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Appendix A. Data

A1. Data availability and replication of results

All results presented in this study can be replicated at the Centro de Documentacão e

Disseminacão de Informacões (CDDI) of the Brazilian Institute of Geography and Statistics

(IBGE) located in Rio de Janeiro, Brazil. Although the Agricultural Census information is

confidential to protect the identity of farmers, it is not proprietary. IBGE grants access to

the farm-level census data as well as to other confidential surveys in Brazil to Brazilian and

International researchers.

In order to replicate the results of this study a researcher must have four files provided

by the authors: (1) IBGE project submission form (TR) with complimentary datasets, (2)

SAS code for construction of the census dataset, (3) STATA code for descriptive statistics

and estimation of land-use models, and (4) STATA code for market simulation. The IBGE

charges a fee of approximately $300 for access to the CDDI computer lab. The authors

will provide the TR with the census tables and variables as well as the complimentary

datasets. The census is the only confidential dataset used in this study. All other datasets

are available from the authors. The agricultural census is organized in a series of text files

for corresponding tables. The SAS program reads the text files and integrate them into a

single dataset. The first STATA program estimates the discrete choice models, compute the

OC for each farm, and estimate the supply function for reforestation in each market.

The market simulation can be replicated outside of the CDDI, without restrictions. We

created a dataset of simulated reforestation for each market. This dataset is not confidential

and is available from the Authors. The second STATA program replicates all the market

analysis presented in the article, including calculation of the optimal tax and the market

price as well as parameters of the reforestation function for each market.

In the following sections of this online appendix we describe the dataset, the theoretical

framework with the definition of the parameters estimated, and the tree-step empirical anal-

ysis. We focus on describing all the assumptions used in the analysis and providing guidance

for the replication of all the results of this article.

A2. Data description

Brazilian agricultural census

The primary dataset used in the analysis is the farm-level version of the 2006 and 2017

Agricultural Census surveys completed by IBGE (IBGE, 2006, 2017). IBGE surveys over

5 million farmers every 10 years to collect information on farm and farmer characteristics,

including land-use choices at the crop level and production output and technology. The main

advantage of using farm-level data is to capture the large heterogeneity in the opportunity
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cost of forest land based on observed farmer land-use choices.

We restrict our analysis to the population of large commercial farms in Brazil as large

commercial farmers are more likely to participate in forestland markets because of the re-

quirements for formal land ownership and the high transaction cost of trading. Also, after

the latest FC revision, small farmers are not required to reforest their land up to the legal

reserve requirement. Finally, focusing on large farms simplify the land-use model estimation

as large commercial farms in Brazil tend to specialize in one type of land-use. We define

large commercial farms based on the total production value and the farm size, following the

analysis of Alves et al. (2013) who found that about 86% of total agricultural production

value in Brazil was generated by about 10% of the farmers, which had a monthly production

value equal to or above ten minimum wages (MW) in 2006.1 In our preferred sample, we

select all farms in Brazil with total production value above 2 minimum wages, or R$7,200

in 2006, and farm size above 5 ha. The final dataset contains 1,195,450 commercial farms in

2006 and 1,129,400 commercial farms in 2017.

Description of census variables:

Land-use choice. The dependent variable for the crop discrete choice model is the

farmer’s land-use choice. We use the IBGE definition of the primary economic activity of

the farm, variable W462900 (Class. Ativ. Econ. Classe – Table Dados Gerais – Variaveis

Derivadas). We use five classes of economic activities defined by IBGE: 111 – Cereals, 115

– Soy; 113 – Sugarcane; 131 – Citrus; and 134 – Coffee. The baseline choice is others, the

remaining classifications of economics activity.

Land-use area. In the second stage of our empirical analysis we model the share

of land allocated to agriculture within a farm. The area allocated to agriculture is the

sum of crop and pasture area. Crop area is defined as the sum of permanent crop area,

variable W041100 (Área de Lavoura Permanente – Table Utilizacão das Terras Lavouras em

Ha – Variáveis Derivadas), and temporary crop area, variable W041400 (Área de Lavoura

Temporária – Table Utilizacão das Terras Lavouras em Ha – Variáveis Derivadas). The

pasture area is defined as the sum of natural pasture area, variable W041700 (Área de

Pastagem Natural – Table Utilizacão das Terras Pastagens em Ha – Variáveis Derivadas),

degraded pasture area, variable W041800 (Área de Pastagem Degradada – Table Utilizacão

das Terras Pastagens em Ha – Variáveis Derivadas), and non-degraded pasture area, variable

W041900 (Área de Pastagem Não Degradada – Table Utilizacão das Terras Pastagens em Ha

– Variáveis Derivadas). The forest area is defined as the sum of the area of natural forest for

preservation, variable W04200 (Área de Florestas Nat. Preservacão – Table Utilizacão das

Terras Pastagens em Ha – Variáveis Derivadas), the area of natural forest for commercial

1The minimum wage in Brazil is defined in terms of monthly income. In 2006, the minimum wage in
Brazil was R$300 per month. For example, an annual gross revenue of 10 minimum wages per farm would
correspond to annual revenue of R$36,000 per year. This annual gross revenue threshold is used to define
commercial farms.
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use, variable W042100 (Área de Florestas Nat. Exploracão – Table Utilizacão das Terras

Pastagens em Ha – Variáveis Derivadas), and the area of planted forest, variable W042200

(Área de Florestas Plantadas – Table Utilizacão das Terras Pastagens em Ha – Variáveis

Derivadas).

Water access. We use indicator variables to identify farms with water sources within

the property. The census has three variables that identify the existence of a spring water

source, a river, or a lake in the farm. We use these indicators of water source to con-

trol for preservation requirements in the Forestry Code as farmers are required to preserve

natural vegetation along rivers and water sources. The water source indicator variables

are Spring Water, variable v043300 (Se Tem Nascentes no Estabelecimento – Table Área

do Estabelecimento – Caracteŕısticas), River, variable v043400 (Se Tem Rios ou Riachos

no Estabelecimento – Table Área do Estabelecimento – Caracteŕısticas), and Lake, variable

v034500 (Se Lagos Naturais ou Acudes no Estabelecimento – Table Área do Estabelecimento

– Caracteŕısticas).

Farm size. The total area of the farm measured in ha is the census variable W040100

(Área Total do Estabelecimento – Table Área do Estabelecimento em Ha – Variáveis Derivadas).

Production value. The total gross revenue of the farm in year 2006 measured in Reals

is the census variable w462704 (Valor Total da Producão – Table Dados Gerais – Variáveis

Derivadas).

Municipality compliance in 1996. We use the 1996 Agricultural Census to construct

an indicator variable at the municipality level to identify compliance with the forest reserve

requirements defined in the forestry code. The objective is to control for possible endogeneity

of enforcement efforts. We contrast the total agricultural land in a municipality with the

required forestry reserve to identify the municipalities in 1996 that were in compliance. The

census variables used are the same as defined in land-use area above.

Share of commercial siviculture. We identify municipalities with significant rev-

enue from the commercialization of forestry products to control for the market benefits of

forestland. We first identify farms that have value of siviculture production above R$1,000

using the value of siviculture production variable from the census, variable w462500 (Valor

da Producão Sivicultura – Table Valor da Producão Vegetal – Variáveis Derivadas). We

then compute the share of farms with commercial siviculture at the municipality level based

on the number of farms within the municipality with sivivulture production value above

R$1,000.

Complementary datasets

We combine the agricultural census data with information on the potential yield of crops,

the transportation cost of agricultural production, and municipality socio-economic char-
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acteristics to measure the relative profitability of each land-use and to control for market

access in the discrete choice model.

Potential yields. IIASA and FAO estimate the potential yield of 154 crops under three

levels of land management and input use and differentiate between rain-fed and irrigated

farming (IIASA, 2018). IIASA and FAO estimate crop potential yield for millions of grid

cells (0.5 by 0.5 degrees latitude and longitude) using measurements of climate and soil

characteristics. In this analysis, we use potential yield measurements for high input use,

given the focus on commercial farmers, and for rain-fed farming as less than 3% of agriculture

production in the sample uses irrigation. We use a geographical information system to

combine the IIASA/FAO measures of potential yield for soy and alternative crops such as

sugarcane, rice, cotton, coffee, and corn with the Census dataset at the census block level.

There were 70,000 rural census blocks in Brazil in 2006.

The main advantage of using the potential yield variable constructed by IIASA and

FAO is that it is determined independently of the choices of Brazilian farmers, and therefore

it is a source of exogenous cross-sectional information about the productivity of agricultural

land. We use the potential yield variable for different crops, at the high input use level, to

estimate the discrete choice land use model. In contrast to climate and soil characteristics,

the potential yield variable is defined at the crop level and therefore contains information

regarding the relative productivity of each crop at each farm.

Transportation cost. We use variation in transportation cost to capture variability in

the profitability of crops produced in different regions of the country. Transportation costs

are important determinants of farm profitability in a large country such as Brazil because

crops are produced over 1,000 km from markets. We estimate transportation costs using

freight data from the System of Freight Information (SIFRECA) maintained by the Luiz

Queiroz College of Agriculture at the University of Sao Paulo (ESALQ/USP) (ESALQ, 2009).

Most of the agricultural production in Brazil is transported through roads and SIFRECA

contains average transportation cost by road routes for the main agricultural products in

Brazil.

We estimate transportation cost as a quadratic function of distance traveled using

the SIFRECA route/product dataset. The transport cost dataset used is a subset of the

SIFRECA annual report containing 1,039 routes, 625 for soy transportation and 423 for

corn transportation. The estimated transportation cost equation is:

t̂c = 9.086 + 0.0087d− 5.24× 10−6d2, (A1)

where d is the distance traveled measured in km and (t̂c) is the estimated transportation

cost measured in 2008 Reals per ton. The quadratic function of distance is consistent with

a standard road transport model with a fixed charge per km and an adjustment component
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for large distances. The quadratic model in equation (A1) explains 89% of the variation in

transportation cost in the SIFRECA dataset and was estimated for the combination of soy

and corn routes. We find no statistically significant difference in models estimated separately

for corn and soy routes.

We use the estimated transportation cost model (A1) to calculate the transportation

cost of agricultural products, excluding cattle, for each rural census block in Brazil. We

use the straight-line distance from each census block to the closest large city or port as an

estimate for the distance to the market. A market is defined as either a large city, a city with

more than 1 million habitants, or a port of large, medium, or small size. Our calculation of

the distance to market considers sea ports located along the coast and inland ports located

on rivers. Figure A1 shows the cross-sectional variation in the estimated transportation costs

in Brazil by microregion based on the minimum distance metric. The transportation costs

in the north and northwest agricultural frontiers of Brazil can be four times larger than the

transportation cost for farms along the coast.

Forest debt. The forest debt is the amount of reforestation required in each state/biome

market to meet the legal requirements of the FC. The FC regulates land use within private

properties in Brazil. The main objective of the code is to preserve the endowment of natu-

ral vegetation inside the farms, recognizing the value of biodiversity and ecosystem services

such as freshwater protection. The FC specifies two land diversion requirements, the legal

reserve and the areas of permanent preservation. The legal reserve requirement specifies,

at the biome level, the fraction of the farm that must be preserved in the original natural

vegetation. The reserve requirement is 80% in the Amazon biome, 35% in the Savanna

biome (Campos Gerais), and 20% in the remaining biomes, including the Atlantic Forest.

In addition to the reserve requirement, the DC defines the areas or permanent preservation

to protect natural vegetation along rivers and other water sources, and on hilltops. These

areas are defined in terms of the width of rivers or watercourses and the slope and height of

hilltops.

In May of 2012, a new version of the FC was approved by congress and signed into

law (Law 12.651/2012). The new FC differentiated the land diversion requirement from

reforestation requirements. The reserve requirements at each biome remained the same but

the formula for calculating the amount each farm must reforest in order to comply with

the FC changed. For example, the new FC exempted small farmers from their reforestation

obligations, revised the definition of permanent preservation areas, and incorporated land in

permanent preservation areas into the definition of reserve requirements, reducing farmer’s

reforestation debt.2 The reforestation debt is defined as the amount of land a farmer must

convert to natural vegetation to comply with the FC. In this study, we use the calculation

of the forest debt from Soares-Filho et al. (2014), as it reflects the latest revision of the FC.

2The legal definition of a small farmer in Brazil varies geographically and ranges from 20 ha in the
southern regions of Brazil to 440 ha in the Northwest regions, which include the Amazon biome.
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The primary market boundary defined in the FC is the state-biome combination. There are

44 different state/biome combinations in Brazil. Figure A2 shows the six biomes and the 44

state/biome markets in Brazil.

Municipality characteristics. We use the variables income per capita and population

density to capture variation in market access and in demand for agricultural products across

Brazil (Embrapa, 2014). Income per capita is measured in Reals per person and population

density is measured in the number of persons per square kilometer. Also, we use mean

elevation and the standard deviation of elevation to measure the suitability of the land for

mechanized agriculture and the additional demand for forestland due to the FC requirements

for natural vegetation in hilltops (EMBRAPA 2012). The unit of measurement of elevation

is meters.
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Figure A1: Cross-sectional variation in transportation costs in Brazil.

Notes: Figure A1 maps the average transportation cost at the microregion level. There are about 500
microregions in Brazil. We estimate the transportation cost using the average transportation cost by road
routes for main agricultural products in Brazil based on the SIFRECA dataset and the straight-line distance
from the rural census block to the closest large city or port (ESALQ, 2009). There are approximately 70,000
rural census blocks in Brazil. The estimated transportation cost equation is a quadratic function of distance
to market: t̂c = 9.086 + 0.0087d− 5.24× 10−6d2.
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Figure A2: Biomes and biome-state markets in Brazil.

Notes: Figure A2 maps the six biomes, the 26 states in Brazil, and the 44 biome-state markets. The map
shows the state boundaries and the state codes. The biomes are identified based on the six colors. The
markets are the combinations of states and biomes. For example, the state of Mato Grosso, code 51, has
three markets. The Mato Grosso-Amazon market is located in the north of the state, the Mato Grosso-
Pantanal market is located in the south, and the Mato Grosso-Cerrado market is in the center and east part
of the state. São Paulo state has two markets, the São Paulo-Cerrado in the middle of the state, and the
São Paulo-Atlantic Forest market in the east and west parts of the state.
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(a) Change in share of forest-
land (SD)

(b) Change in OC (SD) (c) Change in standard devia-
tion of OC (SD)

Figure A3: Changes in market characteristics: 2006-2017.

Notes: The geographical unit in each map is a microregion and the black boundaries identify each state-
biome market. There are 44 state/biome markets in Brazil and 551 microregions. Panel a maps the change
in the average share of forestland across all farms of a microregion. The unit of measure is the standard
deviation of the share of forestland in 2006. Panel b maps the change in the average OC across all farms in
a microregion. The unit of measure is the standard deviation of the OC in the microregion in 2006. Panel c
maps the change in the standard deviation of the average OC in a microregion. The unit of measure is one
standard deviation in year 2006. An increase in the standard deviation in OC in a microregion means that
the OC within that microregion has a larger spread around the mean OC.
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Figure A4: Changes in the distribution of OC by census year and farm size.

Notes: Figure A3 shows the distribution of OC estimates for the census years 2007 and 2017 and for four
classes of farms by farm size. The boxplot graph highlights five quantiles of the distribution of OC: Q5, Q25,
Q50, Q75, and Q95.
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Table A1: Summary statistics: land use by census year

Land use 2006

Amazon Cerrado Atl. Forest Other Total
(1) (2) (3) (4) (5)

Area (million hectares):
Forest 17.3 23.5 9.4 8.3 58.4
Pasture 21.9 44.0 19.6 19.5 105.0
Crops 2.7 17.0 15.7 4.7 40.2
Total 42.3 87.2 46.8 34.9 211.3

Number of farms (thousands):

Compliant 11.5 28.7 190.1 58.0 288.3
Total 133.1 224.9 635.7 201.8 1,195.5

Land value (Billions USD) 33.9 146.6 156.9 34.6 372.0
2017

Amazon Cerrado Atl. Forest Other Total
(6) (7) (8) (9) (10)

Area (million hectares):
Forest 22.9 29.7 12.9 7.2 72.7
Pasture 29.2 43.3 19.1 17.2 108.8
Crops 4.5 25.6 17.8 4.9 52.8
Total 57.7 99.7 50.2 32.1 239.7

Number of farms (thousands):
Compliant 9.5 36.2 208.6 46.6 300.9
Total 164.1 241.2 571.5 152.5 1,129.4
Notes: Table A1 reports summary statistics for land use choices of commercial farms based on the
agricultural census dataset. We define commercial farms based on total annual production value and
farm size. We select all farms in Brazil with a total production value above 2 minimum wages and
farm size above 5 ha. The 2017 agricultural census does not have farmland use values. The number
of compliant farms is the number of farms with native vegetation area equal to or above the reserve
requirement in the FC.
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Table A2: Land use choice frequency by census year

Number of farms All farms Large farms Top farms

by land use choice 2006 2017 2006 2017 2006 2017
(1) (2) (3) (4) (5) (6)

00-Grazing 863,029 894,746 143,391 146,803 41,020 43984
01-Cereaks 101,307 44,755 20,701 11,330 3,074 2,535
02-Soy 110,285 145,578 39,396 64,652 8,681 15,753
03-Sugarcane 30,758 22,842 10180 9,137 2,036 2,897
04-Citrus 15,332 5,967 3,410 1,905 308 295
05-Coffee 88,301 56,396 13,583 8,788 768 618
Total 1,209,012 1,170,284 230,661 242,615 55,887 66082
Notes: Table A2 reports the number of farms by land use choice, defined using the farm economic
classification from IBGE. We define our reference class as the grazing class because it is mostly formed
by grazing farms which occupy most of the agricultural land in Brazil. The grazing reference class in
our land use choice model also has other classifications with lower frequency. The subsample of top
farms is defined as farms with more then 10 minimum wages in annual gross revenue and farm size
larger than 500 hectares.
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Appendix B. Discrete choice model

Inferring the OC function from land-use choices

We use a discrete choice model of land use to infer the OC of forestland from the

observed land-use choices of farmers. Discrete choice models map the characteristics of the

decision maker and the choice alternatives into a vector of utilities or returns for each choice

available (Ben-Akiva and Lerman, 1985; Berry, 1994; Cardell, 1997; Lubowski et al., 2006).

The function takes the form (Zij) → Rj, where Zij is a vector of the characteristics of farmer

i and land-use choice j, and J alternative land uses are available. In commercial agriculture,

the profit function does the mapping. Farmer i can be represented by a vector of agricultural

land-use returns Π∗:

Π∗
i = (Π∗

1,Π
.
2..,Π

∗
J) = (π∗

1(Zi1, p1, w), . . . , π
∗
J(ZiJ , pJ , w)), (A2)

where pj and w are the vectors of output and input prices, respectively. In this framework,

the OC can then be represented in terms of the vector of land-use returns Π∗:

OCi(Zi1, p1, w) = Max(π∗
1, π

.
2.., π

∗
J) ∼ FOC/Z,p,w, (A3)

where FOC/Z,p,w is the conditional distribution of the OC.

As prices and characteristics change, the OC also changes. We use a simple nested

land-use model to calculate the OC defined in equation (A3). The farmer’s land-use decision

process is broken down into two nested choices: the choice of farming (f) and the choice of

farm type (j) (figure A5). The farmer decides for each plot of land whether to farm or leave

it as forest, and conditional on farming, he chooses the farm type corresponding to specific

land use. Examples of farm types are grazing, cereals, and soy.

The observed land-use choices of farmers reveal the relative profitability of each land

use (each pi∗j). The land rent from land use fj, where f specifies the choice of farming and

j specifies the choice of farm type, can be expressed as πfj = π̃f + π̃fj + ϵ̃f + ϵ̃fj, where the

rents are decomposed into an observed component such as π̃f and an unobserved component

such as ϵ̃f (Berry, 1994; Cardell, 1997). The conditional probability equation for the choice

of agriculture shows how the OC fits into the discrete choice model for farming:

Pr(Agr) = Pr(π̃agr + ϵ̃agr +maxjagr(π̃j + ϵ̃agr,j) ≥ π̃forest + ϵ̃forest). (A4)
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Figure A5: Discrete choice model of land use for a commercial farmer.

Notes: Figure A5 shows the nested choice set of a farmer in our discrete choice land use model. The farmer
land use decision process is divided into two nested choices: farming (f) and farm type (j). The farmer
decides for each plot of land whether to farm or leave it as forest, and conditional on farming, he chooses the
farm type corresponding to specific land use. Examples of farm types are grazing, cereals, and soy. The OC
can be represented by the standard inclusive value formula of the nested logit model: OC =

∑
j e

πj . The
benefit of using a discrete choice framework to estimate OC is that we can easily model changes in the OC.

Assuming that ϵ̃fj is Gumbel distributed with the parameter µj, the OC can be repre-

sented by the standard inclusive value formula of the nested logit model:

OC = maxj∈agr(π̃j + ϵ̃agr,j) =
1

µj

Ln
∑
j

eπagr,j×µj . (A5)

The benefit of using a discrete choice model to estimate the OC is explicitly modeling

the changes in the OC function (A5).

Identification of the discrete choice model

Our identification strategy follows the special regressor approach of Lewbel (2014). A

special regressor is an exogenous observed covariate with large support. The intuition for

the identification strategy is that this special regressor creates variation in the returns of

alternative land uses for similar farmers (Lewbel, 2014; Dong and Lewbel, 2015). We use

the interaction between a potential yield measure for each crop from IIASA (2018) and the

straight-line distance to markets as a special regressor. This interaction captures the varia-

tion in the maximum potential net revenue specific to each alternative land-use choice. The

potential yield measure is exogenous to farmers’ choices and captures the variation in agricul-

tural productivity, whereas the straight-line distance captures the variation in transportation

costs.3

A concern with our identification strategy is the potential correlation between the

straight-line distance and infrastructure. We thus use several measures of market access

and the interaction between the biome and state fixed effects to control for the unobserved

variation in policies and infrastructure investments across states. Therefore, our land-use

3See Bustos et al. (2016) and DePaula (2023) for empirical applications in Brazilian agriculture using
IIASA/FAO potential yield measurements.
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analysis uses the within-state variation in the maximum potential net revenue for each land

use to estimate the OC. Two other sources of bias could be the endogenous variation in pol-

icy enforcement and demand for forestry products. To address these concerns, we create one

variable for historical compliance with the Brazilian Forestry Code (FC) and one variable

for the local value of forestry products. We find that our estimates of the supply function of

forestland are robust to adding these controls. Finally, we test the robustness of our results

to alternative measures of the potential returns for each land-use choice, different nesting

structures and choice sets in the nested logit model, and six methods for computing changes

in the OC. We find that our estimates of the OC and forestland supply function and our

simulation results are robust to these changes in the model specification.
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Additional Results. Figures and Tables

A - Sensitivity of reforestation
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B - Sensitivity of market price of forest certificates

Figure A6: Sensitivity of market instruments to higher OC.

Notes: Figure A6 shows the variation in the optimal amount of land reforested (panel A) and in the optimal
tax (panel B) and by state/biome market, biome, and country. The green bar represents the variation for a
0.5SD change in the OC, and the dashed yellow line represents the variation for a 2SD change in the OC.
The states included in the graphs are MT – Mato Grosso; TO – Tocantins; MA – Maranhão; SP – São
Paulo; PA – Para; BA – Bahia; MG – Minas Gerais. The biomes included in the graph are Amazon, Cerrado
(Savanna), and AT. Fl.- Atlantic Forest. The optimal tax and optimal reforestation computed at different
geographical levels are based on all commercial farms within the geographical boundary.

17



Table A3: Conditional logit model of land use: census year 2006

Land use Land use choices

variables Cereals Soy Sugarcane Orange Coffee
(1) (2) (3) (4) (5) (6)

Land use alternative specific variables
Maximum potential 0.0972***
net revenue (MNR) (0.0109)
Interacted with:
mean elevation -5.06e-05***

-0.0000106
Log pop. density -0.0105***

(0.00226)

Farm characteristics
Transport cost 0.00142 0.0277*** -0.00958*** -0.0175*** -0.00688

(0.00140) (0.00195) (0.00252) (0.00349) (0.00447)
Mean elevation 0.000286** 0.00161*** -0.000209 -0.000151 0.00410***

(0.000121) (0.000154) (0.000201) (0.000279) (0.000392)
Income per capita 0.00751* 0.0339*** 0.0282*** 0.0117 -0.0738***

(0.00456) (0.00851) (0.00822) (0.00844) (0.0193)
Log pop. density 0.131*** 0.374*** 0.663*** 0.746*** 0.816***

(0.0265) (0.0427) (0.0484) (0.0749) (0.101)
Log farm size -0.122*** 0.0714*** 0.170*** -0.119*** -0.404***

(0.0133) (0.0175) (0.0188) (0.0300) (0.0173)
N (million farms) 1.195 1.195 1.195 1.195 1.195
Chi-squared statistics 1,947 1,947 1,947 1,947 1,947
Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Table A3 reports the results of the discrete choice model for farm type, the first stage of the nested choice
set in figure A5, for census year 2006. We estimate a conditional logit model with three land-use specific variables: maximum potential net revenue and
its interactions with elevation and density. The land-use specific variables differ for each farm/land use combination. All standard errors are clustered
at the municipality level. There are 5,336 municipalities in our sample with an average 220 commercial farms.
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Table A4: Conditional logit model of land use - Census year 2017

Land use Land use choices

variables Cereals Soy Sugarcane Orange Coffee
(1) (2) (3) (4) (5) (6)

Land use alternative specific variables
Maximum potential 0.0868***
net revenue (MNR) (0.0179)
Interacted with:
mean elevation 5.58e-06

(1.37e-05)
Log pop. density -0.0193***

(0.00360)

Farm characteristics
Transport cost -0.00105 0.0192*** -0.00926*** -0.0201*** 0.00328

(0.00160) (0.00181) (0.00224) (0.00429) (0.00414)
Mean elevation 0.000152 0.00144*** -8.73e-05 -0.000486 0.00621***

(0.000161) (0.000164) (0.000180) (0.000301) (0.000468)
Income per capita 0.0199*** 0.0288*** 0.0128*** 0.0129*** -0.0796***

(0.00287) (0.00435) (0.00317) (0.00458) (0.00843)
Log pop. density 0.320*** 0.367*** 0.728*** 0.754*** 1.405***

(0.0290) (0.0358) (0.0423) (0.0696) (0.141)
Log farm size -0.000849 0.169*** 0.326*** 0.110*** -0.476***

(0.0190) (0.0142) (0.0201) (0.0288) (0.0258)
N (million farms) 1.129 1.129 1.129 1.129 1.129
Chi-squared statistics 2,143 2,143 2,143 2,143 2,143
Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Table A4 reports the results of the discrete choice model for farm type, the first stage of the nested choice
set in figure A5, for census year 2017. We estimate a conditional logit model with three land-use specific variables: maximum potential net revenue and
its interactions with elevation and density. The land-use specific variables differ for each farm/land use combination. All standard errors are clustered
at the municipality level. There are 5,336 municipalities in our sample with an average 220 commercial farms.
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Table A5: Simulation of a tax on agricultural land and markets of forest certificates in Brazil - Census year 2017

Market (Biome-state) Market characteristics Tax on agricultural land Market of forest certificates

Forest OC Marginal Tax % Reduction Price Conservation % Increase
Debt OC ($/ha) reforestation ($/ha) cost conservation cost

(million ha) Mean Std. Dev. ($/1,000 ha) (0.5 SD) (2 SD) (Million $) (0.5 SD) (2 SD)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Amazon:
11 - Rondonia 0.241 0.18 0.06 0.09 18 4 15 126 18 73 89
17 - Tocantins 0.604 0.13 0.07 1.02 222 2 12 - - - -
21 - Maranhao 1.100 0.11 0.06 0.13 114 5 19 - - - -
51 - Mato Grosso 3.900 0.20 0.12 0.06 198 4 19 - - - -

Cerrado:
17 - Tocantins 0.238 0.13 0.04 0.06 6 3 12 18 3 44 44
31 - Minas Gerais 0.234 0.34 0.22 0.04 6 3 10 18 3 33 33
35 - Sao Paulo 0.523 0.39 0.22 0.15 90 5 18 130 38 104 137
50 - Mato Grosso do Sul 0.560 0.41 0.43 0.03 18 6 20 30 10 66 66
51 - Mato Grosso 1.600 0.64 0.42 0.05 66 5 18 102 98 87 126
52 - Goias 0.432 0.29 0.22 0.02 6 4 16 6 3 0 0

Atlantic Forest:
29 - Bahia 0.564 0.19 0.15 0.07 42 5 21 54 19 62 97
31 - Minas Gerais 0.764 0.55 0.48 0.04 30 4 14 42 20 59 104
32 - Espirito Santo 0.179 0.36 0.31 0.13 18 4 16 30 3 55 55
33 - Rio de Janeiro 0.121 0.32 0.22 0.18 18 5 16 18 2 29 114
35 - Sao Paulo 1.000 0.35 0.23 0.09 90 5 17 126 66 90 126
41 - Parana 1.200 0.36 0.19 0.07 78 5 18 102 69 78 119
43 - Rio Grande do Sul 0.218 0.27 0.17 0.11 18 4 14 30 4 50 50
50 - Mato Grosso do Sul 0.433 0.28 0.11 0.21 102 5 20 126 27 103 142
Notes: Table A5 reports 2017 market statistics for all markets with more than 100,000 hectares in forest debt. The forest debt is from Soares-Filho et al. (2014). The OC and the
marginal OC are estimated using the 2017 census data. Market values are simulated using the empirical function of forestland for each market. We do not report results for the Amazon
Para market because of insufficient data on the average yield for the class of cereals (corn, rice, beans, wheat, sorghum, barley, and rye) for the calculation of the rescaling factor across
the state of Para.
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Robustness analysis

We test the robustness of our empirical models using alternative subsets of the agricultural

census data, alternative specifications, different measures of land-use returns in the first stage

of the estimation process, and various clustering parameters. We find robust estimates for

the agricultural land share model when we add a set of state, biome, and biome/state fixed

effects.

Table A6 reports the estimates of the agricultural land share model using different

subsets of the agricultural census dataset. Our preferred specification is the full set of

commercial farms with an annual gross revenue higher than 2 MW and a farm size larger

than 5 ha. We also estimate the model using a dataset of farmers with a gross revenue

above 2 MW and farm size larger than 50 ha (table A6, column (2)), a dataset of farms

with a gross revenue above 10 MW and farm size larger than 5 ha (table A6, column (3)),

and a dataset of large farms with a gross revenue above 10 MW and farm size larger than

50 ha (table A6, column (4)). We find consistent results across these four datasets for the

first- and second-stage models, choice of farm type and land-use choice (agriculture versus

forest). Few of the coefficients are statistically different across the datasets. Moreover, all

the estimated models have fixed effects for states, biomes, and biome/state.

Table A7 presents the estimates of our agricultural land share model when we change

the measure of land-use returns in the first-stage model. Our preferred measure is the max-

imum potential revenue, calculated by first multiplying the maximum potential yield for

each crop by the expected price of the commodity and subtracting the transportation cost.

The alternative measure is the maximum incremental revenue, calculated by multiplying the

expected price by the difference between the maximum and minimum potential yields for

the crop (table A7, column (2)). This measure captures the return on crop production with

intensive management and advanced technology. The third measure is the maximum poten-

tial revenue, the product of the expected price and potential yield (table A7, column (3)).

The fourth measure is the maximum net revenue, calculated by subtracting the expected

production cost for the crop from the maximum potential revenue. The coefficients of the

agricultural land share models using these four measures of land-use return are not statisti-

cally different. The coefficients of each land-use return measure in the first-stage model are

also not statistically different.

Table A8 reports the estimation results of the agricultural land share equation using

different clustering parameters to calculate the standard errors. Owing to the concern that

the estimated standard errors are subject to spatial correlation across farms, we use Con-
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ley standard errors, which allow for spatial correlation within a specified geographical area

defined by a radius parameter. We estimate the model for four radius measures: 50 km,

100 km, 200 km, and 500 km. The estimation of Conley standard errors is computationally

intensive, particularly with such a large census dataset and the inclusion of a large set of

fixed effects. Therefore, we estimate the models for large farms in Mato Grosso, which has

a land area of over 900,000 square km. We find that the standard errors do not change

significantly as we increase the radius measure and that most of the estimated coefficients

are statistically significant.

Finally, we test six alternative measurements of the estimation of the OC shock using

the census agricultural data. The first four measures are estimated for each of the 44 markets

in Brazil. Shock 1 is 1 SD of the farm OC. Shock 2 is defined as 2 SD of the farm OC. Shock

3 is the coefficient of variation of the OC, defined as the SD divided by the mean OC. Shock

4 is the difference between the 90th and 50th percentiles of the farm OC. Shock 5 is defined

as the average of Shock 1 across all the markets. Our preferred definition of the OC shock

is the Shock 5 measure. In our uncertainty analysis, we simulate each market using a lower

and upper bound of the OC shock, defined as 0.5 and 2 times Shock 5. Figure A7 shows that

the range defined by 0.5 to 2 times the OC shock measure includes most of the other OC

shock measures. Figure A7 compares the five measurements of the OC shock. The vertical

axis plots the size of the OC shock and the horizontal axis plots its rank. The OC shock

across all 44 states ranges from 0 to 45. The OC shock tends to be high in large states with

a significant variation in agricultural profitability across farms. The gray area in the graph

represents the range of OC shocks defined as 0.5 to 2 times Shock 5. Most measures of the

OC shock fall within this range. The exceptions are in the extreme OC shocks, particularly

in states with the highest OC shocks. For these states, our preferred OC shock measure,

Shock 5, would understate the uncertainty in the OC shock. Shock 5 is thus a conservative

measure of uncertainty for these largest states.
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Figure A7: Comparison of alternative measures of the OC shock.

Notes: Figure A7 compares five measurements of the OC shock that we test to model the uncertainty in
the OC. The vertical axis measures the size of the OC shock and the horizontal axis measures the rank of
the OC shock. 0 in the horizontal axis is the lowest OC shock across all 44 states and 45 is the highest.
The first four measures are estimated for each of the 44 markets in Brazil. Shock 1 is one SD of the farm
OC. Shock 2 is defined as two SD of the farm OC. Shock 3 is the coefficient of variation of the OC, defined
as the SD divided by the mean OC. Shock 4 is the difference between the 90th and 50th percentiles of the
farm OC. Shock 5 is defined as the average of Shock 1 across all markets. The OC shock tends to be high
in large states with significant variation in agriculture profitability across farms. The gray area in the graph
represents the range of OC shocks defined as 0.5 to 2 times the OC shock 5.
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Table A6: Comparison of agricultural land share model for alternative samples

- Census year 2006

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are bootstrapped with 700 iterations and clustered
at the municipality level. The baseline model is our preferred dataset and includes all farms with annual
gross revenue greater than 2 minimum wages (MW) and farm sizes larger than 5 ha. Column (2) shows
results for farms with gross revenue greater than 2 MW and farm size larger than 50 ha. Column (3) shows
results for farms with annual gross revenue greater than 10 MW and farm size larger than 5 ha. Column (4)
shows results for farms with annual gross revenue greater than 10 MW and farm size larger than 50 ha. This
robustness analysis controls for population density at the microregion level. The main results reported in the
main text are based on regressions with controls for the log of population density at the municipality level.
The robustness of the OC effect is similar to the two different control variables for population density. The
estimation with a more disaggregated control variable for population density leads to a more conservative
estimate of the OC effect.
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Table A7: Comparison of agricultural land share model for alternative measures

of land use returns - Census year 2006

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the municipality level. Each column
in table A7 reports estimates for the 2nd stage model using alternative measures of land use returns in the 1st
stage. Column (1) shows our preferred model estimated using the maximum potential net revenue measure.
Standard errors in column 1 are bootstrapped with 700 iterations. Column 2 uses an incremental revenue
measure calculated using the difference between the maximum potential yield and the minimum potential
yield for each land use. Standard errors in column (2) are bootstrapped with 250 iterations. We reduced
the number of iterations in some robustness tests due to the computational intensity of bootstrapping with
the large census datasets. Column 3 uses a maximum revenue measure for the return of land uses calculated
by multiplying the expected price of each crop by its maximum potential yield in each location. Standard
errors in column (3) are not bootstrapped. Column (4) uses a maximum net revenue measure for the return
of different land uses calculated by subtracting the expected production of each crop from the maximum
revenue. Standard errors in column (4) are not bootstrapped. All models are estimated for our preferred
dataset of commercial farms with annual gross revenue greater than 2 MW and farm size larger than 5 ha.
This robustness analysis controls for population density at the microregion level. The main results reported
in the main text are based on regressions with controls for the log of population density at the municipality
level. The robustness of the OC effect is similar to the two different control variables for population density.
The estimation with a more disaggregated control variable for population density leads to a more conservative
estimate of the OC effect.
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Table A8: Spatial correlation test with agricultural land share model for Mato

Grosso - Census year 2006

Notes: *** p¡0.01, ** p¡0.05, * p¡0.1. Table A8 reports estimates for an agricultural land share model, the 2nd
stage in our empirical approach, for the state of Mato Grosso in Brazil using different clustering parameters.
We restrict our analysis to the state of Mato Grosso because the clustering tests are computationally intensive
with the large census dataset. Also, all models are estimated without fixed effects due to computational
restrictions in the calculation of Conley standard errors with fixed effects and the large census dataset
(Conley, 1999). The state of Mato Grosso is the largest grain producer in Brazil and has an area of over 900
thousand km2. We test for spatial correlation using Conley spatial standard errors (20). Conley standard
errors account for the spatial correlation of units within a radius measured in km. We estimate the Mato
Grosso agricultural land share model with four different clustering radius: 50 km, 100 km, 200 km, and
500 km. This robustness analysis controls for population density at the microregion level. The main results
reported in the main text are based on regressions with controls for the log of population density at the
municipality level. The robustness of the OC effect is similar with the two different control variables for
population density. The estimation with a more disaggregated control variable for population density leads
to a more conservative estimate of the OC effect.
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