=1 k

(
zτ−zt

b

)
xτ ϵ̄τ ) = 0 and supzt∈Z | 1

Tb

∑T
τ=1 k

(
zτ−zt

b

)
xτ ϵ̄τ | =

Op(
√
ln(T )/Tb) by Lemma 1, as well as E{[1−xtE(x2|zt)−1E(x|zt)]xtE(x2|zt)−1fz(zt)

−1} = 0 as discussed

in B1. Thus, V = V1 + op(1). Combining results (i)-(iii), we have the claimed result in (b).

Proof of (c). From (b), we see that
√
T Ŝ−1

G
1
TG

⊤(IT −ST )ϵ̄ =
√
TΣ−1

β0

1
T

∑T
t=1[1−xtE(x2|zt)−1E(x|zt)]ϵ̄t(1+

op(1)) ≡ Σ−1
β0

[
1√
T

∑T
t=1 G̃t

]
(1+op(1)), where G̃t = [1−xtE(x2|zt)−1E(x|zt)]ϵ̄t.We see E( 1√

T

∑T
t=1 G̃t) = 0,

and by Theorem 2.20 in Fan and Yao (2003), the variance

V (
1√
T

T∑
t=1

G̃t) =
1

T
V (

T∑
t=1

G̃t) = Σβ0
σ2
ϵ̄ (zt) + 2

∞∑
t=1

Cϵ̄(t)Cx|z(t) ≡ Ωβ0
< C

as defined in B2(5). Then by the small and large block technique that handles dependent data with α-mixing

coefficient (see details below in Proof of Theorem (2)), by Theorem 2.1 in Fan and Yao (2003),

1√
T

T∑
t=1

G̃t
d→ N (0,Σβ0

),

13



provided that E|G̃t|δ < C and
∑

t>1 α(t)
1− 2

δ < C for some δ > 2. First, E|(1−xtE(x2|zt)−1E(x|zt))ϵ̄t|2+δ =

E(|ϵ̄t|2+δ|zt)E(|1− xtE(x2|zt)−1E(x|zt)|2+δ) < CE(|ϵ̄t|2+δ|zt)(1 +E(|x|2+δ|zt)|E(x2|zt)−1E(x|zt)|2+δ) < C

by A2(2) and B2(2). Second,
∑

t>1 α(t)
1− 2

δ <
∑T

t=1 t
−B(1− 2

δ ) → 0 because δ > 2 and B > 0 by A1(2).

Thus, results in (c) follows.

Combining results (a)-(c), we obtain claimed result in Theorem 2(a).

Proof of Theorem 2(b).

Consider again the regression in (A.14), suppose β0 and ϑ were known. This gives us

Ȳt(ϑ0)− β0 = xtβ(zt) + ϵ̄t, (A.18)

where Ȳt(ϑ0) = ȳt−ω̄⊤
t δ0−µ(xt, zt; γ0). We approximate xtβ(zt) through 2nd-order Taylor expansion around

z ∈ Z to obtain xtβ(zt) = Xt(z)
⊤B(z) + Rt(z), where Xt(z) = [xt, xt(zt − z)]⊤, B(z) = [β(z), β(1)(z)]⊤ is

unknown constant to be estimated at zt = z, and Rt(z) =
1
2β

(2)(z∗t )xt(zt−z)2 is the reminder for z∗t ∈ [zt, z].

We define T × 1 vectors Ȳ(ϑ) = [Ȳ1(ϑ), . . . , ȲT (ϑ)]
⊤, ϵ̄ = [ϵ̄1, . . . , ϵ̄T ]

⊤, and R(z) = [R1(z), . . . , RT (z)]
⊤. We

further define T × 2 matrix X (z) = [X1(z), . . . ,XT (z)]
⊤ whose t-th row is given by Xt(z)

⊤. We obtain

estimator B̂(z) ≡ B̂(z; ϑ̂, β̂0) as

B̂(z) =
[
X (z)⊤K(z)X (z)

]−1 X (z)⊤K(z)(Ȳ(ϑ̂)− ιT β̂0), (A.19)

where K(z) = diag{k
(
zt−z
b

)
}Tt=1 is a T × T diagonal matrix of kernel functions. With Db defined in Proof

of (a) above, recall that Ŝ(z) = 1
TbD

−1
b X (z)⊤K(z)X (z)D−1

b = S(z) + op(1) as shown in (A.16). Then,

Db(B̂(z)−B(z)) = S(z)−1

[
1

Tb
D−1

b X (z)⊤K(z)R(z)

1

Tb
D−1

b X (z)⊤K(z)[Ȳ (ϑ)− Ȳ (ϑ0)− (β̂0 − β0)]

1

Tb
D−1

b X (z)⊤K(z)ϵ̂

]
(1 + op(1))

≡ S(z)−1 [BT1(z) + BT2(z) + VT (z)] .

We show below that

(a) [1, 0]⊤BT1(z) = b2B(z) + op(b
2)

(b)
√
Tb[1, 0]⊤BT2(z) = op(1)

(c)
√
TbVT (z)

d→ N (0, σ2
ϵ̄ (z)S(z)

∫
k2(v)dv).

With Slutsky’s Theorem, results (a)-(c) gives claim in Theorem 2(b).
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Proof of (a). We see that BT1(z) = [BT1,0(z),BT1,1(z)]
⊤, where BT1,j =

1
Tb

∑T
t=1 k

(
zt−z
b

)
xt
(
zt−z
b

)j xt

2 (zt−

z)2β(2)(z∗t ), for j = 0, 1. BT1,0(z) = 1
2Tb

∑T
t=1 k

(
zt−z
b

)
x2t
(
zt−z
b

)2
b2β(2)(z∗t ) = b2

2 β
(2)(z∗t )Ŝ2(z). Here,

E(BT1,0(z)) = b2

2 β(z)
(2)µk,2E(x2|z)fz(z) + op(b

2) by B1, B2(1)-(2), and dominated convergence theorem.

Also,

sup
z∈Z

|BT1,0(z)| ≤
b2

2
β(2)(z) sup

z∈Z
|Ŝ2(z)| = b2[

1

2
E(x2|z)fz(z)µk,2](1 + op(1)) ≡ b2B(z) + op(b

2),

where the first equality applies Lemma 1 and B(z) < C is non-stochastic leading bias for β̂(z). Thus,

BT1,0 = [1, 0]⊤BT1 = op(1) uniformally over z ∈ Z given B3(2).

Proof of (b). As in (a), we obtain BT2(z) = [BT2,0(z),BT2,1(z)]
⊤, with

BT2,j(z) =
1

Tb

T∑
t=1

k

(
zt − z

b

)
xt

(
zt − z

b

)j [
−ω̄⊤

t (δ̂ − δ0)− (µ(xt, zt; γ̂)− µ(xt, zt; γ0))
]
.

It is easy to see that |
√
TbBT2,0(z)| <

√
Tb supz∈Z |BT2,0(z)| =

√
Tb supz∈Z |Ŝ0(z)|Op(1/

√
nT ) = Op(

√
b/n)

by Lemma 1 and Theorem 1(b). Thus,
√
TbBT2,0(z) =

√
Tb[1, 0]⊤BT2(z) = op(1).

Proof of (c).
√
TbVT (z) =

√
Tb 1

Tb

∑T
t=1 k

(
zt−z
b

)
X̌t(z)ϵ̄t, where X̌t(z) = [xt, xt((zt − z)/b)]⊤. We see that

E(
√
TbVT (z)) = 0, and

V (
√
TbVT (z)) =

1

Tb

[
TE

(
k2
(
zt − z

b

)
ϵ̄2t X̌t(z)X̌t(z)

⊤
)

+2
∑∑
1≤t≤τ≤T

E

(
k

(
zt − z

b

)
X̌t(z)ϵ̄tk

(
zτ − z

b

)
X̌τ (z)

⊤ϵ̄τ

)
=

1

b
E

(
k2
(
zt − z

b

)
ϵ̄2t X̌t(z)X̌t(z)

⊤
)

+
2

Tb

[
T−1∑
t=1

(T − t)E

(
k

(
zt − z

b

)
k

(
zt+1 − z

b

)
ϵ̄tϵ̄t+1X̌t(z)X̌t+1(z)

⊤
)]

≡ VT1(z) + VT2(z).

First, E(VT1(z)) =
∫
k2(v)E(ϵ̄t

2|zt)X̌t(z)X̌t(z)
⊤fz(z + vh)dv = σ2

ϵ̄ (z)S(z) + op(1) by A2(2)-(3), B1.

Applying Lemma 1 further gives supz∈Z |VT1(z)−σ2
ϵ̄ (z)S(z)| = op(1) by B3(2). Thus, VT1(z) = σ2

ϵ̄ (z)S(z)+

op(1) uniformly over z ∈ Z.

Second, we can write the covariance term VT2(z) as

VT2(z) =
2

Tb

[
T−1∑
t=1

(T − t)E

(
k

(
z1 − z

b

)
k

(
zt+1 − z

b

)
ϵ̄1ϵ̄t+1X̌1(z)X̌t+1(z)

⊤
)]
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given the stationary property in A1(1). Let us partition the time dimension T − 1 into two parts [1, . . . , dT ]

and [dT + 1, . . . , T − 1], where as T → ∞, we impose conditions on the growth rate of dT → ∞ as

dT → ∞, dT b→ 0, d2T b = O(1). (A.20)

Thus,

VT2(z) =

dT∑
t=1

2

Tb

[
T−1∑
t=1

(T − t)E

(
k

(
z1 − z

b

)
k

(
zt+1 − z

b

)
ϵ̄1ϵ̄t+1X̌1(z)X̌t+1(z)

⊤
)]

+

T−1∑
t=dT+1

2

Tb

[
(T − t)E

(
k

(
z1 − z

b

)
k

(
zt+1 − z

b

)
ϵ̄1ϵ̄t+1X̌1(z)X̌t+1(z)

⊤
)]

≡ VT2,1(z) + VT2,2(z).

First, VT2,1(z) = b
∑dT

t=1
2

Tb2 (T − t)E
[
k
(
z1−z

b

)
k
(

zt+1−z
b

)
X̌1(z)X̌t+1(z)

⊤E(ϵ̄1ϵ̄t+1|x1, xt+1, z1, zt+1)
]
=

O(dT b) = op(1) by B2(4) and (A.20).

Second, VT2,2(z) =
∑T−1

t=dT+1
2
Tb (T − t)E

(
k
(
z1−z

b

)
k
(

zt+1−z
b

)
ϵ̄1ϵ̄t+1X̌1(z)X̌t+1(z)

⊤
)
. Define a short-

hand notation kst (z) ≡ K
(
zt−z
b

) (
zt−z
b

)s
, for s = 0, 1. Given some δ > 0, under A1(2) and Davydov’s

inequality in Lemma 2, a typical element being summed over in VT2,2(z) can be bounded by

E
[
ks1(z)x1ϵ̄1k

s
t+1(z)xt+1ϵ̄t+1

]
≤ Cα(t+ 1)1−

2
2+δ
[
E|ks1(z)x1ϵ̄1|2+δ

] 1
2+δ
[
E|kst+1(z)xt+1ϵ̄t+1

] 1
2+δ .

Since 1
bE|kst (z)xtϵ̄t|2+δ = 1

bE
[
|kst (z)|2+δE(|xt|2+δ|zt)E(|ϵ̄t|2+δ|zt)

]
= O(1) by A2(2) B1, B2(1)-(2), for all

t = 1, . . . , T − 1, then given that α(t+ 1) < α(t) under A1(2), we have

E
[
ks1(z)x1ϵ̄1k

s
t+1(z)xt+1ϵ̄t+1

]
< Ch

2
2+δα(t)

2
2+δ

[
1

b
E|ks1(z)x1ϵ̄1|2+δ

] 1
2+δ
[
1

b
E|kst+1(z)xt+1ϵ̄t+1

] 1
2+δ

= O(α(t)
2

2+δ b
2

2+δ ).

Therefore, we obtain

VT2,2(z) < C
∑
t>dT

α(t)
δ

2+δ b−1b
2

2+δ ≤ Ch−
δ

2+δ

∑
t>dT

(
t

dT

)δ

α(t)
δ

2+δ = Ch−
δ

2+δ d−δ
T

∑
t>dT

tδα(t)
δ

2+δ ,

where the second inequality holds because (t/dT )
δ > 1 given that t > dT . Since α(t) < Ct−B under

A1(2), we further obtain VT2,2(z) < b−
δ

2+δ d−δ
T

∑
t>dT

tδ(1−
B

2+δ ). It can be shown that by choosing B >

(2δ + 1)(2 + δ)/δ, one can ensure δ(1− B
2+δ ) < −(1 + δ), which implies

∑
t>dT

t−(1+δ) < C by A1(2). Thus,

VT2,2(z) = O(b−
δ

2+δ d−δ
T ) = o(1) by observing thatb−

δ
2+δ d−δ

T =

[
(hd2T )

1
2+δ d

δ
2+δ

T

]−δ

= op(1) under (A.20). In

summary, we have VT2(z) = o(1).

16



We now focus on the asymptotic distribution of VT (z), demonstrating that VT1(z) determines the leading

variance of β̂(z). For any non-zero vector λ of size 2× 1,

√
Tbλ⊤VT (z) =

1√
T

T∑
t=1

1√
b
k

(
zt − z

b

)
λ⊤X̌t(z)ϵ̄t ≡

1√
T

T∑
t=1

Qt.

Recall that E(Qt) = 0 and V ( 1√
T

∑T
t=1Qt) = λ⊤σ2

ϵ̄ (z)S(z)
∫
k2(v)dvλ+ op(1) in result (b) above. To apply

central limit theorem on {Qt}Tt=1, we apply small-block and large-block technique to handle data dependence

as T → ∞. Let us partition time index {1, 2, . . . , T} into a total 2qT + 1 subsets, with large block lT and

small block sT such that lT + sT < T and sT < lT . Here, qT =
[

T
lT+sT

]
, where [v] the integer collector as

in (A.4). For 0 ≤ j ≤ qT − 1, we define sums of observations within large-block as ηj , within small-block as

ξj , and within remaining block as ζj such that

ηj =

j(lT+sT )+lT∑
t=j(lT+sT )+1

Qt, ξj =

(j+1)(lT+sT )∑
t=j(lT+sT )+lT+1

Qt, ζqT =

T∑
t=qT (lT+sT )+1

Qt.

Given that all T observations are divided into 2qT + 1 intervals, we have

1√
T

T∑
t=1

Qt =
1√
T

qT−1∑
j=0

ηj +

qT−1∑
j=0

ξj + ζqT

 ≡ 1√
T
QT1

+
1√
T
QT2

+
1√
T
QT3

.

As T → ∞, we show that

(c.1) 1
T E(Q2

T2
) = 1

T E(Q2
T3
) = op(1)

(c.2) |E
[
exp(it

∑qT−1
j=0 ηj)

]
−
∏qT−1

j=0 E [exp(itηj)] | = op(1)

(c.3) 1
T

∑qT−1
j=0 E(η2j )

p→ λ⊤σ2
ϵ̄ (z)S(z)

∫
k2(v)dvλ, and 1√

T
QT1

d→ N
(
0, λ⊤σ2

ϵ̄ (z)S(z)
∫
k2(v)dvλ

)
.

Then by the Lyapounov central limit theorem and Cramer-Rao derive, results (i)-(iii) gives

1√
T

T∑
t=1

QT
d→ N (0, σ2

ϵ̄ (z)S(z)

∫
k2(v)dv),

which completes the proof of (c). Using Slutsky’s Theorem, we obtain

√
TbS(z)−1VT (z)

d→ N
(
0, S(z)−1σ2

ϵ̄ (z)

∫
k2(v)dv

)
,

which implies that
√
Tb(β̂(z)− β(z)− b2B(z)) d→ N (0,Ωβ) ,

with Ωβ =
∫
k2(v)dvσ2

ϵ̄ (z)/E(x2|z)fz(z). Together with results in (a) and (b), the results in Theorem 2(b)

follow. Note that (i) implies that 1√
T
QT2 and 1√

T
QT3 are asymptotically of smaller order and thus negligi-

ble. (ii) shows that {ηj}qT−1
j=0 are asymptotically independent. (iii) shows that the Lyapounov central limit
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theorem can be applied to obtain normality of β̂, provided that certain sufficient condition is satisfied under

our assumptions.

Proof of (i). Let lT and sT to grow at certain orders lT =
[
T

1
B

]
and sT =

[
T

1
B+1

]
, where B > 2

and B > (2+δ)(1+δ)
δ as discussed in VT2,2(z) above. Thus, sT

lT
= O(T− 1

B(B+1) ) = o(1). Also, lT
T =

O(T
1−B
B ) = o(1), and sT

T = sT
lT

· lT
T = o(1). The variance 1

T EQ
2
T2 = 1

T E
[∑qT−1

j=0 ξj

]2
= 1

T

∑qT−1
j=0 V (ξj) +

2
T

∑∑
0≤k<j≤qT−1

Cov(ξk, ξj) ≡ J1 + J2. First, by A1(2) for stationary property,

J1 =
qT
T
V (ξj) =

qT
T
V

(j+1)(lT+sT )+lT∑
t=j(lT+sT )+1

Qt

 =
qT sT
T

E

(
1

b
k

(
zt − z

b

)
λ⊤X̌t(z)X̌ (z)⊤ϵ̄2tλ

)
= O

(qT sT
T

)
.

Since qT sT /T = O(sT /(sT+lT )) = O(1/(lT /sT+1)) = o(1), J1 = o(1). Second, J2 = 2
T

∑∑
0≤k<j≤qT−1

Cov(ξk, ξj).

To simplify notations, define l∗j = j(sT + lT ), and rewrite J2 as

J2 =
2

T

∑∑
0≤k<j≤qT−1

Cov

 l∗k+lT+sT∑
t=l∗k+lT+1

QT ,

l∗j+lT+sT∑
t=l∗j+lT+1

QT

 =
2

T

∑∑
0≤k<j≤qT−1

 sT∑
j1=1

sT∑
j2=1

Cov(Ql∗k+lT+j1 , Ql∗j+lT+j2)

 .
Here, notice that for any j > k, the indexes |l∗j + lT + j2| − |l∗k + lT + j1| = |(j − k)(lT + sT ) + (j2 − j1)| >

|(k− j)(lT + sT )| > |lT + sT | > lT +1 > lT , where the first greater than sign holds because min(j2− j1) = 0,

the second sign holds because j > k, and the last sign holds because min(sT ) = 1. Thus, |j− k| > lT . Given

this observation, we further simplify J2 as

|J2| <
2

T

qT−1∑
k=0

∑
j>k

sT∑
j1=1

sT∑
j2=1

|Cov(Ql∗k+lT+j1 , Ql∗j+lT+j2)|

<
2

T

T−lT∑
k=1

T∑
j=k+lT

|Cov(Qk, Qj)| =
2(T − lT )

T

T∑
j=1+lT

|Cov(Q1, Qj)|, (by A1(2))

< 2

T∑
t=1

E

(
1

b
k

(
z1 − z

b

)
λ⊤X̌1(z)X̌t(z)

⊤λk

(
zt − z

b

)
ϵ̄1ϵ̄t

)

= 2b

[
dT∑
t=1

+

T∑
t=dT+1

]
E

(
1

b2
k

(
z1 − z

b

)
λ⊤X̌1(z)X̌t(z)

⊤λk

(
zt − z

b

)
ϵ̄1ϵ̄t

)

= O(bdT ) +O

([
(bd2T )

1
2+δ d

δ
2+δ

T

]−δ
)

= o(1)

under condition (A.20) with the same argument in VT2,2(z). So J2 = o(1) and thus 1√
T
QT2 = o(1).
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We now focus on QT3. Using similar argument,

1

T
E(Q2

T3) =
1

T
V

T−qT (lT+sT )∑
t=1

QT

 =
1

T

T−qT (lT+sT )∑
t=1

V (QT )+
2

T

∑∑
1≤t<k≤T−qT (sT+lT )

Cov(Qt, Qs) ≡ J3+J4.

First, J3 = 1
T (T − qT (lT + sT ))E(Q2

t ) = 1
T (T −

[
T

lT+sT

]
(lT + sT ))E(Q2

t ) = o(T−1)E(Q2
t ). Since

E(Q2
t ) = λ⊤σ2

ϵ̄ (z)S(z)λ
∫
k2(v)dv+op(1) = O(1), J3 = o(1). Second, J4 = 2

T

∑T−qT (sT+lT )
t=1 (T−qT (sT+lT )−

t)Cov(Q1, Qt+1) <
2
T (T − qt(sT + lT ))

∑T−1
t=1 Cov(Q1, Qt+1) = o(T−1)(

∑dT

t=1 +
∑T−1

t=dT+1)Cov(Q1, Qt+1) =

o(1) as in J2, so J4 = o(1). This implies 1√
T
QT3 = o(1), and result (c.1) follows.

Proof of (c.2). Following the notation in Lemma 2, recall that F j
i is the σ-algebra generated by random

variables {xt, zt}jt=i, so ηj is F j(sT+lT )+lT
j(sT+lT )+1 measurable. Note that the distance between any two different ηj

and ηj′ with j < j′, say j = 0 and j′ = 1, is separated by a small block of size sT +1. Define Vj = exp(itηj)

with i =
√
−1 be the imaginary number, we apply Lemma 2 to obtain∣∣∣∣∣∣E[exp(it

qT−1∑
j=0

ηj)]−
qT−1∏
j=0

E [exp(itηj)]

∣∣∣∣∣∣ ≤ 16(qT − 1)α(sT + 1) = 16qTα(sT + 1)− 16α(sT + 1).

By A1(2), qTα(sT ) ≤
[

T
sT+lT

]
s−B
T =

[
T

sT+lT

] [
T− B

B+1

]
= O

(
1

T
1

B(B+1) +1

)
= o(1) and B > 2. Thus, as

T → ∞, 16qTα(sT+1) < 16
[

T
sT+lT

]
(ST+1)−B < 16

[
T

sT+lT

]
(ST )

−B = op(1), and 16α(sT+1) < 16α(sT ) =

o(1), which comes to (c.2).

Proof of (c.3). Note that (c.1) implies
√
Tbλ⊤VT (z) =

1√
T

∑qT−1
j=0 ηj + o(1). By (c.2), {ηj}qT−1

j=0 are symp-

tomatically independent, allowing us to apply the Lyapounov central limit theorem. Notice that

1

T
V

qT−1∑
j=0

ηj

 =
1

T

qT−1∑
j=0

V (ηj) +
2

T

∑∑
0≤k<j≤qT−1

Cov(ηk, ηj) ≡ J5 + J6.

First, J5 = O
(

lT
lT+sT

)
V (Qt) =

[
1

1+
sT
lT

]
E(QtQ

⊤
t ) = λ⊤σ2

ϵ̄ (z)S(z)
∫
k2(v)dvλ + op(1) because sT /lT =

o(1). Second, J6 = 2
T

∑∑
0≤k<j≤qT−1

Cov(ηk, ηj) =
2
T

∑∑
0≤k<j≤qT−1

[∑lT
j1=1

∑lT
j2=1 Cov(Ql∗k+j1 , Ql∗j+j2)

]
, with l∗j =

j(sT + lT ). As discussed above, the distance |l∗k + j1| − |l∗j + j1| > lT , which implies j − k > lT . Thus,

|J6| < 2
T

∑T−lT
k=1

∑T
j=k+lT

|Cov(Qk, Qj)| < 2
T (T − lT )

∑T
j=1+lT

|Cov(Q1, Qj)| < 2
∑T

t=1 |Cov(Q1, Qt)| = o(1)

as shown in J2. Now, define ZjT =
∑j(sT+lT )+lT

t=j(sT+lT )+1
1√
T
Qt. By Lyapounov central limit theorem (Li and

Racine, 2007),
qT∑
j=0

ZjT
d→ N

(
0, λ⊤

∫
k2(v)dvσ2

ϵ̄ (z)S(z)λ

)
, (A.21)
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provided that limT→∞
1
T

∑qT−1
j=0 E

[
Z2
jT 1(|ZjT | ≥ ϵΣ(z)

√
T )
]
= 0, where Σ(z) ≡ λ⊤

∫
k2(v)dvσ2

ϵ̄ (z)S(z)λ.

This condition is established below.

Notice first that, for any δ > 0, E|ZjT |2+δ ≥ E
[
|ZjT |2+δ1(|ZjT | > ϵΣ(z)

√
T )
]
. Since |ZjT |δ > [ϵΣ(z)]δT

δ
2 ,

E|ZjT |2+δ ≥ CT
δ
2E
[
|ZjT |21(|ZjT | > ϵΣ(z)

√
T )
]
, or

E
[
|ZjT |21(|ZjT | > ϵΣ(z)

√
T )
]
≤ T− δ

2E

∣∣∣∣∣∣
j(lT+sT )+lT∑
t=j(lT+sT )+1

Qt

∣∣∣∣∣∣
2+δ

≤ Cl
1+ δ

2

T [E|Qt|r]
2+δ
r ,

where the second inequality is obtained using Lemma 3 in Cai and Li (2008) by letting r = 2(1+δ), p = 2+δ,

n = lT . Recall that Qt ≡ 1√
b
λk
(
zt−z
b

)⊤
χt(z)ϵ̄t. Since

E|Qt|r = b−
r
2E

∣∣∣∣∣λk
(
zt − z

b

)⊤

χt(z)ϵ̄t

∣∣∣∣∣
r

= Op(b
1− r

2 ) = Op(b
−δ),

we have E|ZjT |2+δ = O(b−
δ(2+δ)
2(1+δ) l

1+ δ
2

T ). As a result,

1

T

qT−1∑
j=0

E
[
Z2
jT 1(|ZjT | ≥ ϵΣ(z)

√
T )
]
≤ C

T

qT−1∑
j=0

T− δ
2E|ZjT |2+δ

= C

[
qT lT
T

]
T− δ

2

[
T

1
B

] δ
2

b−
δ(2+δ)
2(1+δ)

≤
[
T

B−1
B b

2+δ
1+δ

]− δ
2

= op(1),

where the last equality holds by B3(4), and the result in (A.21) follows.
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Appendix 2: Simulation

This section presents simulation studies to evaluate the finite sample performance of the proposed pseudo-

maximum likelihood estimator (pseudo-MLE) for ϑ0 in the first step and the profile kernel estimators

(β0, β(·)) in the second step. In Appendix 2.1, we conduct the simulation under a correct distributional

assumption for the skewed normal distribution (SN) of the error. In Appendix 2.2, we repeat the exercise

with incorrect distributional assumptions and provide detailed discussions on the results.

Appendix 2.1: Simulation under Correct Distributional Assumptions

We begin with a simulation study based on the correct assumption that the error in our skewed panel

model follows a SN. First, we illustrate the numerical properties of the estimators with different choices

of T and a fixed n, assuming n/T → 0. Second, we investigate whether the estimators converge at their

expected parametric or nonparametric rates, as outlined in Theorems 1 and 2. We consider the following

data generating process (DGP):

yi,t+1 = β0 + xtβ(zt) + yi,tδ0y + wi,tδ0w + α0i + ei,t, (A.22)

where for i = 1, . . . , n and t = 1, . . . , T , we specify ωi,t = [yi,t, wi,t]
⊤ to feature a dynamic structure through

a one-period lag variable yi,t, along with a univariate wi,t. We generate a SN error

ei,t ∼ SN(0, σ(xt, zt; γ0σ), λ(xt, zt; γ0λ)), (A.23)

where σ(xt, zt; γ0σ) = exp(xtztγ0σ) and λ(xt, zt; γ0λ) = xtztγ0λ. To introduce time dependence, we generate

zt = z0t + ζzt , where z
0
t ∼ U(0, 1) and ζzt = 0.25ζzt−1 + ξzt following an AR(1) process with ξzt ∼ N (0, 0.252).

To be consistent with the range of zt ∈ [0, 1] in our empirical dataset, we re-scale zt into the range of [0, 1].

Similarly, we obtain wi,t = w0
i,t + ξwi,t, where w

0
i,t ∼ U(1, 4) and ζwi,t = 0.5ζwi,t−1 + ξwi,t with ξ

w
i,t ∼ N (0, 0.52).

We simulate xt = 0.5zt + ζxt to allow fairly strong correlation between xt and its effect modifier zt, where

ζxt = 0.75ζxt−1+ξ
x
t and ξxt ∼ N (0, 0.652). We follow the convention in the literature to set yi,1 = β0+α0i+ei,0

as the initial condition. Here, α0i =
1
T

∑T
t=1 c0(wi,t + yi,t) + ξi with ξi ∼ N (0, 0.5) and c0 ̸= 0 represents

a fixed effect model. We set c0 = 1 throughout the experiment, and impose the identification condition for

fixed effects by setting α01 = −
∑n

i=2 α0i.

We consider two different DGPs with different specifications for parameters ϑ0 = (γ⊤0 , θ
⊤
0 , α

⊤
0,−1), in-

tercept β0, and unknown function β(z), where in this case, γ0 = (γ0σ, γ0λ), θ0 = (θ0y, δ0w), and α0,−1 =

(α02, . . . , α0n). In DGP1, we set γ0 = (0.5, 2), θ0 = (0.5, 1.5), β0 = 2, and β(z) = 1 − z. In DGP2, we set
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γ0 = (0.4,−2), θ0 = (0.25,−1.5), β0 = 1.5, and β(z) = 0.5 + z − 2z2. It is clear that the performance of

function estimator β̂(·) is evaluated for a linear structure in DGP1 while a nonlinear (quadratic) structure

in DGP2.

In our first step pseudo-MLE, we implement quasi-Newton method for maximization algorithm, from

which we set the starting values as one unit above the true values ϑ0 to reduce computational burden. In

the second step kernel estimation, we use a second-order Gaussian kernel function with a rule-of-thumb

bandwidth b = σ̂zT
−1/5 satisfying B3(2) (see Appendix 1), where σ̂z is the standard deviation of {zt}Tt=1.

Throughout the experiment, we fix n = 10 or n = 30, select T = (50, 100, 200), and conduct 500 repetitions.

We evaluate the performance of all parameter estimators ϑ̂ and β̂0 by root mean squared error (RMSE),

absolute bias (BIAS), and standard deviation (SD). We evaluate the performance of kernel estimator β̂(·)

via root average MSE (RAMSE), average BIAS (ABIAS), and average SD (ASD).

Table A.1 summarizes the simulation results for our two-step estimator in DGP1 (upper panel) and

DGP2 (lower panel). In each DGP , the results for the estimators are summarized in the first step (Step 1)

and in the second step (Step 2). Conditioning on each sample, the parametric estimator θ̂ = (γ̂σ, γ̂λ, δ̂y, δ̂w)

uniformly outperforms the nonparametric estimator β̂(·) with different DGPs. This is expected, because

θ̂ converges at a rate of 1/
√
nT (see Theorem 1(b)) faster than β̂(·) at 1/

√
Tb (see Theorem 2(b)). θ̂ is

also superior to β̂0 because the latter involves kernel smoothing on an unknown coefficient function, which

introduces an additional approximation error that worsens β0 estimation. Due to the large dimension of fixed

effects α0,−1, the statistic measures associated with α̂−1 are averaged over each element in α̂−1 (α̂−1 : Ave).

Since α̂i is only
√
T -consistent, it performs less well compared to other parameter estimates. We observe

that a larger n improves all estimators for any fixed T . The main reason is that increasing n effectively

reduces the approximation error for 1
n

∑n
i=1 ei,t using its probability limit µ(xt, zt; γ0) for the pseudo-MLE

estimator ϑ̂. This improvement is in turn transmitted to the second-step estimators because of their tight

dependence. In particular, increasing n barely affects the performance of α̂−1 because the fixed effect is only
√
T consistent.

However, both parameter and function estimators are consistent in that all measures decay to zero as T

doubles for each n, regardless of which DGP is considered. More importantly, all estimators converge at their

expected rates based on Theorems 1 and 2. To clearly demonstrate the convergence rates, we re-estimate our

model in (A.22) by fixing n = 30, raising T = (50, 100, 150, 200, 250), and computing RMSE and RAMSE

given each sample size. Figure 1(a) plots the RMSE of the parameter in the skew function γ̂λ (dashed line

with o in DGP1 and + in DGP2), and the coefficient of the lag variable δ̂y (dot line with △ in DGP1 and
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Table A.1: Simulation Results for Two-Step Estimator under Correct Distribution

n = 10 n = 30

DGP1 Step 1 T = 50 T = 100 T=200 T = 50 T = 100 T=200

γ̂λ RMSE 0.0392 0.0267 0.0219 0.0244 0.0159 0.0118
BIAS 0.0307 0.0210 0.0183 0.0193 0.0129 0.0096
SD 0.0243 0.0165 0.0122 0.0150 0.0094 0.0070

γ̂σ RMSE 0.0380 0.0221 0.0164 0.0230 0.0155 0.0104
BIAS 0.0293 0.0173 0.0132 0.0182 0.0123 0.0083
SD 0.0241 0.0138 0.0098 0.0142 0.0094 0.0064

δ̂y RMSE 0.0238 0.0155 0.0103 0.0173 0.0105 0.0076
BIAS 0.0188 0.0123 0.0081 0.0140 0.0082 0.0060
SD 0.0145 0.0094 0.0063 0.0103 0.0066 0.0046

δ̂w RMSE 0.0508 0.0346 0.0241 0.0354 0.0236 0.0172
BIAS 0.0404 0.0282 0.0193 0.0285 0.0185 0.0136
SD 0.0308 0.0201 0.0146 0.0210 0.0146 0.0106

α̂−1: Ave RMSE 0.1021 0.0694 0.0500 0.0940 0.0692 0.0487
BIAS 0.0798 0.0544 0.0393 0.0743 0.0541 0.0392
SD 0.0638 0.0432 0.0309 0.0577 0.0432 0.0290

Step 2

β̂0 RMSE 0.0939 0.0706 0.0509 0.0632 0.0458 0.0336
BIAS 0.0730 0.0554 0.0400 0.0501 0.0356 0.0261
SD 0.0894 0.0638 0.0435 0.0612 0.0433 0.0304

β̂(z) RAMSE 0.1565 0.1036 0.0697 0.1025 0.0714 0.0544
ABIAS 0.1215 0.0828 0.0558 0.0811 0.0570 0.0440
ASD 0.0988 0.0624 0.0418 0.0628 0.0431 0.0320

DGP2 Step 1

γ̂λ RMSE 0.0431 0.0283 0.0230 0.0198 0.0161 0.0124
BIAS 0.0330 0.0226 0.0196 0.0151 0.0125 0.0103
SD 0.0279 0.0172 0.0121 0.0129 0.0101 0.0069

γ̂σ RMSE 0.0334 0.0228 0.0152 0.0233 0.0146 0.0124
BIAS 0.0257 0.0170 0.0119 0.0187 0.0110 0.0099
SD 0.0214 0.0152 0.0095 0.0140 0.0096 0.0075

δ̂y RMSE 0.0229 0.0188 0.0109 0.0182 0.0109 0.0070
BIAS 0.0189 0.0149 0.0091 0.0141 0.0090 0.0056
SD 0.0130 0.0116 0.0060 0.0116 0.0061 0.0042

δ̂w RMSE 0.0438 0.0327 0.0233 0.0355 0.0214 0.0164
BIAS 0.0357 0.0256 0.0186 0.0267 0.0168 0.0122
SD 0.0255 0.0203 0.0141 0.0235 0.0133 0.0110

α̂−1: Ave RMSE 0.0855 0.0580 0.0410 0.0829 0.0535 0.0366
BIAS 0.0675 0.0465 0.0339 0.0655 0.0434 0.0282
SD 0.0528 0.0349 0.0233 0.0512 0.0314 0.0235

Step 2

β̂0 RMSE 0.0743 0.0522 0.0393 0.0541 0.0382 0.0306
BIAS 0.0584 0.0408 0.0310 0.0430 0.0305 0.0246
SD 0.0711 0.0491 0.0356 0.0528 0.0370 0.0273

β̂(z) RAMSE 0.1868 0.1511 0.0929 0.1617 0.1090 0.0731
ABIAS 0.1497 0.1193 0.0736 0.1264 0.0876 0.0568
ASD 0.1123 0.0932 0.0569 0.1013 0.0652 0.0462

× in DGP2), against its parametric rate of 1/
√
nT . Clearly, each parameter estimate decays at a rate quite

close to the theoretical rate. Similarly, Figure 1(b) plots the RAMSE of the function estimator β̂(·) in DGP1

(dash line with o) and DGP2 (dot line with +), which closely resembles against its nonparametric rate of

1/
√
Tb. Therefore, the numerical properties of our estimator support our theoretical arguments on the

√
nT

(
√
Tb)-consistent estimator for our interested unknowns θ0 (β(·)).

To clearly demonstrate the performance of the function estimator, Figure 1 plots kernel estimates β̂(·)

23



Figure 1: Convergence Rates (First Row) and Kernel Estimation of β(z) (Second Row)
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with a sample (n, T ) = (30, 97), the same sample size in our empirical study, in Panels (c)-(d) for DGP1 and

DGP2, respectively. Each function estimate (dot line with o) is plotted against its point-wise 95% confidence

interval (CI) based on Theorem 2(b) (dashed line) and true function (solid line). Consistent with Table A.1,

the estimates sufficiently reveal the shape of the unknown coefficient function across all DGPs. We note

that the bias is smaller for functions with a lower degree of curvature (i.e., DGP1) compared to that with a

larger degree of curvature (i.e., DGP2). Overall, our proposed estimator demonstrates appealing numerical

performance in our semiparametric dynamic skewed panel model with fixed effects and smooth coefficient.
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Appendix 2.2: Simulation under Incorrect Distributional Assumptions

We now focus on cases where the skew normal distribution (SN) is misspecified. The true distribution

may deviate from the assumed SN in terms of skewness and kurtosis. In addition to SN, there are a few

alternative asymmetric distributions allowing for either positive or negative skewness. We select skewed

t distribution (ST) and asymmetric Laplace distribution (AL) as two such alternatives, each exhibiting

different tail behaviors compared to SN. To facilitate our discussion, we denote the mean of the SN error e

as µSN
t ≡ E(ei,t) from

µSN
t =

√
2

π

σtλt
1 + λ2t

, (A.24)

where σt ≡ σ(xt, zt; γ0σ) and λt ≡ λ(xt, zt; γ0λ), respectively, are parametric conditional scale and skewness

functions.

Skew t Distribution. In our semiparametric dynamic panel model, the error follows a ST if

ei,t ∼ ST (0, σt, λt, ν),

which, compared to SN in (A.23), is characterized by one additional parameter ν > 1, or the degree of freedom

that regulates the tail sickness (Azzalini and Capitanio, 2003). As ν → ∞, the ST becomes SN(0, σt, λt).

The density function of ei,t is given by

f(ei,t) =
2

σt
ϕST

(
ei,t
σt

; ν

)
ΦST

(
λtei,t(ν + 1)

ν + (ei,t/σt)2
; ν + 1

)
, (A.25)

where ϕST and ΦST refer to the PDF and CDF of the standard ST distribution, respectively. It can be

shown that the mean of ei,t under ST, denoted as µST
t ≡ E(ei,t), is

µST
t = b(ν)

σtλt
1 + λ2t

, (A.26)

where b(ν) =
√
ν/πΓ(0.5(ν − 1))Γ(ν/2)−1 is a decreasing function of ν and Γ(r) =

∫
ettr−1dt is gamma

function. It can be shown that limν→1 b(ν) = ∞ and limν→∞ b(ν) =
√

2/π. Denote the difference in the

mean functions between ST and SN as

Dt(ν) = µST
t − µSN

t =

(
b(ν)−

√
2

π

)
σtλt
1 + λ2t

,

which is a decreasing function of ν given σt and λt. Since |λt/(1 + λ2t )| < 1, |Dt(ν)| < |b(ν) −
√

2/π|σt,

implying that limν→∞ |Dt(ν)| = 0 and limν→1 |Dt(ν)| = ∞.

Denote ζ̃t = ζi,t − 1
n

∑n
i=1 ζi,t for any variable ζi,t. Based on the within-transformed model in our first

step (see equation (4) of the paper), ei,t = ỹi,t − ω̃⊤
i,tδ0 − d⊤i,−1α0,−1 + µST

t + Op(1/
√
n)

d→ ST (0, σt, λt, ν).
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Table A.2: Simulation Results for Two-Step Estimator under Incorrect Distribution: ST (n = 30)

γ̂λ γ̂σ δ̂ω b̂(z)

RMSE RMSE RMSE RAMSE

SN(0, σt, λt) T = 50 0.2070 0.0207 0.0250 0.0569
T = 100 0.1218 0.0124 0.0219 0.0366
T = 200 0.0933 0.0088 0.0152 0.0265

ST (0, σt, λt, ν = 5) T = 50 0.2688 0.1257 0.0337 0.2058
T = 100 0.2470 0.1240 0.0241 0.2001
T = 200 0.2293 0.1230 0.0151 0.1971

ST (0, σt, λt, ν = 15) T = 50 0.2062 0.0340 0.0284 0.0603
T = 100 0.1443 0.0335 0.0197 0.0488
T = 200 0.1331 0.0292 0.0136 0.0418

ST (0, σt, λt, ν = 35) T = 50 0.1812 0.0172 0.0254 0.0481
T = 100 0.1331 0.0129 0.0205 0.0359
T = 200 0.0983 0.0093 0.0132 0.0264

However, since the distributional assumption is violated, the true distribution of e is ST but misspecified as

SN. This implies that ei,t −Dt(ν) = ỹi,t − ω̃⊤
i,tδ0 − d⊤i,−1α0,−1 + µSN

t +Op(1/
√
n), or equivalently,

eci,t = ϵ∗i,t(ϑ) +Op(1/
√
n)

d→ ST (−Dt(ν), σt, λt, ν),

where eci,t = ei,t −Dt(ν) and ϵ
∗
i,t(ϑ) = ỹi,t − ω̃⊤

i,tδ0 − d⊤i,−1α0,−1 + µSN
t is our pseudo-residual constructed for

pseudo-MLE. Notice that 1) µSN
t on the right-hand-side is misspecified because µSN

t ̸= µST
t in general; and

2) eci,t is now a mean-adjusted error as E(eci,t) = µSN
t , the same to the mean of SN.

The results indicate that when the ST distribution is misspecified as SN, the ST is location-adjusted by

a magnitude of |Dt(ν)|. In other words, the true ST with a mean of µST
t is shifted to match the mean of the

SN and approximated by the SN through our pseudo-MLE. Therefore, a larger Dt(ν) results in a greater

discrepancy between the true ST and misspecified SN in terms of location and tail thickness. Given that the

ST covers the SN as a special case when ν → ∞, our pseudo-MLE ϑ̂ behaves poorly and becomes inconsistent

as ν → 1. In contrast, as ν increases, ϑ̂ performs better and achieves consistency as ν → ∞. Our second step

estimator (β̂0, β̂(z)) exhibits the same pattern, as their consistency relies on consistent parameter estimates

from the first step.

We investigate the numerical properties of our proposed two-step estimator when ST is misspecified as

SN. We conduct a similar simulation study from Section 2.1, except that ei,t ∼ ST (0, σt, λt, ν) now follows

a ST, and β(z) = z + z2 highlights nonlinear estimation performance. Given fixed σt and λt, we choose

three degrees of freedom: ν = 5 for heavy tails, ν = 15 for moderate tails, and ν = 35 for thin tails, which
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Figure 2: Estimated Scale and Shape Function under ST with Different Specifications
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is fairly close to that of SN. For a focused presentation on estimation consistency, we report the RMSE of

three selected parameter estimates (γ̂λ, γ̂σ, δ̂ω) and the RAMSE of function estimates β̂(z) in Table A.2 for

fixed n = 30 and T = (50, 100, 200). The top panel presents the results under the correct specification of SN

for comparison purposes. Figure A.2 provides a vivid illustration by reporting: 1) scale function estimates

σ̂t = xtztγ̂σ in panel (a); 2) shape function estimates λ̂t = xtztγ̂λ in panel (b); and 3) coefficient function

estimates β̂(z) in panel (c).

The results are consistent with our conjecture. For ν = 5 where the ST exhibits heavy tails, the perfor-

mance of the estimators in both steps is poor and inconsistent, indicated by the large and non-decreasing

RMSE or RAMSE. In Figure 2, we observe the largest deviation of σ̂t and λ̂t under ST with ν = 5 (dashed

line) from the true function (solid line), followed by those with ν = 15 (dotted line) and ν = 35 (dot-dash

line). A similar pattern is observed for β̂(z). However, with a larger ν = 35, Dt(ν) approaches zero, and

the ST resembles the SN more closely in terms of mean and thin tails. In this case, the two-step estimator

shows significant improvement and become consistent.

The results suggest that one may need to consider ST if the conditional distribution of the dependent

variable is deemed to have heavy tails based on economic theories or empirical kurtosis. In this case,

one needs to construct log-likelihood functions of ST based on (A.25), where the CDF of ST does not

permit a closed form solution and needs to be numerically evaluated. Also, µ(xt, zt; γ0) in our pseudo-MLE

should be replaced with µST
t = b(ν) σtλt

1+λ2
t
, where ν > 1 is an additional parameter to be estimated along

with the other parameters. Alternatively, one can estimate b(ν) ≡ c as a constant and back out ν by

numerically approximating the inverse function b−1(c). Notice that for identification purposes, in either case
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the multiplicative structure in µST
t prevents one from adding a constant c0σ in σt or c0λ in λt.

Asymmetric Laplace Distribution. The error term follows a AL if

ei,t ∼ AL(0, σt, λt).

Similar to SN in (A.23), the AL is characterized by a location parameter at zero, a scale function σt > 0, and

a shape function λt regulating the skewness, with λt = 0 corresponding to a symmetric Laplace distribution

(Kotz et al., 2012). Unlike ST, the AL and SN do not nest within one another as special cases, and we adopt

the same notations for scale and shape functions only for notation simplicity. The density function of AL is

given by

f(ei,t) =
2

σt

κt
1 + κ2t

exp

(
−
√
2

σt
κ
sign(ei,t)
t |ei,t|

)
, (A.27)

where κt =
√
2σt/(λt+

√
2σ2

t + λ2t ) and sign(e) = 1 (sign(e) = −1) if e ≥ 0 (e < 0). Notably, the AL exhibits

a peak (i.e., non-differentiable) point at e = 0, therefore different from SN or ST which are continuously

differentiable everywhere. As a graphical illustration, we simplify σt = σ = exp(1) and λt = λ for all t, and

plot the density of AL(0, σ, λ = 2) (dash line), AL(0, σ, λ = 1) (dot line), and AL(0, σ, λ = 0) (dot-dash line)

in Figure 3 (a), against SN(0, σ, λ = 0) (solid line). Notice that, compared to SN, the observations under

AL are highly condensed around zero regardless of λ, thus exhibiting larger kurtosis than SN.

The mean of ei,t under AL, denoted as µAL
t ≡ E(ei,t), is

µAL
t = λt, (A.28)

which is equivalent to the degree of skewness. Given a fixed σt, denote the difference in the mean functions

between AL and SN as

D(λt) = µAL
t − µSN

t = λt −
√

2

π

σtλt
1 + λ2t

.

Clearly, |D(λt)| < |λt|+
√
2/πσt, and D(0) = 0 for all σt when both AL and SN are symmetric.

Under a misspecified distributional assumption, the true distribution of e is AL but misspecified as SN.

Following similar arguments in the case of ST, we see that

eci,t = ϵ∗i,t(ϑ) +Op(1/
√
n)

d→ AL(−D(λt), σt, λt),

where eci,t = ei,t −D(λt). Again, µSN
t on the right-hand-side is misspecified because µSN

t ̸= µAL
t , and eci,t is

a mean-adjusted error such that E(eci,t) = µSN
t .

The results indicate that when the AL is misspecified as SN, the AL is location-adjusted by a magnitude

of |D(λt)|. Similar to the case of ST, the true AL with a mean of µAL
t is shifted to match the mean of the
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Figure 3: Plots of AL (a) and Estimated Coefficient Functions (b) under Different Skewness
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SN and is approximated by the SN through the pseudo-MLE. Therefore, a larger D(λt) results in a greater

discrepancy between the AL and SN. We conjecture that our two-step estimator may perform best in terms

of bias when both SN and AL distributions are symmetric, i.e., D(λt = 0) = 0. In cases where λt ̸= 0, our

estimator becomes more biased, as the SN poorly approximates the AL due to its fatter tails. However, in

either situation, our estimator is inconsistent because the likelihood function, misspecified a SN, does not

converge to AL. This contrasts with the ST, whose likelihood function converges to that of the SN as the

degrees of freedom approach infinity, thereby improving our estimator’s performance.

We investigate the numerical properties of our proposed two-step estimator where AL is misspecified

as SN. We repeat the experiment from Section 2.1, with the adjustment that ei,t ∼ AL(0, σt, λt) and

β(z) = z + z2. We found that specifying time-varying scale and shape functions in the AL often renders

our first-step estimator infeasible. This occurs because using a SN to approximate an AL with fat tails

results in notably large residuals, which in turn makes the skew normal likelihood function undefined. For

demonstration purposes, we simplify both functions to constants, setting σt = σ = exp(c0σ) and λt = λ for

all t. We fix γ0σ = 1 and select λ = (0, 1, 2), corresponding to zero skewness, moderate skewness, and large

skewness, respectively.

Given the AL with three different skewness levels, Table A.3 reports the results for n = 30 with T =
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Table A.3: Simulation Results for Two-Step Estimator under Incorrect Distribution of AL (n = 30)

λ̂ ĉσ δ̂ω b̂(z)

RMSE RMSE RMSE RAMSE

SN(0, exp(1), λ = 0) T = 50 0.0980 0.0654 0.0562 0.0848
T = 100 0.0868 0.0502 0.0394 0.0629
T = 200 0.0669 0.0407 0.0243 0.0463

AL(0, exp(1), λ = 2) T = 50 1.3547 0.5717 0.0666 0.1200
T = 100 1.3331 0.5766 0.0423 0.0855
T = 200 1.3019 0.5774 0.0310 0.0580

AL(0, exp(1), λ = 1) T = 50 0.9613 0.3780 0.0670 0.0898
T = 100 0.9694 0.3708 0.0447 0.0770
T = 200 0.9453 0.3728 0.0323 0.0443

AL(0, exp(1), λ = 0) T = 50 0.7099 0.1235 0.0651 0.0820
T = 100 0.7148 0.1260 0.0402 0.0658
T = 200 0.6988 0.1187 0.0299 0.0444

Table A.4: Estimated Scale and Shape Functions under Incorrect Distribution of AL: (n, T ) = (30, 100)

AL(0, exp(1), λ = 2) AL(0, exp(1), λ = 1) AL(0, exp(1), λ = 0)

λ σ λ σ λ σ

True 2.0000 1.6487 1.0000 1.6487 0.0000 1.6487
Estimates 2.1065 2.4393 1.1100 2.1210 0.0005 1.6213

(50, 100, 200), where the results for a correctly specified SN are shown in the top panel. Figure 3 (b) depicts

the estimated coefficient functions β̂(z). Consistent with our conjecture, an AL with heavy tails (λ = 2) is

challenging to be approximated by a SN, leading to the poorest performance of our estimator compared to

the other two cases. In particular, the first-step parameters (λ, γ0σ) are estimated with significant bias, and

the function estimates β̂(z) deviate considerably from the true function in both magnitude and shape. As λ

decreases to one or zero, D(λ) → 0 and the tails become thinner, resulting in a relative improvement in the

two-step estimator.

Table 3 compares the true and estimated scale parameter σ = exp(c0σ) and shape parameter λ given a

sample size of (n, T ) = (30, 100). Across all three cases, the bias of (λ̂, ĉσ) shrinks as λ → 0, although the

bias given each λ does not rapidly decay toward zero, as indicated by non-decreasing RMSE in Table 2. The

performance of δ̂w and β̂(z) is relatively less affected by the incorrect distribution.

The simulation results suggest that our estimator may provide relatively reasonable results only when

AL is more symmetric. If the dependent variable is distributed with heavy tails or a notable peak, AL is
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more appropriate to accommodate those tail behaviors. In this case, one needs to construct log-likelihood

functions based on (A.27), and replaces µ(xt, zt; γ0) in our pseudo-MLE with µAL
t = σt√

2

(
κ−1
t − κt

)
, where

κt =
√
2σt

λt+
√

2σ2
t+λ2

t

̸= 1.
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Appendix 3: MCMC Algorithm for the Skew Normal Stochastic
Volatility Model

Recall that we model return series in equations (13)-(15) in Section 4.1 with a simple time-varying parameter

model that deviates from the symmetric distributional assumption as

rj,t = µj
t + σj

t ηj,t, ηj,t ∼ SN(0, 1, αj), (A.29)

where j ∈ {mkt,max,min}. Concerning the time-varying parameters, we assume the mean return follows a

driftless random walk process:

µt = µt−1 + ϵµt , ϵµt ∼ N(0, ψµ). (A.30)

Equation (A.30) captures potential secular trend of each series. Our primary focus is on the volatility of each

series. We assume that they comove substantially but allow for non-synchronized movements. Specifically,

we assume that

σmax
t = σmkt

t σ+
t , σmin

t = σmkt
t σ−

t . (A.31)

The volatility of the market return, represented by σmkt
t , determines the general level of volatility of the

stock market, but there are additional factors, σ+
t and σ−

t , influencing the volatility of the maximum and the

minimum returns. Let ht = [ln(σmkt
t )2, ln(σ+

t )
2, ln(σ−

t )
2]′, the evolving process of ht is assumed to follow a

driftless random walk:

ht = ht−1 + ϵt. (A.32)

Equations (A.29) - (A.32) form a widely used local level model with stochastic volatility, except that the

distribution of ηj,t is extended to allow for asymmetric properties. We term this model the Skew Normal

Stochastic Volatility (SNSV) model. Estimation is carried out using the Bayesian MCMC approach proposed

by Huang and Luo (2020) with minor adjustments due to restrictions (A.31).

The nonlinear relationships listed in (A.31) using the algorithm proposed by Huang and Luo (2020). We

therefore adopt a simple two-step strategy to deal with this difficulty. In the first step, we estimate σmkt
t

using the algorithm proposed by Huang and Luo (2020). In the second step, re-scale rmax
t and rmin

t by

σ̂mkt
t obtained from the first step, and implement the algorithm proposed by Huang and Luo (2020) to draw

samples from the posterior distributions of σ+
t and σ−

t .

The mean and quantiles of the posterior are approximated by MCMC draws. The details are as follows.

We first introduce the background of stochastic representation of skew normality. A skew normal random
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variable, Z ∼ SN(0, 1, α), can be represented as

Z = δV +
√

1− δ2U, (A.33)

where V ∼ N+(0, 1), U ∼ N(0, 1), and δ = sign(α)
√
α2/(1 + α2) (Azzalini, 2013). Based on this stochastic

representation, the disturbance term for the log return can be written as

ηt = exp(ht)η
∗
t = exp(ht)(δvt +

√
1− δ2ut) = βtvt + qt, qt ∼ N(0, σ2

q ). (A.34)

where βt = exp(ht)δ and σq = exp(ht)
√
1− δ2.

Let Y denote the observed data {rt}Tt=1. Let θ denote the vector of unknown random variables for which

Gibbs draws will be taken. In this model, θ = (θ1, θ2, θ3, θ4, θ5) where

θ1 = {µ1 . . . µT }, θ2 = {h1 . . . , hT }, θ3 = α, θ4 = {ψµ, ψh}, θ5 = {v1, . . . , vT }.

In the following, we outline the procedure for Gibbs draws.

1. Draw θ1 from f(θ1|Y, θ2, θ3, θ4, θ5). Conditioning on a draw of vt, Equation (A.29) - (A.30) form a

conditionally linear Gaussian unobserved component model. Conditional moments can be computed

from Kalman smoother and draws of µt can be conveniently obtained using the insights in Carter and

Kohn (1994).

2. Draw θ2 from f(θ2|Y, θ1, θ3, θ4, θ5). Jacquier et al. (1994) proposed a single-move Metropolis-Hasting

algorithm for drawing latent stochastic volatility from models with any distributional assumption.

Conditional on θ1, the error terms ηt = σtη
∗
t are observed. Note that

f(ht|ht−1, ht+1, qt,Θ) ∝ f(ht|ht−1, ht+1,Θ)f(ηt|ht,Θ),

We use a random walk Metropolis-Hastings sampler to draw from the above density.

3. Draw θ3 from f(θ3|Y, θ1, θ2, θ4, θ5). Conditional on θ1 and θ2, the error terms η∗t = ηt/σt are observed.

Given a normal prior α ∼ N(α0, Vα0
), the posterior kernel density is

f(θ3|Y, θ1, θ2, θ4, θ5) ∝ fN (α|α0, Vα0)

T∏
t=1

f(η∗t |α),

We use a Metropolis-within-Gibbs algorithm to draw a random sample from the above kernel density.

4. Draw θ4 from f(θ4|Y, θ1, θ2, θ3, θ5). Conditional on θ2, ϵµt and ϵht are observed. Assume that the prior

for the inverse-Gamma ψµ and ψh with hyperparameters a0 and b0, the posterior distribution of ψµ

and ψh is also inverse-Gamma with parameters a0 + T/2 and b0 +
∑T

t=1 ϵ
i
t/2 for i = µ, h.
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5. Draw θ5 from f(θ5|Y, θ1, θ2, θ3, θ4). Conditional on µt and the data, we observe ηt. Following Frühwirth-

Schnatter and Pyne (2010), we can show that

vt|ηt ∼ N+

(
Atβt
σ2
qt

ηt, At

)
, At =

(
β2
t

σ2
qt

+ 1

)−1

, (A.35)

where N+ is a truncated normal with a lower truncation at 0. Equation (A.35) can be applied to

generate posterior samples of {v1, . . . , vT }.

The priors are set as follows: µ0 ∼ N(0, 100), h0 ∼ N(0, 100), α ∼ N(0, 10), a0 = 1, b0 = 0.05,

vt ∼ N+(0, 1).
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