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Appendix A: Technical appendix

We use a Bayesian approach to estimation and inference. This requires choosing suitable shrink-

age priors on the coefficients and latent states of the model. To do so, we exploit the non-centered

parameterization of the state space model (Frühwirth-Schnatter and Wagner (2010)) in Eq. (1):

yt+h = β′
0xt + β̃t

√
V βx

′
t + εt+h,

with β0 denoting a set of K time-invariant coefficeints, β̃t is a vector of normalized states with

jth element β̃jt = (βjt − βj0)/±
√
v2j and

√
V β is a diagonal matrix with ±

√
v2j in the (j, j)th

position.

The state equation of this reparameterized model is given by:

β̃t = β̃t−1 + νt, νt ∼ N (0K , IK).

The non-centered parameterization can be used to elicit shrinkage priors that allow us to

answer the question whether certain elements in βt should be constant or time-varying. This is

achieved by using Gaussian priors on βj0 and ±
√

v2j :

±
√

v2j |τ
2
j,v ∼ N (0, τ2j,v), τ2j,v|av, λj,v ∼ G

(
av,

avλj,v

2

)
, λj,v|cv, κv ∼ G

(
cv,

cv
κv

)
,

βj0|τ2j,β ∼ N (0, τ2j,β), τ2j,β|aβ, λβj ∼ G
(
aβ,

aβλβ,j

2

)
, λβ,j |cβ, κβ ∼ G

(
cβ,

cβ
κβ

)
.
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Here, the parameters av, aβ, cv, cβ and κv, κβ can be either set by the researcher or additional

hyperparameters can be used to infer them from the data. We follow the second approach and

specify yet another set of hyperpriors on these parameters. On the rescaled λv and λβ we use F

distributed priors and on the remaining hyperparameters we use Beta distributions. The precise

prior setting then follows the standard setup discussed in Knaus et al. (2021) and exercised in

the shrinkTVP package.

This prior can be used to discriminate between the following cases. If a given regressor is

insignificant for all t, the prior shrinks βj0 and vj towards zero. If a given regressor is initially

unimportant but grows in importance over time, the prior forces βj0 ≈ 0 and vj > 0. If a

regressor is important and has a time-invariant effect on yt, the prior would imply that βj0 ̸= 0

and vj ≈ 0. Finally, if a regressor is time-varying and important, the prior would allow for

non-zero of βj0 and vj > 0. All this is achieved automatically through the different scaling

parameters.

We simulate from the posterior distribution of the latent states and coefficients using an

Markov chain Monte Carlo (MCMC) algorithm. Since all steps are standard (and implemented

in the R package shrinkTVP), we only summarize the main steps involved and refer to Knaus

et al. (2021) for more details.

The MCMC algorithm cycles between the following steps:

• The latent states are simulated all without a loop from a multivariate Gaussian posterior

distribution. This can be achieved efficiently by exploiting sparse algorithms.

• The time invariant parameters β0 and the diagonal elements of
√
V β are simulated within

a single step from multivariate Gaussian posteriors.

• To improve sampling efficiency, an ancillarity-sufficiency interweaving step is introduced

that redraws β0 from a sequence of Gaussian distributions and the diagonal elements of

Vβ from a generalized inverse Gaussia distribution.

• The prior variances and the hyperparameters are simulated either from well known full

conditionals detailed in Cadonna et al. (2020) or by entertaining a Metropolis Hastings

update.

• The error variances are obtained using the algorithm outlined in Kastner and Frühwirth-

Schnatter (2014).
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Appendix B: Further Results

One quarter ahead
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Figure A.1: Recursive mean quantile scores (relative to the QR model) one quarter ahead post
WWII

Note: This figure shows the cumulative out-of-sample quantile score against the QR model post WWII.
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Figure A.2: Recursive mean quantile scores (relative to the QR model) one quarter ahead pre
WWII

Note: This figure shows the cumulative out-of-sample quantile score against the QR model pre WWII.
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Figure A.3: Time series evolution of the coefficients. Recursive estimation one quarters ahead

Note: This figure shows the time-varying parameters one quarter ahead. The median is displayed as a black line,
and the shaded areas indicate the pointwise 90% and 50% posterior credible intervals.
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Four quarters ahead
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Figure A.4: Recursive mean (relative to QR FSI) four quarters ahead post WWII

Note: This figure shows the cumulative out-of-sample Quantile Score against the QR model post WWII.
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Figure A.5: Recursive mean (relative to QR FSI) four quarters ahead pre WWII

Note: This figure shows the cumulative out-of-sample Quantile Score against the QR model pre WWII.
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Figure A.6: Time series evolution of the coefficients. Recursive estimation four quarters ahead

Note: This figure shows the time-varying parameters four quarters ahead. The median is displayed as a black
line, and the shaded areas indicate the pointwise 90% and 50% posterior credible intervals.
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Further model evaluations

Figure A.7 displays the predicted 5th percentile for all models. This figure is helpful for assessing

whether the predicted tail risks of the models are well-calibrated. To complement the visual

inspection, we also analyze the actual over expected (AE) ratio, which measures how often the

growth rate falls below the predicted 5th percentile.

For this analysis, we exclude both world wars and the surrounding years, as these periods

are not the primary focus and are typically excluded in long historical data studies (e.g. Jordà

et al., 2015).

For one-quarter-ahead predictions, the AE ratios are as follows: QR, 0.88; QR+, 0.95; TVP,

1.21; TVP+, 1.21. For four-quarter-ahead predictions, the AE ratios are: QR, 1.01; QR+

models: 1.42; TVP: 2.06; TVP+, 1.56.

The visual inspection of Figure A.7 indicates that the TVP+ model is less well-calibrated

before the First World War, which inflates the AE ratio. When excluding this initial part of the

sample, the AE ratio of the TVP+ model improves to 1.25 for the four-quarter-ahead prediction

and 1.12 for the one-quarter-ahead prediction.

This exercise shows that out TVPmodel of choice is well calibrated, with regards to predicted

left tail risks, especially after the initial period. However, AE ratios suggest that the QR models

are slightly better calibrated. Looking at Figure A.7 it is evident why. The estimated QR models

are much more conservative compared to the TVP models, which could favor them regarding the

AE ratio since, this measure only counts the number of violation over the expected violations,

which are instances where the growth rate is below the predicted 5th percentile, but says nothing

about the severity of the violation. Furthermore, when measuring the predictive performance by

using quantile scores, the conservative QR models are favored. Although TVP outperform the

QR models when it comes to predictive performance, and are more or less equally well calibrated,

even tough we believe TVP models have somewhat of a disadvantage with the measures we use.

Nevertheless, since the AE ratio is slightly worse for the TVP models, we check the severity

of the violations, with absolute mean and maximum deviations of violations as an additional

check

This exercise shows that our TVP model of choice is well calibrated with regards to predicted

left tail risks, especially after the initial part of the 20th century and when compared to the

literature (see e.g. Brownlees and Souza, 2021; Gächter et al., 2023). However, AE ratios

suggest that the QR models are slightly better calibrated. Looking at Figure A.7, it is evident
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why. The estimated QR models are much more conservative compared to the TVP models,

which could favor them regarding the AE ratio since this measure only counts the number of

violations, which are instances where the growth rate is below the predicted 5th percentile, over

the expected violations, but says nothing about the severity of the violations.

Furthermore, when measuring predictive performance using quantile scores, the conservative

QR models are favored. Although TVP models outperform the QR models when it comes to

predictive performance and are more or less equally well calibrated, we believe the TVP models

have somewhat of a disadvantage with the measures we use. Nevertheless, since the AE ratio is

slightly worse for the TVP models, we check the severity of the violations using absolute mean

and maximum deviations of violations as an additional check and an alternative for quantile

scores.

Table A.1 shows that the average and maximum deviations of violations are smaller for the

TVP+ model compared to the QR+ model. While the TVP+ model is not always strictly

better than the QR model, it is either close or clearly better. Hence, taking all the evidence

into account, the TVP+ model seems to be the best choice for the task at hand.

Table A.1: Additional out-of-sample model evaluation

Pre WWII Post WWII

Horizon QR FSI QR small TVP FSI TVP small QR FSI QR small TVP FSI TVP small

h = 1

AD mean 4.56 8.90 4.96 5.78 1.65 1.90 1.77 1.62
AD max 15.40 22.59 16.55 15.25 3.63 5.75 4.81 5.01

h = 4

AD mean 5.01 7.31 7.21 6.08 1.72 1.66 1.26 1.03
AD max 15.78 22.11 21.85 15.68 4.04 2.91 2.64 2.44

Note: This table reports additional out-of-sample model evaluation for the forecast horizon of 1 and 4 quarters.
It shows the absolute mean and maximum deviations of violations, which are instances where the growth rate is
below the predicted 5th percentile.

Lastly, we formally describe the quantile score and describe why it generally favors more

conservative models. The quantile score is defined as follows:

Quantile Score =
n∑

i=1

ρτ (yi − ŷi)

where u = yi − ŷi and ρτ (u) is the quantile loss function given by:
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Figure A.7: Time series evolution of the predicted tail risks

Note: This figure shows the out-of-sample one quarter ahead (Panel A) and four quarters ahead (Panel B)
forecast of the 5th and 95th percentile (gray shaded area) together with the realised growth rate (black line). The
colored lines show the predicted 5th percentile of the other models.

ρτ (u) =


τu if u ≥ 0

(τ − 1)u if u < 0

In this formula: - yi is the actual value. - ŷi is the predicted value for the τth quantile. - τ

is the quantile being predicted (e.g., τ = 0.05 for the 5th percentile).

The quantile loss function penalizes underestimates and overestimates asymmetrically. If
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the actual value yi is less than the predicted quantile ŷi, the penalty is (τ − 1)(yi − ŷi). If the

actual value is greater than the predicted quantile, the penalty is τ(yi − ŷi). This asymmetry

leads to the characteristic that quantile scores penalize under-predictions more heavily than

over-predictions when τ < 0.5, resulting in more conservative or pessimistic predictions.
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