
Appendix

Appendix A: Estimation of a VARMA Model

A K dimensional VARMA(p, q) process can be written as

Xt = c + Φ1Xt−1 + . . . + ΦpXt−p + υt −Θ1υt−1 − . . .−Θqυt−q, (11)

To represent the K-dimensional VARMA(p, q) process of (11) in terms of K-SCMs, K linear
transformation are preformed via the transformation matrix resulting in

zt = BXt (12)

where B = (β1, β2, . . . , βk)
′

is a (K ×K) invertible matrix while zt = (z1,t, z2,t . . . , zK,t)
′

is
a transformed process associated with K-SCM(pi, qi) for i = 1, 2, . . . ,K. A non-zero linear
combination zi,t = β′

iXi,t, follows a SCM(pi, qi) if βi has the following properties:

β′
iΦpi ̸= 0T where 0 ≤ pi ≤ p,

β′
iΦl = 0T for l = pi + 1, . . . , p,

β′
iΘqi ̸= 0T where 0 ≤ qi ≤ q,

β′
iΘl = 0T for l = qi + 1, . . . , q.

The scalar random variable zi,t, depends only on lags 1 to pi of all variables and lags 1
to qi of all innovations in the system. The aim of identifying scalar components is to
examine whether any simplifying embedded structures underlying this process can provide
a parsimonious VARMA structure.

Embedded scalar component models are determined through a series of canonical corre-
lation tests. Let the estimated squared canonical correlations between Ym,t ≡

(
y′
t, . . . ,y

′
t−m

)
and Yh,t−1−j ≡

(
y′
t−1−j , . . . ,y

′
t−1−j−h

)′
be λ̂1 < λ̂2 < . . . < λ̂K . As suggested by Tiao

& Tsay (1989), the test statistic for at least s SCM(pi, qi), i.e., s insignificant canonical
correlations, against the alternative of less than s scalar components is

C (s) = − (n− h− j)

s∑
i=1

ln

{
1 − λ̂i

di

}
a∼ χ2

s×{(h−m)K+s} (13)

where di is a correction factor that accounts for the fact that the canonical variates could
be moving averages of order j and it is calculated as follows:

di = 1 + 2

j∑
v=1

ρ̂v
(
r̂′iYm,t

)
ρ̂v

(
ĝ′
iYh,t−1−j

)
(14)

where ρ̂v (.) is the vth order autocorrelation of its argument and r̂′iYm,t and ĝ′
iYh,t−1−j

are the canonical variates corresponding to the ith canonical correlation between Ym,t and
Yh,t−1−j . Let, Γ(m,h, j) = E(Yh,t−1−jY

′
m,t). This is a sub-matrix of the Hankel matrix

of the autocovariance matrices of yt. Note that zero canonical correlations imply and are
implied by Γ(m,h, j) having a zero eigenvalue.

The modelling of the VARMA(p, q) process is carried out in three stages, and they are
described as follows.1

Stage I: Identification of the SCMs
By strategically choosing Ym,t and Yh,t−1−j , the overall tentative order of the VARMA(p, q)
is identified. The process begins by searching for K SCMs of the most parsimonious possi-
bility, i.e., SCM(0, 0), which is a white noise process by testing for the rank of Γ(0, 0, 0) =
E(Y0,t−1Y

′
0,t); where Ym,t = Y0,t and Yh,t−1−j = Y0,t−1. If we do not find K linearly

1For further details, refer to Athanasopoulos & Vahid (2008b) and Tiao & Tsay (1989).
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independent white noise scalar processes, we set m = h, and by incrementing m and j,
we search for the next set of K linearly independent scalar components. Once the overall
tentative order (p, q) is identified, we repeat the search process to identify the individ-
ual components. Starting again from the most parsimonious SCM(0,0), we sequentially
search for K linearly independent vectors (α1, . . . , αK) for m = 0, . . . , p, j = 0, . . . , q and
h = m + (q − j).

The test results from identifying the overall tentative order and the individual SCMs
are tabulated in Table A.1, referred to as Criterion and Root tables. We report the results
of all canonical correlations test statistics divided by their χ2 critical for the full period. If
the entry in the (m, j)th cell is less than one in the “Criterion Table”, it shows that there
are six SCMs of order (m, j) or lower in this system. From Panel A, the identified overall
order of the system is VARMA(2, 1).

Table A.1: Stage I of the identification process of a VARMA model with DivM3

PANEL A: Criterion Table PANEL B: Root Table
j j

m 0 1 2 3 4 m 0 1 2 3 4
0 271.33a 25.87 13.91 9.41 7.05 0 0 0 0 0 1
1 11.94 3.20 1.80 1.16 0.66 1 0 3 4 5 6
2 2.43 0.87 0.81 0.82 0.73 2 4 6 9 10 11
3 0.88 0.92 0.92 0.84 0.87 3 6 10 12 15 16
4 1.14 1.06 0.97 0.98 0.97 4 5 11 16 18 21

aThe statistics are normalized by the corresponding 5% χ2critical values

Conditional on the overall order of (2, 1), canonical correlation tests are performed to
identify the individual orders of embedded SCMs. The number of insignificant canonical
correlations found are tabulated in Panel B of Table A.1. This is referred to as the “Root
Table”and the figures in bold show that three SCMs of order (1, 1) is identified in position
(m, j) = (1, 1). Then, there are six SCMs of order (2, 1) at position (m, j) = (2, 1). For
every SCM(m, j) nest all scalar components of order (≤ m,≤ j) and for each individual
SCM(p1 < p, q1 < q), there will be ξ = min{m−p1+1, j−q1+1} zero canonical correlations
at position (m ≥ p1, j ≥ q1). Hence, a new SCM(m, j) is found for every increment above
ξ. For the identified six SCMs of order (2, 1), only three are new, while the other three
are carried over from the SCM(1, 1). So, our identified VARMA(2, 1) consists of three
SCM(1, 1) and three SCM(2, 1).

If the identified K linearly independent scalar components are characterized by the
transformation matrix B = (β1, β2, . . . , βk)

′
, the system in (11) can be rotated to obtain

zt −Φ∗
1zt−1 − . . .−Φ∗

pzt−p = ut −Θ∗
1ut−1 − . . .−Θ∗

qut−q, (15)

where ut = Bυt, Φ
∗
j = BΦjB

−1 and Θ∗
j = BΘjB

−1 for j = 1 to p(or q).
In the rotated model, each row represents one identified SCM(pi, qi). However, ob-

taining the orders of SCMs does not necessarily lead to a uniquely identified system.
For example, if two scalar components were identified such that zr,t = SCM (pr, qr) and
zs,t = SCM (ps, qs), where pr > ps and qr > qs, the system will not be identified as we
need to set min {pr − ps, qr − qs} autoregressive or moving average parameters to zero. This
process is known as the “general rule of elimination,” and in order to identify a canonical
VARMA model, we set the moving average parameters to zero.

Stage II: Identification of the transformation matrix B
The space spanned by zt−1 to zt−p is the same as the space spanned by Xt−1 to Xt−p. So,
for the transformed model (15), the right hand side of the equation can be written in terms
of Xt−1 to Xt−p instead of zt−1 to zt−p without affecting the restrictions imposed by the
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scalar component rules.2 Hence, if we rotate the system by replacing zt−1, . . . , zt−p with
BXt−1, . . . ,BXt−p, the system can be represented in terms of the original series as follows:

BXt = Γ1Xt−1 + . . . + ΓpXt−p + ut −Θ∗
1ut−1 − . . .−Θ∗

qut−q, (16)

where Γi = Φ∗
1B for i = 1, . . . , p and with Γ1, . . . ,Γp and Φ∗

1, . . . ,Φ
∗
p satisfying the same

restrictions as the right hand side of equation (15).
Some of the parameters in B are redundant and can be eliminated. A brief description

about the rules of placing restrictions on the redundant parameters are as follows:

1. Each row of the transformation matrix B can be multiplied by a constant without
changing the structure of the model; i.e, one parameter in each row can be normalized
to one as long as this parameter is not zero. To make sure of this tests of predictability
using subsets of variables are performed.

2. Any linear combination of a SCM(p1, q1) and a SCM(p2, q2) is a
SCM(max {p1, p2} ,max {q1, q2}). For all cases where there are two SCMs with weakly
nested orders, i.e., p1 ≥ p2 and q1 ≥ q2, if the parameter in the ith column of the
row of B corresponding to the SCM(p2, q2) is normalized to one, the parameter in the
same position in the row of B corresponding to SCM(p1, q1) should be restricted to
zero.

Detailed explanations on these issues, together with examples, can be found in Athana-
sopoulos & Vahid (2008b).

Stage III: Estimation of the uniquely identified system
The identified model is estimated using FIML and is given by

ln  L(A,Σ) = −N − p

2
(− ln |B| + ln |Σε| − ln |B′|) − 1

2
ε′tΣ

−1
ε εt (17)

thus

ln  L(A,Σ) ∝ (N − p) ln |B| − N − p

2
ln |Σε| −

1

2
ε′tΣ

−1
ε εt (18)

where A = [B : Φ1, . . . ,Φp : Θ1, . . . ,Θq] and Σ = var(Xt/Xt−1, . . . ,X1). As in Hannan
& Rissanen (1982), a long VAR is used to obtain initial values of the parameters.

2A detailed explanation on this can be found in Athanasopoulos & Vahid (2008b).
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Appendix B: US Business Cycle Variables

Table B.1: Data Descriptions and Sources

Variable Description Source

COMt Commodity Price Index CRB/BLS spot index
(SA, logs and detrended) (Commodity Research Bureau)

IPt US Industrial Production Index FRED Database
(SA, logs and detrended)

INFt US Consumer Price Index FRED Database
(SA, logs and % change per annum)

SumM2t Simple Sum of M2 FRED Database
(SA, logs and detrended)

DivM3t Divisia M3 Centre for Financial Stability
(SA, logs and detrended)

DivM4t Divisia M4 Centre for Financial Stability
(SA, logs and detrended)

FEDt Federal Funds Rate (%) FRED Database
RERt Real Narrow Effective Exchange rate index FRED Database

(SA, logs and detrended)

Table B.2: Unit Root Test Results

Series ADF PP
COMt -2.55 (0.305) -2.29 (0.438)
IPt -1.27 (0.894) -1.48 (0.833)
INFt -2.69 (0.077) -2.36 (0.153)

SumM2t -2.74 (0.217) -1.88 (0.633)
DivM3t -2.81 (0.194) -1.87 (0.868)
DivM4t -2.74 (0.222) -2.18 (0.498)
FEDt -2.08 (0.252) -1.89 (0.336)
RERt -1.73 (0.737) -1.75 (0.724)

Note(s): ADF is the Augmented Dickey-Fuller test, with augmentation selected by AIC. The
Phillips-Perron test is applied with the Bartlett kernel and automatic Newey-West bandwidth selection.

Values in parentheses are P -values.
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Figure B.1: Data Series
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Note: Notation is defined as in Table B.1. The data series are discussed in Subsection 3.1.
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