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Online Appendix A�Proof of production aggregation
We omit time subscripts for simplicity. From equations (1), (2), and (3), we obtain,

�Yi = �A1��ii K�i
i L

1��i
i

"
1 +

�
FDIi
Ki

��i �Lri
Li

�1��i#
. (A.1)

Assuming frictionless cross-country capital �ows, condition (7) implies the equilibrium con-

dition:

r� + � =MPKi;t =MPKr
i;t . (A.2)

Combining equations (A.2), (2), and (3), we obtain,

FDIi � Li = Ki � Lri . (A.3)

Equation (A.1), combined with (A.3) and (4) becomes,

�Yi = �A1��ii K�i
i L

��i
i
�Li . (A.4)

Adding the term Ki � Li to both sides of equation (A.3) leads to (Ki + FDIi) � Li = Ki �

(Li + Lri ), which implies,
�Ki

�Li
=
Ki

Li
, (A.5)

given (4), and given that �Ki = Ki + FDIi. Combining (A.4) with (A.5) we obtain

�Yi = �A1��ii

� �Ki

�Li

��i
�Li ,

which coincides with equation (6), proving the aggregation result. Q.E.D.
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Online Appendix B �Proof of Proposition (3.3.1)
Proof of Proposition 3.3.1

We start by solving equation (14) as a di¤erence equation, using the simpli�ed form,

xj+1 = �xj + �j , j = 1; :::; T , (B.1)

where,

xj � ab;j , (B.2)

� � 1 + r� , (B.3)

�j � wb+j�1 � cb;j . (B.4)

Combining (16) with (B.1), provides us with the initial condition for the di¤erential equation

given by (B.1), which is given by,

x1 = 0 . (B.5)

Using successive substitutions,

(B:1)
j=1
=) x2 = �x1 + �1

(B:1)
j=2
=) x3 = �x2 + �2

9>=>;) x3 = � (�x1 + �1) + �2

(B:1)
j=3
=) x4 = �x3 + �3

9>>>>=>>>>;) x4 = � [� (�x1 + �1) + �2]+�3 ,

which can be rewritten as,

x4 = �3x1 +
3X
`=1

�3�`�` . (B.6)

Generalizing (B.6), we obtain,

xj = �j�1x1 +

j�1X
`=1

�j�`�1�` , j = 2; :::; T . (B.7)

Dividing both sides of (B.7) by �j�1 gives a useful form of the solution, namely,

xj

�j�1
= x1 +

j�1X
`=1

�`
�`
, j = 2; :::; T . (B.8)
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Imposing the initial condition given by (B.5) on (B.8) leads to,

xj

�j�1
=

j�1X
`=1

�`
�`
, j = 2; :::; T . (B.9)

Using (B.2), (B.3), and (B.4), (B.9) becomes,

ab;j

(1 + r�)j�1
=

j�1X
`=1

wb+`�1 � cb;`

(1 + r�)`
,

or, more conveniently, after dividing both sides of the last equation by 1 + r�,

ab;j

(1 + r�)j�2
=

j�1X
`=1

wb+`�1 � cb;`

(1 + r�)`�1
, j = 2; :::; T . (B.10)

With the solution of the wealth-accumulation path at hand given by equation (B.10),

we proceed in order to impose the next necessary and su¢ cient condition for an optimum,

which is the Euler equation

cb;j+1 = [� (1 + r
�)]� cb;j , j = 1; :::; T � 1 . (B.11)

Solving (B.11) forward leads to equation (17). In order to solve for the optimum level of

consumption cb;1 which drives the whole optimal consumption path in (17), we can extend

equation (B.10) to j = T +1, and impose the terminal condition given by (15). Speci�cally,

a necessary condition for an optimum is that (15) binds, i.e.,

ab;T+1 = 0 . (B.12)

Extending equation (B.10) to j = T + 1, and imposing (B.12) gives,

TX
`=1

wb+`�1

(1 + r�)`�1
=

TX
`=1

cb;`

(1 + r�)`�1
. (B.13)

In order to calculate the right-hand side of (B.13) we substitute equation (17) to get,

TX
`=1

cb;`

(1 + r�)`�1
= cb;1

TX
`=1

[� (1 + r�)]�(`�1)

(1 + r�)`�1
,
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which simpli�es to
TX
`=1

cb;`

(1 + r�)`�1
= cb;1

TX
`=1

 `�1 ,

and �nally,
TX
`=1

cb;`

(1 + r�)`�1
= cb;1

1�  T

1�  
. (B.14)

To calculate the left-hand side of (B.13) we use the following change of indices:

t = b+ `� 1 . (B.15)

Equation (B.15) gives,

` = t� b+ 1 , (B.16)

which further implies,

` = 1
(B:16)
=) t = b , (B.17)

and

` = T
(B:16)
=) t = T � b+ 1 . (B.18)

Substituting (B.15), (B.16), (B.17), and (B.18) into the left-hand side of (B.13) we obtain,

TX
`=1

wb+`�1

(1 + r�)`�1
=

b+T�1X
t=b

wt

(1 + r�)t�b
. (B.19)

Based on (5), equation (12) implies,

wt = eg �A(t�b)wb . (B.20)

Before we substitute (B.20) into (B.19), notice that

wt = 0 , for all t 2 fTR + 1; :::; Tg . (B.21)

Substituting (B.20) and (B.21) into (B.19) gives,

TX
`=1

wb+`�1

(1 + r�)`�1
= wb

b+TR�1X
t=b

�
eg �A

1 + r�

�t�b
,
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or,
TX
`=1

wb+`�1

(1 + r�)`�1
= wb

TR�1X
j=0

�j ,

which simpli�es to,
TX
`=1

wb+`�1

(1 + r�)`�1
=
1� �TR

1� �
wb . (B.22)

Substituting (B.22) and (B.14) into (B.13) gives,

cb;1 =
1� �TR

1� �

1�  

1�  T
wb , (B.23)

which proves equation (20).

We proceed with deriving the optimal path of wealth for the representative household in

cohort b.

(B:10)) ab;j = (1 + r�)j�2
j�1X
`=1

wb+`�1�cb;`
(1+r�)`�1

i = `� 1| {z }
+

`=i+1

%

&

` = 1) i = 0

` = j � 1) i = j � 2

9>>>>>>>>>>=>>>>>>>>>>;
) ab;j = (1 + r�)j�2

j�2X
i=0

wb+i � cb;i+1

(1 + r�)i
,

(B.24)

which holds for j = 2; :::; T . Based on (5), equation (12) implies,

wb+i = eg �Aiwb , i = 0; :::; TR � 1 . (B.25)

Equation (17) gives,

cb;i+1 = [�
� (1 + r�)�]

i
cb;1 , i = 0; :::; T � 1 . (B.26)

After substituting (B.25) and (B.26) into (B.24) we obtain,

ab;j = (1 + r
�)j�2

 
wb

j�2X
i=0

�i � cb;1

j�2X
i=0

 i

!
,
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which simpli�es to,

ab;j = (1 + r�)j�2
�
1� �j�1

1� �
wb �

1�  j�1

1�  
cb;1

�
, j = 1; :::; TR + 1 . (B.27)

Substituting (B.23) into equation (B.27) gives,

ab;j = (1 + r�)j�2
�
1� �j�1

1� �
� 1� �TR

1� �

1�  j�1

1�  T

�
wb , j = 1; :::; TR + 1 ,

which can be written as,

ab;j = (1 + r
�)j�2

1� �TR

1� �

�
1� �j�1

1� �TR
� 1�  j�1

1�  T

�
wb , j = 1; :::; TR + 1 . (B.28)

The reason why (B.28) holds for j only up to period TR+1 is that, after period TR the wage

earnings are zero, i.e,

wb+j�1 = 0 , j = TR + 1; :::; T: (B.29)

We can now solve for the optimal wealth path after period TR + 1, taking the wealth in

period TR + 1, i.e., ab;TR+1 as given. Speci�cally, after setting j = TR + 1, (B.28) gives,

ab;TR+1 = (1 + r�)TR�1
1� �TR

1� �

�
1� 1�  TR

1�  T

�
wb . (B.30)

Starting equation (14) from j = TR + 1 and on, and after taking into account (B.29),

(14) ; (B:29)
j=TR+1=) ab;TR+2 = �ab;TR+1 � cb;TR+1

(14) ; (B:29)
j=TR+2=) ab;TR+3 = �ab;TR+2 � cb;TR+2

9>=>;) ab;TR+3 = � (�ab;TR+1 � cb;TR+1)� cb;TR+2

(14) ; (B:29)
j=TR+3=) ab;TR+4 = �ab;TR+3 � cb;TR+3

9>>>>=>>>>;)

) ab;TR+4 = � [� (�ab;TR+1 � cb;TR+1)� cb;TR+2]� cb;TR+3

which can be written in a condensed form as,

ab;TR+4 = �3ab;TR+1 �
3X
`=1

�3�`cb;TR+` ,
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and can be generalized to,

ab;TR+j = �j�1ab;TR+1 �
j�1X
`=1

�j�`�1cb;TR+` ,

and rewritten as,

ab;TR+j = �j�1

 
ab;TR+1 �

j�1X
`=1

cb;TR+`

�`

!
, j = 2; :::; T � TR . (B.31)

From (17) we obtain,

cb;TR+` = (� )
`�1 cb;TR+1 , j = 1; :::; T � TR . (B.32)

Combining (B.32) with (B.31) leads to,

ab;TR+j = �j�1

 
ab;TR+1 � cb;TR+1

j�1X
`=1

(� )`�1

�`

!
,

which is

ab;TR+j = �j�1

 
ab;TR+1 � ��1cb;TR+1

j�1X
`=1

 `

!
,

and simpli�es to,

ab;TR+j = �j�1
�
ab;TR+1 � ��1

1�  j�1

1�  
cb;TR+1

�
, j = 2; :::; T � TR . (B.33)

Using again (17),

cb;TR+1 = (� )
TR cb;1 . (B.34)

Substituting (B.30), (B.23) and (B.34) into (B.33) we obtain,

ab;TR+j = �j�1
�
�TR�1

1� �TR

1� �

�
1� 1�  TR

1�  T

�
� �TR�1

1�  j�1

1�  

1� �TR

1� �

1�  

1�  T

�
wb ,

which simpli�es, after some algebra, to,

ab;TR+j = �TR+j�2
1� �TR

1� �

�
1� 1�  TR+j�1

1�  

�
wb , j = 2; :::; T � TR . (B.35)
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It remains to adjust the indices in (B.35), setting

` = TR + j , (B.36)

which implies,

j = `� TR . (B.37)

Substituting (B.36) and (B.37) into (B.35), after using (B.3) gives,

ab;` = (1 + r�)j�2
1� �TR

1� �

�
1� 1�  `�1

1�  

�
wb , ` = TR + 2; :::; T . (B.38)

Cpmbining (B.38) with (B.28) proves (21), completing the proof of the Proposition. Q.E.D.
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Online Appendix C �Proof of Proposition (3.4.1)
Proof of Proposition 3.4.1 We start from equation (25), dropping the country

index i, namely

Kt =
T�1X
j=0

at�j;j+1Lt�j;j+1 , (C.1)

where, according to equation (21),

at�j;j+1 = (1 + r
�)j�1

1� �TR

1� �
� (j)wt�j , (C.2)

� (j) �

8><>:
1��j
1��TR �

1� j
1� T

1� 1� j
1� T

;

;

j = 0; :::; TR

j = TR + 1; :::; T � 1
, (C.3)

in which the indices change must be noticed. Combining (C.1) and (C.2) we obtain,

Kt =
1� �TR

1� �

T�1X
j=0

(1 + r�)j�1 � (j)wt�jLt�j;j+1 . (C.4)

Given (5), and given that the size of a cohort does not change during the cohort�s lifetime

(deterministic death time) notice that,

Lt�j;j+1 = Lt�j = e�g�LjLt , (C.5)

and that, based on (5) again, equation (12) implies,

wt�j = e�g �Ajwt . (C.6)

We can relate Lt�j in equation (C.5) to �Lt for all j 2 f0; :::; T � 1g, since,

�Lt =

T�1X
j=0

Lt�j . (C.7)

Speci�cally, combining (C.5) with (C.7), we obtain,

�Lt = Lt

T�1X
j=0

e�g�Lj ,
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which simpli�es to,

�Lt =
1� e�g�LT

1� e�g�L
Lt . (C.8)

Combining (C.8) with (C.5) gives,

Lt�j;j+1 = Lt�j = e�g�Lj
1� e�g�L

1� e�g�LT
�Lt . (C.9)

With (C.9), (C.6) and (12) at hand, we return to (C.4), obtaining,

Kt = (1� �)

�
�

r� + �

� �
1�� 1� �TR

1� �

1� e�g�L

1� e�g�LT
�At �Lt

T�1X
j=0

(1 + r�)j�1 � (j) e�(g �A+g�L)j ,

which can be re-written more concisely as,

Kt =
1� �

1 + r�
1� �TR

1� �

1� e�g�L

1� e�g�LT

�
�

r� + �

� �
1��

�At �Lt

T�1X
j=0

�j� (j) . (C.10)

Recalling that � = eg �A= (1 + r�) and � � (1 + r�) =eg �A+g�L , notice that,

�� = e�g�L . (C.11)

Using (C.11) we can simplify (C.10) into,

Kt = � �
�

�

r� + �

� �
1��

�At �Lt . (C.12)

where

� � 1� �

1 + r�
1� �TR

1� �

1� ��

1� (��)T
T�1X
j=0

�j� (j) . (C.13)

The constant � in (C.13) corresponds to the constant � in (35). To prove that (C.13) and

(35) are equivalent, observe that, based on (C.3),

T�1X
j=0

�j� (j) =

TRX
j=0

�j
�
1� �j

1� �TR
� 1�  j

1�  T

�
+

T�1X
j=TR+1

�j
�
1� 1�  j

1�  T

�
. (C.14)

For calculating the �rst summation of the right-hand side of (C.14),

TRX
j=0

�j
�
1� �j

1� �TR
� 1�  j

1�  T

�
=

1

1� �TR

"
TRX
j=0

�j �
TRX
j=0

(��)j
#
� 1

1�  T

"
TRX
j=0

�j �
TRX
j=0

(� )j
#
,
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which simpli�es to,

TRX
j=0

�j
�
1� �j

1� �TR
� 1�  j

1�  T

�
=

1

1� �TR

"
1� �TR+1

1� �
� 1� (��)

TR+1

1� ��

#
�

� 1

1�  T

"
1� �TR+1

1� �
� 1� (� )

TR+1

1� � 

#
. (C.15)

Regarding the second summation of the right-hand side of (C.14), observe that

T�1X
j=TR+1

�j = �TR+1 + �TR+2 + :::+ �T�1,

which simpli�es to,

T�1X
j=TR+1

�j = �TR+1
�
1 + �+ �2 + :::+ �T�TR�2

�
,

or,
T�1X

j=TR+1

�j = �TR+1
1� �T�TR�1

1� �
,

i.e.,
T�1X

j=TR+1

�j =
�TR+1 � �T

1� �
. (C.16)

Based on (C.16), the second summation of the right-hand side of (C.14) simpli�es to,

T�1X
j=TR+1

�j
�
1� 1�  j

1�  T

�
=
�TR+1 � �T

1� �
� 1

1�  T

"
�TR+1 � �T

1� �
� (� )

TR+1 � (� )T

1� � 

#
.

(C.17)

Substituting (C.15) and (C.17) into (C.14) we obtain, after some algebra,

T�1X
j=0

�j� (j) =
1

1� �TR

"
1� �TR+1

1� �
� 1� (��)

TR+1

1� ��

#
+

+
1

1�  T

"
1� (� )T

1� � 
� 1� �T

1� �

#
+
�TR+1 � �T

1� �
. (C.18)

Finally, combining (C.18) with (C.13), we obtain the expression in (35) for �.
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It remains to obtain the expressions for FDIi;t= �Yi;t and Ki;t= �Yi;t given by (34) and (37).

Equation (32) can be rewritten as,

St = Kt+1 � (1� �)Kt . (C.19)

Observe that equation (C.12) holds for all t, namely,

Kt+1

�At+1 �Lt+1
=

Kt

�At �Lt
= � �

�
�

r� + �

� �
1��

,

which means that,

Kt+1

Kt

=
�At+1 �Lt+1
�At �Lt

,

and based on (5), it is,

Kt+1 = eg �A+g�LKt . (C.20)

Combining (C.20) with (C.19) we arrive at,

St =
�
eg �A+g�L � 1 + �

�
Kt . (C.21)

Recall from equation (6) that,

r� + � = �
�Yt
�Kt

,

which can be rewritten as,
�Kt

�Yt
=

�

r� + �
,

or,

Kt

�Yt
+
FDIt
�Yt

=
�

r� + �
. (C.22)

From equation (6) we obtain,

�Yt =

� �Kt

�At �Lt

��
�At �Lt ,

and based on (11) it is,

�Yt =

�
�

r� + �

� �
1��

�At �Lt . (C.23)

12



Combining (C.23) with (C.12), we obtain,

Kt

�Yt
= � . (C.24)

From (C.24) and (C.22) we prove equation (34). After dividing both sides of (C.21) by �Yt

and substituting (C.24), we arrive at equation (37), proving the Proposition. Q.E.D.
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Online Appendix D �Proof of Propositions (3.4.2)
and (3.4.3)
Proof of Proposition 3.4.2 Our main goal is to characterize what happens to the

FDI/GDP ratio as g�L decreases. From equation (34) we can see that

@
�
FDIt
�Yt

�
@g�L

> 0, @�

@g�L
< 0 . (D.1)

According to equation (21),

ab;j+1 = (1 + r�)j�1
1� �TR

1� �
� (j)wb , (D.2)

where,

� (j) �

8><>:
1��j
1��TR �

1� j
1� T

1� 1� j
1� T

;

;

j = 0; :::; TR

j = TR + 1; :::; T � 1
. (D.3)

It is straightforward to show that,

1� �TR

1� �
> 0 , for all � > 0, � 6= 1 . (D.4)

To see that (D.4) is true, notice that the signs of the numerator and the denominator of�
1� �TR

�
= (1� �) will be the same, no matter if 0 < � < 1 or � > 1. Therefore, according

to (D.2) and (D.4), the only way to guarantee that accumulated wealth, ab;j+1, along the

lifecycle of a cohort (leaving out ab;1 = ab;T+1 = 0) are positive, is to pick calibrating

parameters r�, g �A, g�L, � and �, so that � and  in (D.3) guarantee that,

� (j) > 0 , for all j 2 f1; :::; T � 1g . (D.5)

Returning now to (D.1), combining (C.11) and (C.13), � can be re-written as,

� � 1� �

1 + r�
1� �TR

1� �

1� e�g�L

1� e�g�LT

T�1X
j=0

�j� (j) . (D.6)
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Using a similar argument to this for proving (D.4), we can see that

1� e�g�L

1� e�g�LT
> 0 , for all g�L 6= 0 . (D.7)

In order to �nd the sign of @�=@g�L from (D.6), notice that, among constants �,  , and �,

only � = (1 + r�) =eg �A+g�L depends on g�L. Therefore, let�s express � as,

� = e�g� ,

where � � (1 + r�) =eg �A, and we express g�L as �g�, for notational simplicity. Therefore,

� = �
1� e�g

1� e�gT| {z }
f(g)

�
T�1X
j=0

�
e�g�

�j
� (j)| {z }

h(g)

, (D.8)

where

� =
1� �

1 + r�
1� �TR

1� �
> 0 .

Based on (D.8),

@�

@g
= � [f 0 (g)h (g) + f (g)h0 (g)] . (D.9)

Notice that,

f (g)h (g) > 0 , and h0 (g) < 0 . (D.10)

Since � > 0, equations (D.9) and (D.10) imply that,

@�

@g
< 0() f 0 (g)

f (g)

h (g)

�h0 (g) < 1 . (D.11)

From the de�nition of h (g) in (D.8) we see that

h (g)

�h0 (g) =

T�1X
j=0

(e�g� )
j
� (j)

T�1X
j=0

j (e�g� )j � (j)

, (D.12)
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i.e.,

h (g)

�h0 (g) =

0
qz}|{

� (0) + e�g� � (1) + :::+ (e�g� )
T�1

� (T � 1)
0 � � (0) + e�g� � (1) + :::+ (T � 1) (e�g� )T�1 � (T � 1)

. (D.13)

From (D.12) and (D.13) we can see that

h (g)

�h0 (g) = 1 , if T = 2 , (D.14)

and

h (g)

�h0 (g) < 1 , if T > 2 . (D.15)

Coming now to f (g),

f 0 (g) =
e�g
�
1� e�gT

�
� Te�gT (1� e�g)

(1� e�gT )2
. (D.16)

After some algebra, from the de�nition of f (g) in (D.8) we see that,

f 0 (g)

f (g)
=

1

eg � 1 �
T

egT � 1 . (D.17)

Based on (D.17), we can see that,

f 0 (g)

f (g)
< 1() T

egT � 1 �
1

eg � 1 + 1 > 0 , (D.18)

which implies,

f 0 (g)jT=2
f (g)jT=2

< 1() 2

e2g � 1 �
1

eg � 1 + 1 > 0()
eg (eg � 1)
e2g � 1 > 0 , (D.19)

which is a true statement for all g 6= 0 (i.e., for all g�L 6= 0). Combining (D.19) with (D.14)

proves the part of the proposition that refers to T = 2.

For T > 2, inequality (D.18) is not guaranteed to be true, therefore, combining (D.17),

(D.12), (D.11) and (D.1), proves inequality (43) of the proposition, completing the proof.

Q.E.D.
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Proof of Proposition 3.4.3

Based on equation (34), the inequality given by (44) holds if,

@�

@r�
> 0 . (D.20)

Therefore, we focus on providing su¢ cient conditions for (D.20). Based on (35),

� = f (r�) g (r�)h (r�) [j (r�) + k (r�) + ` (r�)]| {z }
q

m(r�)

, (D.21)

where,

f (r�) =
1� �

1 + r�
, (D.22)

g (r�) =
1� ��

1� (��)T
, (D.23)

h (r�) =
1� �TR

1� �T
, (D.24)

j (r�) =
1

1� �TR

"
1� �TR+1

1� �
� 1� (��)

TR+1

1� ��

#
, (D.25)

k (r�) =
1

1�  T

"
1� (� )T

1� � 
� 1� �T

1� �

#
, (D.26)

` (r�) =
�TR+1 � �T

1� �
. (D.27)

Therefore, based on the notation given by (D.21),

@�

@r�
= f 0 (r�) g (r�)h (r�)m (r�)

+f (r�) g0 (r�)h (r�)m (r�)

+f (r�) g (r�)h0 (r�)m (r�)

+f (r�) g (r�)h (r�) m0 (r�)| {z }
q

j0(r�)+k0(r�)+`0(r�)

(D.28)
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Therefore, we need to investigate the signs of f (r�), g (r�) , h (r�), jk` (r�) as well as the

signs of f 0 (r�), g0 (r�) , h0 (r�), jk`0 (r�).

From (D.22), we can immediately see that,

f (r�) > 0 and f 0 (r�) < 0 , as long as r� > �1 . (D.29)

Similarly, since � = (1 + r�) =eg �A+g�L and � = eg �A= (1 + r�), (D.23) can be rewritten as,

g (r�) =
1� e�g�L

1� e�g�LT
,

which implies,

g (r�) > 0 and g0 (r�) = 0 , for all r� 2 R . (D.30)

Regarding the signs of h (r�) and h0 (r�), let�s re-de�ne h (r�) as

h (r�) � n (� (r�)) , where n (�) � 1� �TR

1� �T
, and � (r�) � eg �A

1 + r�
. (D.31)

Notice from (D.31) that

h (r�) > 0 for all � 6= 1 , (D.32)

and,

h0 (r�) � n0 (� (r�)) �0 (r�) . (D.33)

Equation (D.31) implies,

�0 (r�) < 0 , for all r� > �1 , (D.34)

and, after some algebra,

n0 (�) = �T+TR�1
T
�

1
�TR

� 1
�
� TR

�
1
�T
� 1
�

�
1� �T

�2 . (D.35)

Therefore, (D.33), (D.34), and (D.35) imply,

h0 (r�) < 0, T

�
1

�TR
� 1
�
> TR

�
1

�T
� 1
�
. (D.36)
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At this point, given (D.30), equation (D.28) implies,

@�

@r�
= f 0 � g � h �m+ f � g � h0 �m+ f � g � h �m0 ,

i.e.,

@�

@r�
= f � g � h �m �

�
f 0

f
+
h0

h
+
m0

m

�
,

and based on (D.21),

@�

@r�
= � �

�
f 0

f
+
h0

h
+
m0

m

�
. (D.37)

Given that f 0=f = d [ln (f)] =dr�, equation (D.22) implies,

f 0 (r�)

f (r�)
=
d
�
ln
�
1��
1+r�

��
dr�

=
�1
1 + r�

. (D.38)

Similarly, equation (D.24) combined with (D.31) implies,

h0 (r�)

h (r�)
=
d
h
ln
�
1��TR
1��T

�i
dr�

=
�

1 + r�
�
�
TR�

TR�1

1� �TR
� T�T�1

1� �T

�
. (D.39)

Combining (D.37) with (D.38) and (D.39) proves (44). Q.E.D.
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Online Appendix E �Proof of Proposition (3.6.1)
Proof of Proposition 3.6.1 The proof relies on combining equations (48) and (49).

Based on (48),
FDIt̂+`
�Yt̂+`

=
�

r� + �
�
�

�

r� + �

�� �
1�� Kt̂+`

�At̂+` �Lt̂+`
. (E.1)

We focus on relating the dynamics of �Lt̂+` with the dynamics of �Kt̂+` in (E.1). During

the transition, each cohort grows at rate gL (t), given by,

gL (t) =

8><>: gL;1

gL;2

;

;

t � t̂

t > t̂
. (E.2)

Moreover,

�Lt̂+` =
T�1X
j=0

Lt̂+`�j , ` = 1; :::; T . (E.3)

From (E.2), we can see that,

Lt̂+`�j =

8><>: e�gL;2`�gL;1(j�`)Lt̂+`

e�gL;2jLt̂+`

;

;

j � `

j < `
, ` = 1; :::; T , j = 0; :::; T � 1 ,

which can be summarized as,

Lt̂+`�j = � (j; `)Lt̂+` , (E.4)

where � (j; `) is given by (51). Combining (E.3) and (E.4) we obtain,

�Lt̂+` = Lt̂+`

T�1X
j=0

� (j; `) ,

and based on the de�nition of � (j; `) from (51),

�Lt̂+` = Lt̂+`

"
`�1X
j=0

e�gL;2j +
T�1X
j=`

e�(gL;2�gL;1)`�gL;1j

#
, (E.5)

where the convention
bX
i=a

xi = 0 , if a > b , (E.6)
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applies. After some algebra, (E.5) implies,

�Lt̂+` = Lt̂+`

�
1� e�gL;2`

1� e�gL;2
+ e�gL;2`

1� e�gL;1(T�`)

1� e�gL;1

�
. (E.7)

Combining (E.4) and (E.7) gives,

Lt̂+`�j = � (j; `)� (`) �Lt̂+` , (E.8)

where � (`) is given by (52).

With (E.8) at hand, we can now relate the dynamics of �Lt̂+` with the dynamics of �Kt̂+`.

The de�nition of �Kt̂+` is,

�Kt̂+` =
T�1X
j=0

at̂+`�j;j+1Lt̂+`�j . (E.9)

From (49) we obtain,

at̂+`�j;j+1 = (1 + r
�)j�1

1� �TR

1� �
� (j)wt̂+`�j , (E.10)

where � (j) is given by equation (42). From (12),

wt̂+` = (1� �)

�
�

r� + �

� �
1��

�At̂+` , (E.11)

therefore,

wt̂+`�j = wt̂+`e
�g �Aj . (E.12)

Combining (E.9) with (E.8), (E.11), and (E.12), gives

�Kt̂+`

�At̂+` �Lt̂+`
= (1� �)

�
�

r� + �

� �
1�� 1� �TR

1� �
� (`)

T�1X
j=0

(1 + r�)j�1 � (j; `)� (j) e�g �Aj . (E.13)

Keeping in mind that � � e�g �A= (1 + r�), (E.13) becomes,

�Kt̂+`

�At̂+` �Lt̂+`
=
1� �

1 + r�

�
�

r� + �

� �
1�� 1� �TR

1� �
� (`)

T�1X
j=0

��j� (j; `)� (j) . (E.14)

Combining (E.14) with (E.1), leads to (50), proving the proposition. Q.E.D.
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Online Appendix F �Sensitivity Analysis
Case 1: shortening the economic lifespan from its benchmark value T = 50 to

T = 45, and the retirement time from its benchmark value TR = 45, to TR = 40

Here, the interest rate is r� = 10:67% and all calibration parameters appear in Table F.1.

Table F.1 Calibration parameters (annual values, % rates).

g �A � � � �

China 3:08 46:76 99:15 17:17 57:81

India 2:52 20:07 98:01 16:94 35:78

The goodness of �t to key calibration targets (as in Table 3 in the main body of the

paper), is given by Table F.2.

Table F.2 Initial calibration targets (%).

Savings rate
1985

FDI/GDP ratio
1995

China India China India

Data 33:75 14:88 2:90 0:19

Model 28:69 13:23 2:90 0:19

The goodness of �t of the transition dynamics in this case appear in Figure F.1.
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Figure F.1

In brief, the goodness of �t in this case of shorter life expectancy and shorter retirement

age (that may �t to China�s agrarian regime some decades ago), reveals that the model-

implied e¤ects of an exogenous demographic intervention such as the one-child policy are

robust to shortening life expectancy and to having an earlier retirement age.

Case 2: expanding the economic lifespan from its benchmark value T = 50 to

T = 55, while keeping the retirement time to its benchmark value TR = 45

Here, the analysis refers to the recent improvements in healthcare in China that have

led to more longevity (75 years). Because a higher life expectancy motivates more savings,

here the interest rate is set to a slighlty lower value, with r� = 8:95%. Table F.3 gives the

calibration parameters in this case
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Table F.3 Calibration parameters (annual values, % rates).

g �A � � � �

China 3:11 46:74 99:14 17:14 57:77

India 2:52 20:05 98:01 16:91 35:77

Table F.2 shows the goodness of �t to key calibration targets.

Table F.4 Initial calibration targets (%).

Savings rate
1985

FDI/GDP ratio
1995

China India China India

Data 33:75 14:88 2:90 0:19

Model 32:30 14:68 2:90 0:19

In this case we can see from that the increase in life expectancy helps the model to better

match the savings calibration targets. This is intuitive, because households that live longer

must save more in order to �nance a longer post-retirement period. The goodness of �t of

the transition dynamics in this case of more longevity appear in Figure F.2.
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Figure F.2

In this case we can see again that the model�s implied e¤ects of China�s one-child policy

on the FDI/GDP ratio are robust to life-expectancy changes.
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Online Appendix G �Literature review

Literature related to China�s high savings rate

Curtis et al. (2015) and Choukhmane (2020) hypothesize that reduced fertility implies

fewer children to support parents in their old age, thereby inducing parents to increase

their own savings. Wei and Zhang (2011) explain the increased savings rate as a competitive

response to the policy-induced sex ratio imbalance: families save more to increase the wealth

of their sons in order to enhance their position in the competition for increasingly scarce

spouses. Imrohoroglu and Zhao (2018) emphasize the long-term care insurance traditionally

provided by families, and how the one-child policy has decreased the ability of families to

provide it. Parents are thus forced to self-insure and do so by saving more. Other related

work includes Chamon and Prasad (2010) and Yang et al. (2013). Finally, Zhang (2017)

provides a comprehensive overview of the socio-economic e¤ects of the one-child policy in

China.

Another likely reason behind the documented increase in China�s the savings rate is the

remarkable improvement in life expectancy in China (to compare the progression of life ex-

pectancy indices between China and India, see https://data.worldbank.org/). Accordingly,

the associated health care and medical costs have increased tremendously, all of which en-

courage Chinese households to save more. Moreover, in the past decades, the geographical

mobility of young Chinese cohorts is much higher than the previous generation due to the

drastic relaxation of the residential registration system (Hukou system). Hence, the mon-

etary cost for supporting elder parents has also increased due to mobility-induced spatial

separations, which also compels elderly parents to save more for retirement.

26



Regarding the extent of the change in the Chinese savings rate since 1980, there is some

disagreement in the literature. Using the gross domestic savings to GDP ratio as a measure

according to the World Bank, the Chinese savings rate increased from 33.4% in 1982 to

47.5% in 2014, a 14.1 percentage points increase. Choukhmane et al. (2020) used the

Chinese Urban Household Survey (CEIC data) and showed an increase of 20 percentage

points from 10% in 1980 to approximately 30% in 2015. Imrohoroglu and Zhao (2018)

document the savings rate in China as increasing from 20% to 40%, an extreme view in the

literature that we adopt for illustrative purposes.

Literature related to China�s high capital returns

Bai et al. (2006) were the �rst to document the high capital returns in China (exceeding

20% post 1993) carefully. They conclude that China�s high investment rate is consistent with

the observed high returns. Nevertheless, mapping the documented high returns reported by

Bai et al. (2006) to the aggregative concept of MPK under perfect foresight that we employ

in this paper is not a straightforward task. Cochrane, in the discussion of Bai et al. (2006,

p. 99), notes that the comparatively high return in China should be adjusted for di¤erences

in risk. Nordhaus and Cooper�s discussion of Bai et al. (2006) emphasizes that a sudden

conversion of land from agricultural to residential use is a process that can increase capital

returns (capital gains) in ways that are not captured in standard equilibrium capital theory

analysis. The discussion appears on pages 93-98, following Bai et al. (2006). Bai et al.

(2006, Table 1 and Figure 2, pp. 72-75) also report a nearly 60% decline in capital returns

in China from 1993-2001. This dramatic decline cannot be fully attributed to a TFP-growth

decline, possibly validating the comments by Nordhaus and Cooper in Bai et al. (2006, pp.

93-98). Part of this decline can be explained, however, by the anticipated rapid decline in
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China�s population growth rate, as reported in Figures 1 and 2 of the present paper. Song

et al. (2011) explore the seeming contradiction implicit in China�s simultaneous high capital

returns and high capital out�ows. Their model rests on the internal reallocation of capital out

of low growth �rms that are large, externally �nanced, and whose capital needs are low. In

contrast, high growth, high productivity �rms are small and subject to capital constraints.

They thus �nance their rapidly increasing investments out of internally generated funds

alone. As a result, the surplus capital from low growth �rms migrates abroad, while the

relative growth in the high productivity �rms allows the high overall capital returns to be

observed. A more recent study also reporting high capital returns in China and focusing on

the link between these returns and the housing boom in China, is Chen and Wen (2017).

Nothing in the present model depends on the precise level of capital returns.
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Appendix H - Data Descriptions and Sources 
 

 
 

year China FDI/GDPratio (%) India FDI/GDPratio (%) Ratio log(ratio) 
1981 0.155 0.027 5.822 0.765 
1982 0.239 0.022 10.731 1.031 
1983 0.430 0.002 255.079 2.407 
1984 0.661 0.006 111.110 2.046 
1985 0.824 0.032 25.571 1.408 
1986 0.710 0.028 25.256 1.402 
1987 0.613 0.043 14.218 1.153 
1988 0.707 0.016 44.807 1.651 
1989 0.751 0.043 17.615 1.246 
1990 0.709 0.048 14.783 1.170 
1991 0.800 0.022 35.780 1.554 
1992 1.750 0.070 24.988 1.398 
1993 3.930 0.146 26.934 1.430 
1994 4.198 0.246 17.046 1.232 
1995 3.832 0.476 8.044 0.905 
1996 4.074 0.544 7.489 0.874 
1997 4.402 0.801 5.495 0.740 
1998 4.251 0.555 7.655 0.884 
1999 3.450 0.431 7.997 0.903 
2000 3.321 0.637 5.216 0.717 
2001 3.744 0.974 3.845 0.585 
2002 3.781 0.934 4.048 0.607 
2003 3.033 0.561 5.407 0.733 
2004 3.092 0.660 4.687 0.671 
2005 4.240 0.783 5.418 0.734 
2006 4.290 1.978 2.168 0.336 
2007 4.404 2.070 2.127 0.328 
2008 4.322 3.518 1.228 0.089 
2009 3.234 2.952 1.095 0.040 
2010 4.914 2.209 2.224 0.347 
2011 4.811 2.597 1.853 0.268 
2012 4.178 1.816 2.300 0.362 
2013 4.290 1.989 2.157 0.334 
2014 5.132 2.829 1.814 0.259 

 
Table H.1 Data on FDI/GDP ratios 

 
  



 
 
 
 
 
 
 
 
 
Foreign Direct Investment1 
 
We use four different data sources to cross-verify the FDI inflows and outflows of China and India. 
 

1. OECD: 1990-2013. Historic time series from OECD FDI statistics to end-2013 
(http://www.oecd.org/daf/inv/investment-policy/fdi-statistics-according-tobmd3.htm). 

2. National Accounts: 1982 – 2014. National Bureau of Statistics China (NBS-China) provides FDI 
outflow and inflow information (http://datE.stats.gov.cn/english/index.htm).   

3. UNCTAD (United Nations Conference on Trade and Development): 1981-2013.The UNCTAD work 
program on FDI Statistics documents and analyzes global and regional trends in FDI. 

4. DataStream: 1981-2016 (Quarterly). Thomson Reuters DataStream provides quarterly data on FDI 
inflows and outflows for China and India.2 

 
Population Estimates and Forecasts: 1950-2100. United Nations: probabilistic population projections based 
on the world population prospects (the 2015 revision).3 
  
GDP Series: 1990-2014, 2015-2018 (estimates). Work Bank, PPP adjusted at constant 2011 international 
USD. 
 
Capital Stock -GDP ratio (K/Y ratio): PWT 9.0 (The Penn World Table). 
 
 
FDI data come from four sources: (a) National Accounts, (b) OECD, (c) Datastream, and (d) UNCTAD. These 
sources cover different years, so we specify which we use in each context and document the correlation among 
these data sources. National account data for India is downloaded from the RBI website 
(https://rbi.org.in/Scripts/SDDSView.aspx) and it is identical to the data provided by OECD. So, we only 
report the OECD source. 
  

 
1 All FDI statistics from different sources use 2010 USD as the base dollar value. 
2 The quarterly data sources are composed by Oxford Economics (http://www.oxfordeconomics.com/). 
3 United Nations (2015). Probabilistic Population Projections based on the World Population Prospects: The 2015 Revision. 
Population Division, DESA. http://esE.un.org/unpd/ppp/. 

http://www.oecd.org/daf/inv/investment-policy/fdi-statistics-according-tobmd3.htm
http://data.stats.gov.cn/english/index.htm
https://rbi.org.in/Scripts/SDDSView.aspx
http://www.oxfordeconomics.com/


 
Figure H.1 

The sources used in the paper are National-accounts data for the period 1982-2014 and Datastream data for 
years 2015-2016. National-accounts data and Datastream data overlap over the period 1982-2014 with a 
correlation coefficient of 99.79%. 
 
 

 
Figure H.2 

The sources used in the paper are National-accounts data for the period 1982-2014 and Datastream data for 
years 2015-2016. National-accounts data and Datastream data overlap over the period 1982-2014 with a 
correlation coefficient 99.99%.  
 
 
 
 



 
Figure H.3 

The sources used in the paper are UNCTAD data for the period 1981-2013 and Datastream data for years 
2014-2016. UNCTAD data and Datastream data overlap over the period 1981-2013 with a correlation 
coefficient of 92.56%. The reason we have chosen UNCTAD data for the period 1981-2013 is because,     (a) 
for the period between 1981 and 1989 Datastream reports zero values (but not missing values), and      (b) the 
two data sources overlap over the period 1991-2013 with a correlation coefficient of 99.87%. 
 

 
Figure H.4 

The sources used in the paper are UNCTAD data for the period 1981-2013 and Datastream data for years 
2014-2016. UNCTAD data and Datastream data overlap over the period 1981-2013 with a correlation 
coefficient of 89.32%. The reason we have chosen UNCTAD data for the period 1981-2013 is because,     (a) 
for the period between 1981 and 1993 Datastream reports zero values (but not missing values), and       (b) the 
two data sources overlap over the period 1994-2013 with a correlation coefficient of 99.86%. 
 



 

 
 

Figure H.5 
 

 
Figure H.6 

 

To address the concern that large-scale internal migration in China would decrease the capital-labor ratio 
instead of increasing it, we use the urban population, restricted to ages 15-64 and perform a robustness check. 
Figure H.5 shows that the linear time trend coefficient (of the log K/L ratio of China over the K/L ratio of 
India) is positive and statistically significant (not equal to 0 with p-value at 0.3%). In Figure H.6 where we 
plot a similar data series as Figure 5 (in the paper) using this restricted sample, all the quantitative results 
remain. 
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The first two columns of Table H.2 provide the data appearing in Figure H.6 (without the logarithmic 
conversion of ratios). The last two columns of Table H.2 are the two new urban (working) population series 
appearing in Figure H.6. 

 

year Ratio_FDIY Ratio_FullPop Ratio_PopUrban Ratio_PopUrbanWorking 
1990 30.45 0.96 1.46 1.29 
1991 35.73 0.99 1.43 1.27 
1992 25.08 1.02 1.44 1.28 
1993 26.94 1.07 1.47 1.31 
1994 17.04 1.13 1.51 1.34 
1995 7.96 1.17 1.52 1.36 
1996 7.42 1.22 1.55 1.38 
1997 5.54 1.27 1.57 1.40 
1998 8.32 1.32 1.60 1.43 
1999 7.95 1.36 1.61 1.44 
2000 7.02 1.41 1.62 1.45 
2001 5.33 1.50 1.63 1.45 
2002 5.94 1.57 1.64 1.44 
2003 9.19 1.66 1.65 1.44 
2004 7.14 1.73 1.63 1.41 
2005 8.79 1.72 1.60 1.38 
2006 3.11 1.72 1.60 1.38 
2007 3.36 1.71 1.59 1.36 
2008 1.69 1.68 1.57 1.35 
2009 1.16 1.70 1.59 1.36 
2010 2.12 1.72 1.59 1.37 
2011 1.77 1.72 1.58 1.36 
2012 1.92 1.77 1.62 1.41 
2013 2.11 1.87 1.68 1.48 
2014 1.81 1.97 1.74 1.55 

Table H.2 


