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A Priors

The prior distributions for the initial values of the states B0, α0 and h0 are postulated

to be normal and are assumed to be independent of one another. The independence

assumption also holds for the distribution of the hyperparameters.

A.1 Unobserved components

The initial states of the trend and cycle components of F0/0 are set using a bandpass

filter with a passband frequency range specified between 8 and 32. In order to reflect

the uncertainty surrounding the choice of starting values, a large prior covariance of the

states P0/0 is assumed.

A.2 Priors on the VAR parameters

Following Bańbura et al. (2010) we introduce natural conjugate prior for the VAR

parameters via dummy observations. We choose the prior means µn as OLS estimates
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of the coefficients of an AR(1) regression estimated for each endogenous variable using a

training sample consisting of the 40 first observations. These are removed from the sample

afterwards. The scaling factors σn are set using the standard deviation of the error terms

from these preliminary AR(1) regressions. Here τ reflects the degree of shrinkage which

is higher the closer it is to 0. We set the overall prior tightness τ based on the highest

models’ LS for the target variable. We report the results for the examined grid of τ in

Table 3 of the article. We set c = 1000 indicating a tight prior on the constant at 0. This

is akin to excluding the estimation of the constant parameter. However, we opt for this

approach to enhance computational efficiency, leveraging the natural conjugate prior for

the VAR model. This prior necessitates uniformity among all right-hand side variables,

including the inclusion of a constant in all equations.

Litterman (1986a) and Litterman (1986b) proposed this priors through the application

of methods of Bayesian shrinkage. We implement the Normal Inverted Wishart prior

through Dummy observations as in equation (1). These are set such that the moments

of the Minnesota prior are matched. In that sense the prior variance decreases with

increasing lag length, carrying the belief that more recent lags contain more relevant

information.

YD,1 =



diag(σ1µ1,...,σNµN )
τ

0Nx(P−1)xN

........

diag(σ1....σN)

........

01xN


, and XD,1 =



JP⊗diag(σ1,...,σN )
τ

0NPx1

0NxNP 0Nx1

........

01xNP c


(1)

Additionally, we impose a prior on the sum of coefficients for its shown benefits in

improving the models forecasting accuracy, drawing insights from Sims (1992), Robertson

and Tallman (1999) and Sims and Zha (1999). This is a modification of the Minnesota

prior suggested by Doan et al. (1984) and carries the belief, that the sum of the coefficients

of the lags equates to 1 (Robertson and Tallman (1999)). The tightness of the sum of
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coefficients prior is set as in Bańbura et al. (2010) λ = 10τ and is introduced by adding

the following dummy observations:

YD,2 =

(
diag(σ1µ1,...,σNµN )

λ

)
(2)

XD,2 =

(
(1 2...p)⊗diag(σ1µ1,...,σNµN )

λ
0nx1

)

A.3 Priors on covariance parameters

As to calibrate the prior distribution of α0 we run a time-invariant VAR including

on the auxiliary variables. This is based on the training sample. Σ̂0 is the estimated

covariance matrix of the residuals ϵt. As in Benati and Mumtaz (2007) let C be the

lower-triangular Choleski factor of Σ̂0 such that C’C= Σ̂0 and C =
ˆ
Σ

1
2
0 . The estimated

matrix Ĉ0 is computed by dividing each column of C by the corresponding element of

the diagonal. Through this transformation the elements outside the main diagonal are

normalized. After computing the inverse of Ĉ the elements below the main diagonal of

ˆC−1
0 are collected (i.e.all non-zero and non-one entries). This values will be set as the

starting values of α in the vector α̃0 ≡ [α0,21, α0,31, α0,32].

A normal prior is assumed for the regression coefficients in each equation, as in equa-

tion(3). The conditional posterior distribution of αi in equation (4) is also assumed to

be normal. Here Zi are the left-hand variables and zi right-hand variables transformed

proportional to the variance of the structural shocks for the weighted regressions in sec-

tion B.2). As in Mumtaz and Theodoridis (2017) Vi0 is assumed to be diagonal with its

elements set equal to 10 times the absolute value of the corresponding element of αi0.

αi0 ∼ N(αi0, Vi0), i = 2, 3 (3)

αi|B,ΛT
i , Y

T ∼ N(αi, Vi), i = 2, 3 (4)

Where

Vi = (V −1
i0 + Z ′

iZi)
−1, (5)
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αi = (V −1
i0 αi0 + Z ′

izi) (6)

A.4 Priors of the idiosyncratic shock volatility transition equation of the

cyclical dynamics

Following Ellis et al. (2014) the prior for the diagonal elements Λt of the covariance

matrix Σt , see Equation [8] in Section 2 of the article, is assumed to be normal, with µz
0

set as the logs of diagonal elements of the Cholesky decomposition of Σ̂0 and σz
0 = 10.

ln(λz) ∼ N(µz
0, σ

z
0) (7)

An inverse Gamma prior is set for σω with g0 = 0.012 and ν0 = 1.

p(σω) ∼ IG(g0, ν0) (8)

A.5 Priors of the idiosyncratic shock volatility transition equation for the

trend

The prior for the stochastic volatilities for the trend (9) is normal with µτ
0 set as the

logs of the standard deviation of the first difference of the pre-sample estimate of the

trend and στ
0 = 10. An inverse Gamma prior is set for σρ with g0 = 0.012 and ν0 = 1.

ln(λτ
0) ∼ N(µτ

0, σ
τ
0 ) (9)

p(σρ) ∼ IG(g0, ν0) (10)

B Sampling from the Posterior Density

The model is estimated using a Metropolis-within-Gibbs sampler. This methodology

was developed in Cogley and Sargent (2005) for VAR models and by Primiceri (2005) for

state space models. The volatilities of the reduced form shocks Ht are drawn using the
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date by date blocking scheme introduced in Jacquier et al. (2002) which assumes that

the stochastic volatilities are independent.

This procedure is reduced into five blocks. The first involves sampling the VAR pa-

rameters βT that relate the cycle and the auxiliary variables. The second block involves

the estimation of the covariance parameters α. The third step draws the standard devi-

ation of the volatility innovation. The fourth step draws the stochastic volatilities. The

last block draws the unobserved components delivering the estimates for the trend and

the cycle.

B.1 VAR Parameters β

We condition on the estimated unobserved components for the trend and the cycle

{τt, ct}, the history of Λt and the stochastic volatility parameters α and draw the non

time varying parameters {βq,1, ..., βq,pq} that describe the relationship between the cycle

and the auxiliary variables.

The vector of coefficients is sampled from a normal posterior distribution with mean

M and variance Ω
−1
, based on prior mean M (14) and variance Ω (28) as in Clark (2011).

Where Zt = {ct, AX1t, AX2t} and Xt = {ct−1, AX1t−1, AX2t−1, ct−2, AX1t−2, AX2t−2, 1}

for p=2 and k=2.

Zt = XtB + υt, V AR(υt) = Σt (11)

Σt = A−1Λt(A
−1)′ (12)

B ∼ (M,Ω
−1
) (13)

M = Ω{vec(
T∑
t=1

Q−1
t YtX

′
t) + Ω−1}−1 (14)

Ω
−1

= Ω−1 +
T∑
t=1

(Q−1
t

⊗
XtX

′
t) (15)
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B.2 Covariance parameters α

The second block involves the estimation of the covariance parameters. In the fol-

lowing, we consider the distribution of α conditional on the data and other parameters.

Zt, Xt and the draw B. This implies knowledge of υt . The residuals satisfy the relation

described in equation (16). Where ϵt is a vector of orthogonalized residuals (structural

shocks) with known error variance Λt. Λt is a diagonal matrix with elements λi,t and

V AR(ϵt) = Λt. A is a lower triangular matrix with elements αqj, see equation (17).

As in Cogley and Sargent (2005) the relationship between the residuals and structural

shocks will be interpreted as a system of unrelated regressions. The modelling strategy

for the law of motion of the variance/covariance matrix is given by the following system

of equations: The identity in (19) defines the relation for q=1 . The equations for q=2,

3 can be expressed as transformed regressions with independent standard normals. In

this regressions the relation between residuals υit and structural shocks is transformed

proportional to the variance of the structural shocks Λt such that ϵ∗it ∼ N(0, 1) for i={2,

3}. Therefore, the second equation can be expressed as (20) and the third equation as

(21).

Aυt = ϵt (16)
1 0 0

α21 1 0

α31 α32 1



v1,t

v2,t

v3,t

 =


ϵ1,t

ϵ2,t

ϵ3,t



A =


1 0 0

α21 1 0

α31 α32 1

 (17)

Λt =


λ1t 0 0

0 λ2t 0

0 0 λ3t

 (18)
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υ1t = ϵ1t (19)

υ2t√
λ2t

= α21(−
υ1t√
λ2t

) +
ϵ2t√
λ2t

(20)

υ3t√
λ3t

= α31(−
υ1t√
λ3t

) + α32(−
υ2t√
λ3t

) +
ϵ3t√
λ3t

(21)

B.3 Stochastic Volatilities, Λt

The diagonal elements of Λt are independent, univariate stochastic volatilities that

evolve as geometric random walks without a drift. Based on the draw of A the contem-

poraneously uncorrelated structural residuals can be computed as specified in (16). The

independence MH algorithm can be applied for each orthogonalized VAR residual(ϵit)

conditional on a draw of σi.

lnλit = lnλit−1 + σiηit (22)

B.4 Standard deviations of volatility innovations σi

Conditional on a draw for λit, the standard deviations for the volatility innovations

σi can be drawn from the inverse Gamma distribution (23). Assuming an inverse-gamma

prior with scale parameters γ0 and v0 degrees of freedom, the posterior has an inverse-

gamma distribution with degrees of freedom v1 = v0 + T and scale parameter γ1 =

γ0 +
T∑
t=1

(∆ ln(λit)).

f(σ2
i |λT

i , Y
T ) = IG(

v1
2
,
γ1
2
) (23)

C Time-invariant filter

C.1 Model

The homoskedastic multivariate filter is a special case of the stochastic volatility filter

described in Section 2.

Θt = τt + ct (24)

τt = τt−1 + υt, υt ∼ N(0, 1) (25)
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As before, the trend τt evolves as a random walk and the cyclical component ct displays

the stationary variation within the time series. However, in this specification, the local

disturbances of the trend υ follow a normal distribution. Also, the BVAR(p) is linear.

Zt = FtB + νt, νt = Ω0.5ϵt, ϵt ∼ N(0, IN), (26)

where Zt = (ct, AX1t, .., AXkt)
′ is a matrix of endogenous variables (for i = 1, .., N

model variables of which k = 1, .., K are auxiliary variables). Ft = (Z ′
t−1, .., Z

′
t−p, 1)

′

denotes the matrix of regressors and B is the matrix of coefficients B = (B1, ..., BP , µ)
′.

µ = (µ1, ..., µn)
′ is an N -dimensional vector of constants and B1, ..., BP are NxN au-

toregressive matrices. Also here natural conjugate priors for the VAR parameters are

introduced following Bańbura et al. (2010).

C.2 Sampling from the posterior density

We use Gibbs sampling to approximate the posterior density. This procedure can be

summarized into three steps.

1. We condition on the estimated unobserved component for the cycle ct and sample

the vector of coefficients B and Ω. Their conditional posterior distributions are

defined in equations (27) and (28).

G(B|Ω) ∼ N(B∗,Ω
⊗

(F ∗′F ∗)−1) (27)

G(Ω|B) ∼ IW (S∗, T ∗) (28)

As in Alessandri and Mumtaz (2017) the posterior means are given by B∗ =

(F ∗′F ∗)−1(F ∗′Z∗) and S∗ = (Z∗ − F ∗)B̃(Z∗ − F ∗B̃). The dummy priors are incor-

porated through Z∗ and F ∗ and B̃ is the draw of the VAR coefficients reshaped to

meet the size of the matrix of regressors.

2. Conditioning on the unobserved component for the trend τt we sample the variance

of the trend. σ2
τ . The variance of the trend innovations is simulated from an

8



Inverse Gamma 2 (IG2) distribution. Where the IG2 is re-parametrised in terms

if the mean and variance. Taking the two first moments of the IG2 distribution as

in Bauwens et al. (2000) and solving for the gamma parameters allows to calibrate

the scale parameter g0 and degrees of freedom d0 of the prior given values for the

mean and the variance. The prior (29) and posterior(30) distribution of στ may be

represented as

σ2
τ ∼ IG2(σ

τ
0 , ν

τ
0 ) (29)

στ ∼ IG(
g1
2
,
d1
2
) (30)

With g1 and d1 defined as

g1 = g0 + T (31)

d1 = d0 + (τt − τt−1)
′(τt − τt−1) (32)

We set a loose prior στ ∼ IG2(0.1, 1).

3. Conditional on the draws we apply the Carter and Kohn (1994) algorithm to cast

the unobserved components in a state space model as in Mumtaz (2010).

D Estimation using simulated data

In order to assess the efficacy of the algorithm, we undertake a concise simulation ex-

ercise. The experiment involves the generation of two synthetic datasets, each comprising

a target variable and three auxiliary variables. We generate 220 observations from a data

generating process that is divided into 2 steps. First, we model the stationary cycle com-

ponent, auxiliary variables and trend. In a second step, we generate the target variable

as a sum of the cycle and the trend. For k=4 and p=2 we generate four series: the cycle

and three auxiliary variables. In line with Rünstler and Vlekke (2018) the financial cycle

is characterized as a persistent process. Furthermore, the parameters for both Data Gen-

erating Processes (DGPs) are calibrated using macro-financial variables for the United

States spanning from the first quarter of 1975 to the fourth quarter of 2015. Specifically,

these variables include loans to non-financial corporations, the annual growth rate of the
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house price index, the unemployment rate, and the Excess Bond Premia .

DGP 1 is generated from the following process:

Zt = XtB + A−1Λ0.5
t ϵt, ϵt ∼ N(0, I4) (33)

The elements of the time-varying diagonal matrix Λt evolve as:

ln(λz
t ) = ln(λz

t−1) + Chol(Q) ηzt , Q = I4 x Pt, ηzt ∼ N(0, I4) (34)

where Pt is a vector of standard deviations of volatility innovations.

In parallel, we generate the series for the trend as

τt = τt−1 + υt
√
exp(lnλτ

t ), υt ∼ N(0, 1) (35)

ln(λτ
t ) = ln(λτ

t−1) + 0.1ητt , ητt ∼ N(0, 1) (36)

DGP 2 imposes a constant variance process. The cycle and auxiliary variables are

generated as

Zt = XtB + Ω0.5ϵt, ϵt ∼ N(0, I4) (37)

And the series for the trend follow

τt = τt−1 + υt, υt ∼ N(0, 1) (38)

We then generate the target variable Θt as the sum of ct and τt. As motivated in

the introduction, in our model the financial cycle is approximated by a measure of the

interrelation of aggregates reflective of macroeconomic imbalances. Our fictitious dataset

replicates this two-sided relationship between the state variable of the cycle and the

auxiliary variables.

We estimate the model with loose priors. For the SVOL specifications we use 40

observations as training sample. This leaves 180 observations for the estimation. For both
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the SVOL and Homoskedastic filter, the model estimation uses 15000 Gibbs iterations

with a burn-in of 14500 iterations.

Figure D.1 displays the cycle estimated based on the HP filter, its measurement

with the proposed methodology as well as a homoskedastic version of it, against its true

value for DGP 1 (LHS) and DGP 2 (RHS). 1 Visual inspection shows that the cyclical

component estimated with the HP filter exaggerates the real developments and does not

capture the cyclical turns in all occasions. This can be partly explained by the fact that

the HP filter does not model the evolution of the volatility of the simulated time series

and by its inherent high persistence.
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Figure D.1: Monte Carlo simulations: True cycle and cycle estimates

(a) DGP 1: Time-varying variance Data Generating Process
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(b) DGP 2: Constant variance Data Generating Process
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Note: All estimates are standardised.
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E Empirical results

Figure E.1: Estimated trend

(a) United States 1971:Q3-2019:Q1

(b) United Kingdom 1973:Q4-2019:Q1

Note: Solid line shows the median of the posterior distribution of the estimated trend, the shaded area
represents the 68% error band. Grey vertical areas display the NBER economic recessions.

13



Figure E.2: Posterior distribution of the estimated autoregressive parameters based on the final esti-
mates (whole sample)

(a) United States 1971:Q3-2019:Q1

(b) United Kingdom 1973:Q4-2019:Q1

Note: Last column displays the estimates for the intercept. Order of variables consistent with that in
the article: Cycle; Household vulnerabilities; Financial conditions; Economic activity.
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Figure E.4 displays the univariate (column (a)) and multivariate estimates (column

(b)) for the following set-ups: SVOL (1), Homoskedastic (2), Homoskedastic trend &

SVOL cycle (3), Homoskedastic cycle & SVOL trend (4) and Basel-gap (5).

None of the model-based estimates of the cycle in the univariate set-ups successfully

captures the financial cycle. Nonetheless, upon categorizing the results into two distinct

groups, it becomes apparent that introducing stochastic volatility into the cycle, as op-

posed to solely in the trend or not at all, enhances the cyclical properties of the univariate

estimates. On one hand, the cycle derived from the fully Homoskedastic approach (2)

and the homoskedastic cycle & SVOL trend (3) demonstrates an almost perfect fit to

the target variable, signifying an acyclic nature. On the other hand, the cycles estimated

through SVOL (1) and Homoskedastic trend & SVOL cycle (3) exhibit characteristics

typically associated with cyclical patterns, including periodicity and zero-centeredness.

However, it is noteworthy that even this second group does not manifest the properties

of the financial cycle in terms of amplitude or periodicity.

The multivariate estimates are depict in column (b) of Figure E.4. Amid the cross-

country heterogeneity regarding the Homoskedastic estimates (see discussion in Subsec-

tion 4.3 of the article), almost all the cycle estimates trace the fluctuations in macro-

financial imbalances with the exception of the Homoskedastic cycle & SVOL trend (4)

specification. The comprehensive analysis of the entire set of results depicted in the panel

underscores the crucial role of multivariate information in synthesizing macro-financial

imbalances and cyclic systemic risk dynamics. Additionally, it becomes apparent that

incorporating stochastic volatility into the cycle yields more favorable outcomes com-

pared to its exclusive inclusion in the trend. Furthermore, restricting stochastic volatility

solely to the trend, in conjunction with a homoskedastic error structure for the cycle, re-

sults in less informative findings when juxtaposed with the comprehensive homoskedastic

approach.
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Figure E.4: Financial Cycle Estimates

Note: Solid lines shows the median of the posterior distribution of the estimated cycles. All estimates
are standardised.
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Figure E.5 plots the time varying forecast error variance decomposition (FEVD) of

the financial cycle for the US and the UK. Note, that the X-axis represents the time-

periods while the Y-axis is the contribution to the forecast error variance at a short term

horizon of 2 years in the LHS and a medium term horizon of 5 years in the RHS.2

Figure E.5: Forecast error variance decomposition of the financial cycle

(a) United States 1971:Q3-2019:Q1

(b) United Kingdom 1973:Q4-2019:Q1

Short term horizon of 2 years Medium term horizon of 5 years
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F The particle filter

Following Mertens (2016), we re-estimate the multivariate stochastic volatility state-

space model presented in Section 2 with a Rao-Blackwellized particle filter.3 Conditional

on the log-variances of the trend Equation [5] and the cycle Equation [7], in Section

2 of the article, the state-space model is linear. Therefore, the proposal distribution

can be divided into two parts.4 First the stochastic volatility components of the state

vector are drawn and then the partcile filter uses a Rao-Blackwellization that analytically

represents the distribution of τt and Zt conditional on observables and the particle draw.

Beyond providing estimates for the dynamic components of the trend and the cycle, the

particle filter allows to measure the sensitivity of the cycle estimates to different input

variables through a weighted average of the Kalman gains for each particle.5 These

provide information about what signals stemming from the auxiliary variables recieve a

strong weight from the filter.

Equation (39) displays how for each particle draw (i) the cycle estimate is updated

with the innovation weighted with the ith particle’s Kalman gain K
(i)
t . The innovation

is defined as the gap between the observable variables Yt and its predicted value within

the state space Yt|t−1, it is hence a measure of the bias of the estimation. The filtered

estimates of the cycle are given by equation (40) where wi represent the particle weights,

Kt =
∑

i w
(i)
t K

(i)
t and Yt|t−1 =

∑
i w

(i)
t Y

(i)
t|t−1.

c
(i)
t|t = c

(i)
t−1|t−1 +K

(i)
t (Yt − Y

(i)
t|t−1) (39)

ct|t =
∑
i

w
(i)
t c

(i)
t|t ≈ ct−1|t−1 +Kt(Yt − Yt|t−1) (40)

As outlined in Mertens (2016) the suitability of (40) will depend on the quality of the

approximation of the weighted estimates (KtYt|t−1 ≈
∑

iw
(i)
t K

(i)
t Y

(i)
t|t−1). We apply the

particle filtering algorithm with I=10,000 particles and systematic resampling. Model

parameters (B,A, σρ, σω) are kept fixed at their posterior median values by the MCMC

estimation.
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