
Supplemental Online Appendices to “Optimal Taxes
and Basic Income During an Episode of Automation: A

Worker’s Perspective,” by Manoj Atolia, Morgan
Holland, and Jonathan Kreamer

Accepted for Publication by Macroeconomic Dynamics

August 2024

A Omitted Proofs and Derivations

A.1 Derivation of Optimal Production

We can write the firm optimization problem as

max
ℓ(i),k(i)

{[∫ 1

0
(a (i) k (i) + b (i) ℓ (i))1− 1

σ di
] σ

σ−1
− w

∫ 1

0
ℓ (i) di− r

∫ 1

0
k (i) di

}
, (A.1)

subject to non-negativity constraints for factor inputs, k (i) and ℓ (i). This yields two opti-
mality conditions,

w ≥ b (i) ·
(
Y

y (i)

) 1
σ

(A.2)

and

r ≥ a (i) ·
(
Y

y (i)

) 1
σ

, (A.3)

which hold with equality for positive use of labor or capital respectively in the performance
of task i.

With linear substitution between capital and labor in the performance of a given task, it
will be performed by capital only if a (i) /b (i) > r/w, and by labor only if a (i) /b (i) < r/w.
If a (i) /b (i) = r/w, then the task may be performed by both capital or labor. This will
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often pin down a unique production plan, but if a (i) /b (i) = r/w for all tasks in an interval,
then there are many equivalent production plans. To avoid this, we adapt the convention
that (1) all tasks are done purely by capital or purely by labor, and (2) if i < j, then it is
never the case that i is done by labor and j by capital. We can then set α such that tasks
i < α are done only by capital, and tasks i > α are done only by labor. Therefore, α is the
share of tasks done by capital and it will satisfy:


a(i)
b(i) ≥ r

w
for i < α

a(i)
b(i) ≤ r

w
for i > α.

(A.4)

In the event that a (i) /b (i) is strictly decreasing (at least in the neighborhood of α), α will
be uniquely defined by

a (α)
b (α) = r

w
. (A.5)

Otherwise, α will be determined together with factor demands.
For tasks done by capital (i ≤ α), the optimal production of task i satisfies

r =
(

Y

a (i) · k (i)

) 1
σ

a (i) . (A.6)

Thus (a (i))1−σ k is the same across all i ≤ α and aggregate inverse capital demand, given
unit measure of entrepreneurs, satisfies:

r = (A)
σ−1

σ

(
αY

K

) 1
σ

. (A.7)

where

K ≡
∫ α

0
k (i) di (A.8)

is aggregate capital and

A(α) ≡
[ 1
α

∫ α

0
(a (i))σ−1 di

] 1
σ−1

(A.9)

is the productivity of capital. Analogously, inverse labor demand, given a unit measure of
workers, satisfies

w = (B)
σ−1

σ

(
(1 − α)Y

L

) 1
σ

, (A.10)
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where
L ≡

∫ 1

α
ℓ (i) di (A.11)

is aggregate labor and

B(α) ≡
[ 1
1 − α

∫ 1

α
(b (i))σ−1 di

] 1
σ−1

(A.12)

is labor productivity.
The expressions above allow us to derive the following expression for aggregate production

as a function of aggregate capital and labor:

Y ≡ F (K,L) =
[
α

1
σ (A(α)K)1− 1

σ + (1 − α)
1
σ (B(α)L)1− 1

σ

] σ
σ−1 (A.13)

where {A(α), B(α), α} are defined as above and

w = FL(K,L) = B1−1/σ ((1 − α)Y/L)1/σ (A.14)

r = FK(K,L) = A1−1/σ (αY/K)1/σ (A.15)

The expression for q is just equal to r/w.
To see that the aggregate production function can also be written as:

Y = F (K,L) = max
α

{[
α

1
σ (A(α)K)1− 1

σ + (1 − α)
1
σ (B(α)L)1− 1

σ

] σ
σ−1
}

We observe that the expression being maximized is equal to production with

k (i) = (a (i))σ−1∫ α
0 (a (i))σ−1 di

K, ℓ (i) = (b (i))σ−1∫ 1
α (b (i))σ−1 di

L

Then we simply observe that this is the expression that holds under optimal production,
and if a different choice of α yielded a higher level of production for given {K,L}, then this
would not be the solution to the firm profit maximization problem.

A.2 Proof of Proposition 1

In steady state, Ce and K are constant, and thus from equation (9):

r = ρ+ δ

1 − τ k
≡ r∗ > 0 (A.16)
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Then we may rewrite (9) as

Ċe/Ce = K̇/K = (1 − τ k)(r − r∗)

where r = FK is the marginal product of capital, and we derive the growth rate of capital
from the fact that Ce = ρK.

Next we prove two statements which together suffice to prove the claim:

1. When L = 0, the production function is Y = A(1) ·K, and r = A(1).

2. The marginal product of capital is increasing in L.

From these it follows that r ≥ A(1), and therefore when A(1) > r∗, it follows that the
growth rate of the capital stock is bounded below by the value (1−τ k)(A(1)−r∗) > 0. Thus
the economy does not reach a steady state, but experiences continuous growth. By contrast,
when A(1) < r∗, K and therefore K/L will grow until eventually r falls to r = r∗, and the
economy reaches a steady state. (Since r = FK is decreasing in K/L, as we prove below.)

Now we prove the first claim. When L = 0, the production function for given K may be
written as:

F (K, 0) = max
α

{[
α

1
σ (A (α) ·K)1− 1

σ + (1 − α)
1
σ 01− 1

σ

] σ
σ−1
}

Suppose first that σ > 1. Then output satisfies:

F (α,K, 0) = max
α

{
α1/(σ−1)A (α) ·K

}
Is this maximized at α = 1? Note that we have:

α1/(σ−1)A (α) =
[∫ α

0
(a (i))σ−1 di

]1/(σ−1)

Taking the derivative with respect to α, we obtain:

d

dα

[
α1/(σ−1)A (α)

]
= 1
σ − 1

[∫ α

0
(a (i))σ−1 di

]1/(σ−1)−1
(a (α))σ−1 ≥ 0

which is positive because σ > 1 and a(i) ≥ 0. Thus it is always weakly better to increase α
than not, and thus output is maximized at α = 1, and therefore Y = A(1) ·K, and r = A(1).

Suppose instead that σ < 1. Then clearly if α < 1, Y = 0 (since L1−1/σ → ∞ as L → 0,
and x(σ−1)/σ → 0 as x → ∞). Thus we must set α = 1 to have any hope of positive output.
In this case, the production function immediately becomes Y = A(1) · K, and therefore
r = A(1). And the same argument applies when σ = 1, as the Cobb-Douglas form KαL1−α

is likewise 0 for L = 0 unless α = 1.
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Next we prove that the marginal product of capital (r) is increasing in L. This amounts
to proving that the derivative FK (K,L) is increasing in L, where:

F (K,L) = max
α

{[
α

1
σ (A (α) ·K)1− 1

σ + (1 − α)
1
σ (B (α) · L)1− 1

σ

] σ
σ−1
}

We begin by proving the following lemmas.

Lemma 1. Optimal capital task share α is decreasing in labor/capital ratio L/K.

Proof. The equilibrium condition that holds at α can be written as:
Z (i) ≥ X (α) · L

K
for i < α

Z (i) ≤ X (α) · L
K

for i > α

where:

X (α) =
∫ α

0 (a (i))σ−1 di∫ 1
α (b (i))σ−1 di

Z (i) =
[
a (i)
b (i)

]σ

(This condition is found by substituting the expressions for r and w into the condition for
α, and substituting in the expressions for A and B). By assumption, Z (i) is decreasing in
i. Furthermore, since a (i) , b (i) ≥ 0, it is clear that X (α) is increasing in α, since:

X ′ (α) = X (α) ·
(

(a (α))σ−1∫ α
0 (a (i))σ−1 di

+ (b (α))σ−1∫ 1
α (b (i))σ−1 di

)
> 0

Now suppose that L2/K2 > L1/K1. We show that α2 < α1 by contradiction. Suppose
not, so that α2 > α1. Take some i ∈ (α1, α2). Since i > α1, it follows that:

Z (i) ≤ X (α1) · L1

K1

and since i < α2, it follows that:

Z (i) ≥ X (α2) · L2

K2

Therefore:
X (α1) · L1

K1
≥ X (α2) · L2

K2
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Since by assumption L2/K2 > L1/K2, it follows that:

X (α1) > X (α2)

Since X is increasing in α, this implies that

α1 > α2

which contradicts our assumption. Therefore α2 ≤ α1, which proves the first part of the
claim.

Lemma 2. The ratio w/r = FL (K,L) /FK (K,L) is increasing in κ = K/L.

Proof. We know that: 
a(i)
b(i) ≥ r

w
for i < α

a(i)
b(i) ≤ r

w
for i > α

and that α is decreasing in L/K, and therefore increasing in κ. We further know that a/b is
decreasing in i.

Now consider what happens if there is an increase in L/K. We can consider two cases.
One case is that a/b is continuously decreasing at α. In this case, r/w = a/b holds with
equality in the neighborhood of α. Therefore an increase in L/K will cause α to decline,
and therefore a/b = r/w will increase.

Conversely, suppose that a/b is discontinuous at i. Then a marginal change in L/K will
not change α. But then from:

r

w
=
(∫ α

0 (a (i))σ−1 di∫ 1
α (b (i))σ−1 di

) 1
σ ( L

K

) 1
σ

we immediately get that r/w must increase.
Thus in either case a marginal increase in L/K causes a marginal increase in r/w.

Now we are in position to prove our final lemma:

Lemma 3. The marginal product of capital FK (K,L) is increasing in L, since FKL (K,L) >
0.

Proof. We can rewrite the production function as:

F (K,L) = max
α


α 1

σ (A)
σ−1

σ + (1 − α)
1
σ

(
B
L

K

)σ−1
σ

 σ
σ−1

K
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This implies that the choice of α that maximizes production for a given (K,L) depends only
on the ratio κ = K/L.

Next we calculate the derivatives of the aggregate production function. These are:

FK (K,L) =
(
αAσ−1Y

K

) 1
σ

=
(
αAσ−1

) 1
σ

α 1
σ (A)

σ−1
σ + (1 − α)

1
σ

(
B
L

K

)σ−1
σ

 1
σ−1

FL (K,L) =
(

(1 − α)Bσ−1Y

L

) 1
σ

=
(
(1 − α)Bσ−1

) 1
σ

α 1
σ

(
A
K

L

)σ−1
σ

+ (1 − α)
1
σ (B)

σ−1
σ

 1
σ−1

The key thing to observe is that both equations depend only on κ = K/L, and not on K or
L independently. Therefore we can write each as:

FK (K,L) = r (κ)

FL (K,L) = w (κ)

Moreover, from Lemma 2 we know that:

w (κ)
r (κ) = FL (K,L)

FK (K,L) =
(

(1 − α)Bσ−1

αAσ−1 κ

) 1
σ

is increasing in κ.
Now we can prove the claim. Note that changes in L and K affect FK and FL only by

altering κ. Therefore we have:

FKL = d

dL
(FK) = −r′ (κ) · K

L2

= d

dK
(FL) = w′ (κ) · 1

L

Therefore:
−r′ (κ) · κ = w′ (κ)

This implies that w′ (κ) and r′ (κ) have opposite signs.
In Lemma 2 we showed that w/r is increasing in κ. Therefore:

d

dκ

(
w (κ)
r (κ)

)
= w

r

(
wκ
w

− rκ
r

)
≥ 0

7



Now, since rκ and wκ have opposite signs, the only way that:

wκ
w

≥ rκ
r

is if wκ ≥ 0 and rκ ≤ 0. From this we conclude that rκ ≤ 0, and therefore:

FKL = −r′ (κ) · K
L2 ≥ 0

That is, the return on capital is increasing in L/K, and therefore in L.

A.3 Proofs From Section 4

Proof of Proposition 2. We would like to reduce the model to a minimal set of restrictions
on the choices of main variables {Cw, Ce, L,K}. For given (K,L), output and factor prices
are defined by equations (13) – (19), and thus we have {Y, r, w} as functions of (K,L).
Next observe that choosing τ k will imply a choice of rk according to (7). Since entrepreneur
consumption satisfies (10), the choice of rk allows the planner to choose the path of K.

Next, we observe that the planner can effectively determine the level of labor supply by
altering the tax on labor income, so as to satisfy workers’ labor supply condition, (3). Finally,
we observe that the remaining conditions only enter as part of the resource constraint. In
particular, combining the worker, entrepreneur, and government budget constraints (2), (8),
and (20), with expressions for equilibrium factor prices, we obtain the aggregate resource
constraint:

Cw + Ce + K̇ = (1 − ω)F (K,L) − δK. (A.17)

We can therefore state the Ramsey Planning Problem for the social planner which max-
imizes a worker’s life-time utility under majority voting as

max
{Cw,Ce,K,L}

{∫
e−γtU (Cw, L)

}
, (A.18)

subject to (10), (A.17), and
L ≥ 0 (A.19)

We can simplify the statement of the Ramsey problem by substituting the entrepreneur’s
behavioral rule (10) directly into the resource constraint (A.17). The Hamiltonian for the
Ramsey Planning problem is then:

H = U (Cw, L) + λ [(1 − ω)F (K,L) − δK − ρK − Cw] + µLL
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The choice variables are (Cw, L) and the state variable is K. This yields the optimality
conditions:

UC (Cw, L) = λ (A.20)

−UL (Cw, L) ≥ λ(1 − ω)FL (K,L) (A.21)

−λ̇/λ = (1 − ω)FK (K,L) − δ − ρ− γ (A.22)

In addition, the entrepreneur consumption rule (10) and aggregate resource constraint
(A.17) must hold. These five equations, along with with complementary slackness conditions
on L, determine the four choice variables of the Ramsey problem and the Lagrange multiplier
λ.

Proof of Corollary 2. Combining equations (26) and (27) yields:

−UL (Cw, L) ≥ (1 − ω)UC (Cw, L) · FL (K,L) (A.23)

which holds with equality when L > 0. Comparing with (3), and noting that w = FL,
we observe that this condition can be implemented by setting the labor tax equal to the
government expenditure share, τ ℓ = ω.

To derive the expression for the capital tax rate, we substitute the entrepreneur consump-
tion rule (10) into the entrepreneur Euler equation (9). Combining this with the optimality
condition (28), and noting that r = FK , yields the given expression.

To derive the expression for the transfer to workers, we note that the government budget
constraint implies

Tw = τ lwL+ τ krK − ωY

Substituting in the optimal tax rates, plus w = FL and r = FK = r∗, we obtain:

Tw = ω (FLL+ ωFKK − Y ) +
(
γ − λ̇/λ− K̇/K

)
K

=
(
γ − λ̇/λ− K̇/K

)
K

Proof of Corollary 1. Suppose that a steady state is reached. Then equation (28) implies:

FK (K,L) = δ + ρ+ γ

1 − ω
= r∗
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That is, the marginal product of capital reaches a specific level, r∗. From (36), with K̇ =
λ̇ = 0, the steady state capital tax rate is:

τ kss = 1 − (1 − ω)
(

δ + ρ

ρ+ γ + δ

)
= ω + γ

r∗ (A.24)

and likewise from (37) with λ̇ = K̇ = 0, we obtain

Tw = γK

When is the steady state reached? From Proposition 1, we know that a steady state will be
reached iff A(1) < r∗. Here this requires the condition:

A(1) < δ + ρ+ γ

1 − ω
(A.25)

Note that in a steady state, we will have L > 0 (since otherwise the model would be AK and
would achieve continuous growth), and therefore the worker labor supply condition holds
with equality.

A.4 Proofs from Section 5

We begin with the following lemma:

Lemma 4. Given that (38) holds and b(i) = 1, and given a value of L > 0, there exists a
K̄(a, ᾱ) = ᾱ

1−ᾱ
L
a

such that for 0 ≤ K ≤ K̄(a, ᾱ), the production function has the following
linear representation

Y (K,L) = aK + L. (A.26)

Proof. Using the expressions from equations (13) – (19), note that a(i)/b(i) = a for α ≤ ᾱ.
Thus the a(i)/b(i) curve is constant over this region, and therefore at any interior point
α < ᾱ, condition (16) implies that q = a. Further, for α < ᾱ, we have:

q =
(

α

1 − α
aσ−1 L

K

) 1
σ

and therefore q = a implies:
α = aK

aK + L

10



Plugging this into the production function (13), with A = a and B = 1, yields:

Y =
( aK

aK + L

) 1
σ

(aK)1− 1
σ +

(
L

aK + L

) 1
σ

L1− 1
σ

 σ
σ−1

= aK + L

This holds as long as α < ᾱ, which using the expression for α above, is equivalent to:

K <
ᾱ

1 − ᾱ

L

a
≡ K̄

Meanwhile, when K = K̄ exactly, we have α = ᾱ, and therefore Y = aK +L still holds.

Intuitively, when capital is below a threshold value, there is insufficient capital to perform
all tasks that capital is capable of performing, and thus labor and capital are perfectly
substitutable at the margin.1

We now turn to characterizing what happens in steady state. The following lemma
summarize the possibilities, depending on initial parameters:

Lemma 5. In steady state, (i) if a < r∗, then α = 0 and equilibrium capital stock K = 0
implying Y (K,L) = Y (L) = L, (ii) if a = r∗, then there is a continuum of steady states
with α ∈ [0, ᾱ] and equilibrium capital stock K = K̄(r∗, α) so that Y (K,L) = Y (K̄, L) =
aK̄(r∗, α)+L, and (iii) if a > r∗, then α = ᾱ and equilibrium capital stock K = K̂(a, ᾱ, r∗) =

ᾱ

(1−ᾱ)− 1
σ−1 (( r∗

a
)σ−1−ᾱ)

σ
σ−1

L
a
> K̄(r∗, ᾱ) with Y (K,L) =

(
(ᾱ)

1
σ (aK)

σ−1
σ + (1 − ᾱ)

1
σ L

σ−1
σ

) σ
σ−1

so

the production function exhibits the usual diminishing returns in both factors.

Proof. The results follow easily from the linear representation in Lemma 4. (i) follows from
the fact that the return on capital (a) is below the return that the entrepreneurs want (r∗);
(ii) arises because in the knife edge case of a = r∗ any value of 0 ≤ K ≤ K̄(r∗, ᾱ) is
consistent with the entrepreneurs’ Euler equation in the steady state because with a linear
production function there are no diminishing returns to capital accumulation in that range
of K; and (iii) is the case where Lemma 4 is not applicable so the argument in (ii) about
no diminishing returns does not apply.

To derive the expression for K̂ , first note that when a > r∗, we know that α = ᾱ binds
1The linear representation of production in Lemma 4 has a strong resemblance to the “cone of diversifi-

cation” for production in a small-open economy (see Dixit and Norman (1980), Bhagwati et al. (1998), and
Grossman and Helpman (1991)). For example, in a two-good, two-factor economy with goods prices fixed
in international markets, zero profit conditions for the production of the two goods imply fixed values of the
two factor prices. Thus, within the cone of diversification, the aggregate economy displays no diminishing
returns to changes in (relative) quantity (or endowment) of factors just as our linear representation in (A.26).
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in steady state. Therefore in steady state we have:

FK = a
(
αY

aK

)1/σ
= r∗

where production is:

Y =
(
ᾱ1/σ (aK)1−1/σ + (1 − ᾱ)1/σ L1−1/σ

) σ
σ−1

Combining these and solving for K yields:

K = ᾱ (1 − ᾱ)
1

σ−1[
(r∗/a)σ−1 − ᾱ

] σ
σ−1

L

a

which is the expression for K̂ given above. Note that K̂(r∗, ᾱ, r∗) = K̄(r∗, ᾱ). Finally, to see
that K > 0, recall that we assumed a > r∗ and r∗ > A(1). When σ < 1, the first implies the
denominator is positive. When σ > 1, the second, together with A(1) = a (ᾱ)

1
σ−1 , implies

the denominator is positive.

Now it is fairly straightforward to prove Proposition 3:

Proof of Proposition 3. Given assumption (39), we are in case (iii) of Lemma 5. The expres-
sion for K/L therefore follows immediately from the expression for K̂. The expression from
output follows from the expressions in equations (13) – (19), with α = ᾱ, A(α) = a, and
B = 1. Output is positive since K > 0. The wage satisfies w = FL = ((1−α)Y/L)1/σ, which
given the expression for K̂, has the given expression. Finally, the labor share is

sL = wL

Y
= (1 − α)1/σ (Y/L)1/σ−1

which, given the expressions for Y and K/L, yields the given expression for the labor share.
Both are positive because K > 0 and Y > 0.

The results of corollaries 3 and 4 follow immediately from the expressions for the wage
and labor share:

Proof of Corollary 3. Differentiating the expression for steady state wage (43) and labor
share (51) yields equations (44) and (45). Note that the denominator of (44) is positive by
the same argument that K > 0.
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Proof of Corollary 4. Follows directly from differentiating equations (43) and (51). The
expression in (46) is positive because (r∗/a)σ−1 > ᾱ, by the same argument as for K > 0,
and since a > r∗, 1 − (r∗/a)σ−1 has the same sign as σ − 1.

A.5 Proof of Proposition 4

Proof. When α = ᾱ, output is now:

Y =
(
ᾱ1/σ (aK)1−1/σ + (1 − ᾱ)1/σ (BL)1−1/σ

) σ
σ−1

where now B ̸= 1 is possible. Since r = r∗ and α = ᾱ hold in steady state, the steady state
effective capital-labor ratio is still:

aK

BL
= ᾱ (1 − ᾱ)

1
σ−1[

(r∗/a)σ−1 − ᾱ
] σ

σ−1

Then the steady state wage can be written as:

w∗ = B

(
1 − ᾱ (r∗/a)1−σ

1 − ᾱ

) 1
1−σ

Let w0 be the steady state wage initially, and let w1 be the steady state wage after the
episode of automation. Before automation, we have:

B0 =
(
ᾱ1 − ᾱ0

1 − ᾱ0
bσ−1
m + 1 − ᾱ1

1 − ᾱ0
bσ−1

1

) 1
σ−1

and after automation we have B1 = b1. Using these expressions, the ratio of w1 to w0

satisfies: (
w1

w0

)1−σ
=

1 − ᾱ1
(
r∗

a

)1−σ

1 − ᾱ0
(
r∗

a

)1−σ

1 +
(
ᾱ1 − ᾱ0

1 − ᾱ1

)(
b1

bm

)1−σ
 (A.27)

We are interested in knowing when the steady state wage declines following automation, i.e.,
when w0 < w1. From (A.27), we can work out that this will happen when condition (49)
holds.
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A.6 Proofs from Section 7

Proof of Proposition 5. The Hamiltonian of the stated problem is:

H = U (Cw, L) + λ {(1 − ω)F (K1, K2, L) − δK − ρK − Cw}

+ κ (K −K1 −K2) + ϕ1K1 + ϕ2K2 + µLL

This yields optimality conditions:

UC (Cw, L) = λ (A.28)

−UL (Cw, L) ≥ λ (1 − ω) (A.29)

−λ̇/λ = κ/λ− δ − ρ (A.30)

κ ≥ λ (1 − ω)FK1 (K1, K2, L) (A.31)

κ ≥ λ (1 − ω)FK2 (K1, K2, L) (A.32)

Then when K1, K2 > 0 at the solution, this implies FK1 = FK2 , where FK1 > FK2 occurs only
when K2 = 0, and FK1 < FK2 occurs only when K1 = 0. Comparing this with the allocation
of capital across tasks by entrepreneurs (i.e., condition (53)), we see that this allocation is
implemented by τ k1 = τ k2 . The conditions are then identical to those given in Proposition
2, with FL(K,L) = FL(K1, K2, L) and FK(K,L) = max (FK1(K1, K2, L), FK2(K1, K2, L)),
implying identical tax rates.

B Quantitative analysis with high σ

In section 5 of the paper, we analyzed an episode of automation under majority voting
and compared it to the case with fixed taxes at optimal value. That analysis assumed a
value of σ = 0.8. However, given the variation in estimates in the empirical literature and
the importance of the value of σ to various other results in the paper, and especially the
qualitative difference observed for σ < 1 vs. σ > 1, this section repeats the quantitative
experiment with σ = 1.2.

B.1 Calibration

In order to formulate a comparable case for the higher value of σ, we use the concept of
a “normalized” CES function for our production function as in Klump et al. (2012). This
requires changing some other parameters of the model when changing σ to target the same
levels of production, capital, labor, and the labor share at a particular point, which is the

14



point of normalization. We choose the initial steady state under optimal policy as our point
of normalization, since this is the initial point for analyzing the episode of automation that
is our focus. One advantage of normalizing around the steady state is that the same point
will likewise be the steady state of the normalized model, making comparisons between the
two easier.

Applied to our case, the normalized CES approach requires that {α, a, b} satisfy:

α1/σa1−1/σ = (1 − sL0) (Y0/K0)1−1/σ (A.33)

(1 − α)1/σ b1−1/σ = (sL0) (Y0/L0)1−1/σ (A.34)

where {K0, L0, Y0, sL0} are the levels of capital, labor, output, and the labor share respec-
tively at the point of normalization. Assuming that α = ᾱ holds at the new point, as
is indeed the case, this gives us two conditions in three technological parameters {ᾱ, a, b}.
However, there is an additional condition we require these parameters to satisfy, which is
the inequality in equation (39), which requires that tasks with i ≤ ᾱ are cheaper to perform
using capital (rather than labor) in the steady state, and therefore implies positive capital
in steady state.

We considered two possible normalizations: setting b = 1, or setting ᾱ = 0.5, both as in
our baseline calibration. However, fixing ᾱ results in a violation of the constraint (39), and
thus we opted for setting b = 1. This gives us a = 1.3984 and ᾱo = 0.23905. Finally, the
targeted 10 percentage point decrease in labor share due to automation yields ᾱ1 = 0.30429.
In the calibrated steady state for σ = 1.2, as expected all the levels and ratios are identical
to that in Table 1 for σ = 0.8, except, of course, for the value of ᾱ as seen in Table 3.

B.2 Initial Policy and Steady State Under Majority Voting

Once again, we first compare the initial calibrated steady state with the initial steady state
under majority voting, both of which are outlined in Table 1. The broad picture painted by
Table 3 is similar to that by Table 1. Tax policy under majority voting remains unaffected
by the change in σ. As before with σ = 0.8, given the higher capital tax rate, steady state
capital is lower, which likewise reduces steady state output as well as consumption of both
workers and entrepreneurs. Quantitatively, the decline in capital due to the higher capital
taxes is larger with σ = 1.2 than it was with σ = 0.8. This is natural, because a higher
capital tax rate raises the equilibrium rental rate of capital r, and therefore the relative
factor price of capital r/w. σ is precisely the elasticity of K/L to r/w, and thus a higher σ
prompts a greater decline in K/L, and therefore of K.

The only qualitative difference in macroeconomic outcomes in the high σ case is that the
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Calibrated Majority Calibrated Majority
Y 1.5899 1.4498 K/Y 2.8993 2.2212
Cw 1.0308 1.0283 Cw/Y 0.6483 0.7093
Ce 0.1844 0.1289 Ce/Y 0.1160 0.0889
w 2.8574 2.5017 G/Y 0.0907 0.0907
L 0.3432 0.3671 ᾱ 0.23905 0.23905
K 4.6098 3.2214 τ k 0.3190 0.4544
labor share 0.6168 0.6334 τ ℓ 0.2310 0.0907
capital share 0.3832 0.3666 Tw/Y 0.1740 0.1333

Tw/Y adj. 0.0875 0.1333

Table 1: Initial Steady States with Calibrated Policy vs. Majority Voting: σ = 1.2

labor share rises under majority voting, which also supports a slightly higher consumption
of workers as a percentage of GDP (70.93 percent in Table 3 vs. 69.08 percent in Table
1). The reason this occurs can be seen by referring to the expression for labor share (51),
which shows that labor share is increasing in K/L when σ < 1 (as in the baseline σ = 0.8
case), and decreasing in K/L when σ > 1 (as in this case). The intuition for this is given in
footnote 41.

B.3 Quantitative Analysis of an Episode of Automation

We now consider the effect of the episode of automation. The effect across steady states is
qualitatively as well as quantitatively very similar to that for σ = 0.8 as seen from comparison
of Table 2 and Table 2. We, therefore, abstract from a detailed discussion.

Initial Automation Initial Automation
Y 1.4498 2.4485 K/Y 2.2212 2.8284
Cw 1.0283 1.6031 Cw/Y 0.7093 0.6547
Ce 0.1289 0.2770 Ce/Y 0.0889 0.1131
w 2.5017 3.7743 G/Y 0.0907 0.0907
L 0.3671 0.3460 ᾱ 0.23905 0.30429
K 3.2214 6.9254 τ k 0.4544 0.4544
labor share 0.6334 0.5334 τ ℓ 0.0907 0.0907
capital share 0.3666 0.4666 Tw/Y 0.1333 0.1697

Tw/Y adj. 0.1333 0.1697

Table 2: Steady States Before and After an Episode of Automation under Optimal Policy:
σ = 1.2

Transitional Dynamics. In a similar vein, we find that the transition dynamics of the
episode of automation, shown in Figure 1 over a period of 75 years, are qualitatively very

16



Figure 1: Dynamics for Gradual Increase with σ = 1.2 under Optimal Policy
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similar to those in Figure 1 for σ = 0.8. Thus, the intuition remains the same as in that case,
and we refrain from repeating it here. Instead, we directly move to examining the welfare
gains for workers and entrepreneurs, which amount respectively to consumption equivalents
of 21.57 percent and 55.02 percent.

Fixed Tax Counterfactual. As before, for a true assessment of the impact of these
policies we consider a counterfactual in which tax rates remain fixed over the course of the
transition. The transition paths under the fixed tax counterfactual are shown in Figure 2
and comparison with Figure 2 reveals that the transition is now monotonic for all variables,
without any overshooting for labor supply related driven accompanied by overshooting of
transfers in case of σ = 0.8. In terms of welfare implications, which is our focus, we find that
worker’s welfare gain is 21.10 percent whereas entrepreneur’s gain is 34.09 percent (both in
terms of consumption equivalents.) Thus we see that optimally varying tax rates over the
transition increases workers’ welfare by only 0.47 percentage points, whereas entrepreneurs’
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Figure 2: Dynamics for Gradual Increase with σ = 1.2 with fixed taxes
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gain by a whopping 20.93 percentage points–a result that mirrors the outcome for σ = 0.8
in the main body of the paper.

18



C Automation under Continuous Growth

In our analysis so far, we have focused on the case that a steady state is reached. However, as
Proposition 1 in the main text makes clear, it is quite possible that no steady state exists, and
the economy experiences continuous growth through capital accumulation. In this section,
we consider this case.

Fixed Tax Rates. First suppose that tax rates are fixed at some level {τ k, τ ℓ}. Then we
can say the following about the conditions under which continuous growth will occur:

Corollary 1. Suppose that a(i), b(i), τ ℓ, and τ k are all constant, and let r∗ = ρ+δ
1−τk . Then,

(i) If a (i) > r∗ for all i, then A(1) > r∗ and there is sustained growth. (ii) If σ < 1 and
a (i) = 0 for a positive measure of tasks, then A (1) = 0 < r∗ and no long-run growth is
possible. (iii) If σ > 1, a sufficient condition for sustained growth is that there exists m such
that for all i ∈ [0,m] we have a (i) ≥ m

1
1−σ r∗.

Proof. All results follow immediately from Proposition 1 in the main text.

Result (i) gives a simple sufficient condition for sustained growth: sufficient capital pro-
ductivity at all tasks. Result (ii) demonstrates the importance of the elasticity of substitu-
tion to whether continuous growth is possible. When σ < 1, each task is necessary, and thus
sustained growth requires positive capital productivity at all tasks, excepting a measure 0
subset. In the absence of this, labor commands a positive share of income that is bounded
away from zero and constrains the benefit of continued capital accumulation, and hence,
sustained economic growth. This is related to Baumol’s cost disease (Baumol and Bowen,
1966). Finally, result (iii) gives a sufficient condition for continuous growth under incomplete
automation when σ > 1.

Majority Voting. Next we consider what happens in our baseline case of majority voting
when no steady state exists. Suppose that condition (23) is not satisfied, so that:

A(1) > δ + ρ+ γ

1 − ω
(A.35)

Then continuous growth through the accumulation of capital occurs. Here we make a
further simplifying assumption: suppose that worker utility is separable in consumption and
labor, and is CRRA in consumption, i.e.,

U(Cw, L) = C1−ψ
w

1 − ψ
− h(L) (A.36)
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This assumption allows us to compute a balanced growth rate for the economy.
The planning problem and solution is just as in Proposition 2 in the main text, but now

no steady state is obtained. Instead, the long-run result is as follows:

Proposition 1. Suppose that technology and preferences satisfy (A.35), and that worker
preferences satisfy (A.36), with

ψ > 1 − γ

(1 − ω)A(1) − δ − ρ
(A.37)

Then in the equilibrium under majority voting, no steady state is reached, and the economy
converges to a balanced growth path, in which the variables {K,Y,Cw, Ce} all grow at rate:

g = (1 − ω)A(1) − δ − ρ− γ

ψ

Along the growth path, output is Y = A(1) · K, entrepreneur consumption is Ce = ρK, and
worker consumption is:

Cw = [(ψ − 1) g + γ]K (A.38)

The capital tax rate on this balanced growth path is:

τ kbg = ω + (ψ − 1) g + γ

A(1)

Proof. The statement of the planning problem and the optimality conditions are the same
as in Proposition 2, with UC(Cw, L) = C−ψ

w and UL = −h′(L). As we proved in section A.2,
the marginal product of capital FK is increasing in L. Since as L/K → 0, FK → A(1),
it follows that FK ≥ A(1), and therefore condition (A.35), together with condition (28),
implies Cw is continuously growing at some rate bounded below by a value above 0. As the
economy grows, eventually L/K → 0, the production function converges to Y → A(1) · K,
and FK → A(1).

Now we check whether a balanced growth path exists that satisfies the optimality condi-
tions. From (28), we find that worker consumption is growing at the rate:

Ċw
Cw

= (1 − ω)A(1) − δ − ρ− γ

ψ
= g (A.39)

From the constraint (25), we find that capital grows at rate:

K̇

K
= (1 − ω)A(1) − δ − ρ− Cw

K
(A.40)
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Since a balanced growth path requires that all variables {Cw, Ce, K} grow at the same rate,
this rate must be g. If this is true for K, it will also be true for Ce, since Ce = ρK. Then
we can simply ask what level of Cw/K is consistent with K̇/K = g. Using the expression
above yields:

Cw
K

= [(1 − ω)A(1) − δ − ρ]
(
ψ − 1
ψ

)
+ γ

ψ
(A.41)

Since a solution requires Cw > 0 (since this implies finite λ), this expression implies that a
solution requires:

ψ > 1 − γ

(1 − ω)A(1) − δ − ρ

which is equivalent to the infinite integral in the objective function in the optimization
problem converging. Note that the growth rate will be positive when

A(1) > δ + ρ+ γ

1 − ω
= r∗ (A.42)

which is just the condition (A.35).

Note that the growth rate is decreasing in ψ. Intuitively, for lower ψ workers have less
desire to smooth consumption, and thus choose to grow the capital stock more quickly.
Condition (A.37) is necessary because, for sufficiently low ψ, the implied growth rate is fast
enough that, on the balanced growth path, the integral of worker lifetime utility diverges
and the planning problem (24) is no longer well-defined.2

The capital tax rate is increasing in the growth rate when ψ > 1, and decreasing in the
growth rate when ψ < 1. This is for the usual reason — taxes are a means that workers can
consume more now at the cost of less consumption in the future. When ψ > 1, the desire to
smooth consumption by consuming more today is dominant, and thus a higher growth rate
causes higher taxes. When ψ < 1, the desire to grow future consumption faster dominates.

We can compare the solution under majority voting to the optimal growth problem with a
representative agent (i.e., that owns capital and supplies labor, rather than separate workers
and entrepreneurs). In that case, if a balanced growth path is achieved, it would feature
growth rate:

g = (1 − ω)A(1) − δ − ρ

ψ

which corresponds to a capital tax of τ k = ω. By contrast, here the tax rate is greater than
ω. Thus, compared to the representative agent case, our model features slower growth and

2Note that, if condition (A.37) did not hold, (A.38) implies that worker consumption would be non-
positive. To see that lifetime utility diverges, note that on a balanced growth path, worker flow utility grows
at rate (1 − ψ)g, and condition (A.37) can be written as (1 − ψ)g < γ.
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higher capital taxes.
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